El Big Bang y la evolución del universo
En este capítulo
Evaluarás las pruebas del Big Bang
Comprenderás la inflación y la expansión del universo
Te sumergirás en la energía oscura
Examinarás el fondo cósmico de microondas
Medirás la edad del universo
Érase una vez, hace 13.700 millones de años, el universo tal y como lo conocemos no existía. No había materia, ni átomos, ni luz, ni fotones, ni siquiera existían el espacio y el tiempo.
De repente, quizá en un instante, el universo surgió a partir de un diminuto y denso punto lleno de luz. En una fracción de segundo, toda la materia y la energía del cosmos cobraron vida. El universo primigenio, mucho más pequeño que un átomo, era una bola de fuego intensamente caliente que empezaba a multiplicar su tamaño y a enfriarse a un ritmo frenético.
Los astrónomos y personas de todo el mundo han llegado a conocer esta imagen del nacimiento del universo como teoría del Big Bang.
El Big Bang no fue como una bomba que explota en el entorno (no había entorno hasta que se produjo el Big Bang). Fue el origen y la expansión del espacio en sí. Durante la primera billonésima de billonésima de billonésima de segundo, el universo se hizo más de una billonésima de una billonésima de una billonésima de veces mayor. A partir de una mezcla homogénea de radiación y partículas subatómicas, nació el conjunto de galaxias, cúmulos de galaxias y supercúmulos presentes en el universo hoy en día. Me parece alucinante pensar que las estructuras más grandes del universo, las congregaciones de galaxias que se extienden cientos de millones de años luz a través del cielo, empezaron siendo fluctuaciones subatómicas de la energía del cosmos primigenio. Sin embargo, los científicos creen que el universo se formó de esa manera.
En este capítulo comento pruebas que apoyan la teoría del Big Bang, la expansión del universo e información relacionada con la energía oscura, el fondo de microondas cósmicas, la constante de Hubble y las candelas estándares.
Para obtener más información sobre los conceptos que aparecen en este capítulo, visita el apartado de preguntas frecuentes de la web Cosmology, de la UCLA: www.astro.ucla.edu/~wright/cosmology_faq.html. El autor de este sitio web es el profesor Ned Wright, y da buena información.
¿Por qué creer que el universo empezó con una explosión?
Los astrónomos citan tres descubrimientos que confirman la teoría:
El universo en expansión: Quizá la prueba más convincente del Big Bang procede de un descubrimiento destacado de Edwin Hubble, en 1929. Hasta aquel momento, la mayoría de los científicos consideraban que el universo era estático y sin cambios. Pero Hubble descubrió que el universo se expande. Los grupos de galaxias se separan entre sí, como los escombros que huyen en todas direcciones a partir de una explosión cósmica, pero no es que se estén separando en el espacio; es el espacio entre ellas el que se expande, y eso hace que estén cada vez más separadas.
Por lógica, si las galaxias se están distanciando, significa que, en el pasado, estaban más cerca las unas de las otras. Al investigar el momento al que se remonta la expansión del universo, los astrónomos (con la ayuda de los telescopios y los observatorios del espacio) descubrieron que hace 13.700 mil millones de años (100 millones de años arriba o abajo), el universo era un lugar increíblemente caliente y denso en el que una enorme liberación de energía inició una explosión enorme.
La radiación del fondo cósmico de microondas: En la década de 1940, el físico George Gamow se dio cuenta de que un Big Bang produciría una radiación intensa. Sus colegas sugirieron que todavía podían existir restos de esta radiación enfriados por la expansión del universo (como el humo que persiste después de haber apagado una casa en llamas).
En 1964, Arno Penzias y Robert Wilson, de los laboratorios Bell, estaban estudiando el cielo con un radiorreceptor cuando detectaron un chisporroteo tenue y uniforme. Lo que los investigadores supusieron que era estática en su receptor resultó ser el tenue susurro de la radiación que quedaba del Big Bang. La radiación es un brillo uniforme de radiación de microondas (ondas de radio cortas) que permea el espacio. Esta radiación del fondo cósmico de microondas tiene exactamente la temperatura que los astrónomos calculan que debería tener (–273,16 °C) si se ha enfriado constantemente desde el Big Bang. Por su descubrimiento histórico, Penzias y Wilson compartieron el Premio Nobel de Física en 1978. (Para obtener información detallada, consulta el apartado “Información universal extraída de la radiación del fondo cósmico de microondas”, que aparece más adelante en este capítulo.)
La abundancia cósmica de helio: Los astrónomos han descubierto que la cantidad de helio que hay en toda la materia bariónica del universo es un 24 % en masa (el resto de la materia bariónica es casi toda hidrógeno; el hierro, el carbono y el oxígeno, y todo ese tipo de cosas juntas, constituye solamente una trazas, en comparación con el hidrógeno y el helio). Las reacciones nucleares dentro de las estrellas (consulta el capítulo 11) no han durado lo suficiente para producir esta cantidad de helio. Sin embargo, el helio que hemos detectado es justamente la cantidad que la teoría predice que se habría creado en el Big Bang. Una prueba más que añadir es que la sonda WMAP de la NASA descubrió que había helio en el universo temprano antes de que hubiera estrellas.
Además de los tres descubrimientos que acabo de mencionar, los astrónomos tienen otras pruebas observacionales de que el universo se ha expandido y ha cambiado con el tiempo. Por ejemplo, las fotografías de mayor calidad del espacio tomadas con el telescopio espacial Hubble revelan que las galaxias del universo temprano a menudo eran más pequeñas o más irregulares en forma y que era más probable que colisionaran entre sí que las galaxias actuales. Esta información es coherente con la idea de que entonces el universo era mucho más pequeño, por lo que las galaxias estaban más cerca entre sí y era más probable que colisionaran. Si el universo se hubiera formado hace poco a partir de un Big Bang, las galaxias habrían sido más jóvenes y más pequeñas.
Estas pruebas dejan claro que el universo está evolucionando de forma coherente con la idea de que empezó con el Big Bang y se ha hecho cada vez más grande con el tiempo.
Por muy exitosa que haya demostrado ser la teoría estándar del Big Bang para explicar las observaciones del cosmos, dicha teoría es sólo un punto de partida para explorar el universo temprano. Por ejemplo, a pesar de su nombre, en la teoría no se sugiere una fuente para la dinamita cósmica que desencadenó el Big Bang.
Además de pasar por alto la fuente de la explosión que causó la expansión, la teoría del Big Bang tiene otros defectos. No explica por qué las regiones del universo que están separadas por distancias tan vastas que no pueden comunicarse (ni siquiera por un mensajero que viaje a la velocidad de la luz) son tan similares entre sí.
En 1980, el físico Alan Guth elaboró una teoría, que llamó inflación, que puede ayudar a explicar este misterio. Sugirió que en una diminuta fracción de segundo después del Big Bang, el universo experimentó un enorme impulso de crecimiento. En sólo 10–32 segundos (cienmillonésima de billonésima de billonésima de segundo), el universo se expandió a una velocidad mucho mayor que en cualquier momento de los 13.700 millones de años que han pasado desde entonces.
Este enorme período de expansión diseminó diminutas regiones (que una vez habían estado en estrecho contacto) hasta los puntos más remotos del universo. En consecuencia, el cosmos tiene la misma apariencia a gran escala, independientemente de la dirección a la que se apunte el telescopio. (Imagina una gran bola de masa con grumos: si trabajas la masa una y otra vez con el rodillo de amasar, al final alisas todos los grumos y creas una capa de pasta uniforme.) De hecho, la inflación expandió diminutas regiones del espacio en volúmenes tan grandes que los astrónomos nunca podrán observarlos. Esta expansión sugiere la fascinante posibilidad de que la inflación creó universos mucho más allá del alcance del nuestro. En lugar de existir un único universo, existen una serie de universos o un multiverso. Sin embargo, no soy partidario de esa teoría. ¡Ya cuesta bastante entender el universo tal como es!
La inflación tuvo otro efecto: el incremento repentino del crecimiento del universo después del Big Bang, infinitesimalmente corto pero extraordinariamente grande, capturó fluctuaciones subatómicas de energía aleatorias y las aumentó hasta proporciones macroscópicas. Al conservar y ampliar las llamadas fluctuaciones cuánticas, la inflación produjo regiones del universo con densidades ligeramente diferentes.
Debido a la inflación y a las fluctuaciones cuánticas, de media algunas regiones del universo contienen más materia y energía que otras. En consecuencia, hay puntos calientes y fríos en la temperatura de la radiación del fondo cósmico de microondas (consulta la figura 16-1). Con el tiempo, la gravedad moldeó estas variaciones formando las telas de araña de los cúmulos de galaxia y los vacíos gigantes que llenan nuestro universo hoy día, tal y como describo en el capítulo 12. Para obtener más información, consulta el apartado “Información universal extraída de la radiación del fondo cósmico de microondas”, que aparece más adelante en este capítulo.
Figura 16-1:
Una “fotografía infantil” del universo tomada desde el satélite WMAP
En los siguientes apartados, se explican otros aspectos interesantes de la inflación: el vacío en el que la inflación logra su poder y la relación entre la inflación y la forma del universo.
Resulta irónico que el depósito de energía que impulsa la inflación proceda de la nada: del vacío. Según la teoría cuántica, el vacío del espacio no está vacío. Rebosa de partículas y antipartículas que se crean y se destruyen constantemente. Los teóricos sugieren que, al acceder a esta energía, el Big Bang obtuvo su radiación y energía explosiva.
El vacío tiene otra extraña propiedad: puede ejercer una fuerza repulsiva. En lugar de juntar dos objetos como hace la gravedad, esta fuerza los separa. La fuerza repulsiva del vacío puede haber conducido a la breve pero potente era de la inflación.
Igual que sucede en la economía, la inflación cósmica genera mucho interés. Y esta burbuja no estallará.
El proceso de inflación (como mínimo, en su forma más sencilla) habría impuesto otra condición al universo: hacer que la geometría del universo fuera plana. Este rápido período de expansión habría estirado cualquier curvatura en el cosmos, como un globo que se infla hasta alcanzar una dimensión enorme.
Para que el universo sea plano, debe tener una densidad muy específica llamada densidad crítica. Si la densidad del universo es mayor que el valor crítico, la fuerza de la gravedad será lo suficientemente fuerte como para revertir la expansión y, al final, provocará que el universo experimente lo que los astrónomos denominan Big Crunch o Gran Implosión.
Este universo se curva sobre sí mismo para formar un espacio cerrado de volumen finito, como la superficie de una esfera. Una nave espacial que viaje en línea recta se encontraría al final en el mismo punto del que zarpó. Los matemáticos llaman a esta geometría curvatura positiva.
Si la densidad es menor que el valor crítico, la gravedad nunca puede vencer a la expansión, y el universo continuará creciendo para siempre. Este universo tiene una curvatura negativa, con una forma parecida a una silla de montar a caballo.
A pesar de que la teoría de la inflación exige que el universo sea plano, varios tipos de observaciones han revelado que el universo no tiene materia suficiente (tanto materia normal como materia oscura, consulta el capítulo 15) para lograr una densidad crítica.
Por lo tanto, si el universo es plano, la materia, tal y como la conocemos (o como no la conocemos) no es suficiente. Pero, como Súper Ratón, ¡la energía puede sacarnos del apuro! De hecho, puede salvar al universo y las investigaciones recientes muestran que lo hace. Los datos que muestra la “imagen infantil del universo” de la figura 16-1 (un mapa celeste de la radiación de fondo cósmico de microondas según las mediciones del satélite WMAP), ha convencido a todos los cosmólogos de que el universo es plano y de que la energía es lo que explica esta característica. Sin embargo, no se trata de la energía que siempre hemos conocido, sino que el héroe sería la energía oscura. Sigue leyendo para descubrir el lado oscuro.
La energía oscura tiene un efecto sorprendente: ejerce una fuerza repulsiva a lo largo del universo. Es todo lo que los científicos conocen sobre ella. No sabemos qué es la energía oscura, así que la definimos mediante su propiedad observable, la fuerza repulsiva. Tras el Big Bang y la inflación, la gravedad ralentizó la expansión del universo. No obstante, a medida que el universo creció, también la materia se propagó por más y más espacio, y el efecto ralentizante de la gravedad perdió fuerza. Al cabo de un tiempo (miles de millones de años), la fuerza repulsiva de la energía oscura se hizo con el control y provocó que el universo se expandiera aún más de prisa. Las observaciones del telescopio Hubble y otros telescopios han mostrado este extraño fenómeno.
Las observaciones que revelaron la existencia de la energía oscura (y que mostraron que la expansión del universo se está acelerando) se hicieron a supernovas de tipo Ia en galaxias distantes (encontrarás más información sobre supernovas de Tipo Ia y de otros tipos en el capítulo 11). Todas las supernovas son lo suficientemente brillantes para ser vistas desde galaxias distantes, pero las supernovas Ia presentan una propiedad especial. Los astrónomos creen que todas estas explosiones tienen casi el mismo brillo intrínseco, como bombillas incandescentes de una potencia concreta (consulta el apartado “En una galaxia lejana: candelas estándares y la constante de Hubble” que aparece más adelante en este capítulo).
Como la luz de una galaxia distante tarda cientos de millones de años o más en llegar a la Tierra, las observaciones de esa galaxia pueden mostrar supernovas que entraron en erupción cuando el universo era mucho más joven. Si la expansión del universo hubiera estado disminuyendo desde el Big Bang, habría menos distancia entre la Tierra y la galaxia lejana (y menos tiempo de viaje de la luz) que si el universo hubiera seguido expandiéndose a una velocidad fija. Por eso, en el caso de una expansión más lenta, una supernova de una galaxia distante debería parecer ligeramente más brillante.
Pero en 1998, dos equipos de astrónomos descubrieron el resultado opuesto: las supernovas distantes parecían ligeramente más tenues de lo esperado, como si sus galaxias de origen estuvieran más lejos de lo que se había calculado. Parece que el universo había acelerado su ritmo de expansión. Este descubrimiento reveló la presencia de energía oscura, tal y como describo en el capítulo 11, y dio el Premio Nobel de Física a los tres astrónomos que habían dirigido la investigación, Saul Perlmutter, Adam Riess y Brian Schmidt.
El fondo cósmico de microondas (el leve susurro de radiación que quedó del Big Bang) representa una instantánea del universo cuando tenía 379.000 años de edad. Antes de ese momento, el universo estaba dominado por una niebla de electrones y la radiación creada en el Big Bang no podía fluir libremente a través del espacio. Las partículas con carga negativa absorbían la radiación una y otra vez y la esparcían.
Más o menos en el mismo momento en el que el cosmos celebraba su 379.000 cumpleaños, el universo pasó a ser lo suficientemente frío como para que los electrones se combinaran con núcleos atómicos, lo que significa que no abundaban las partículas que esparcieran y absorbieran radiación. La niebla absorbente se disipó. Hoy en día, detectamos la luz del universo a la edad de 379.000 años (con cambios en la longitud de onda por la expansión del universo) como microondas y luz infrarroja lejana.
Cuando Penzias y Wilson detectaron por primera vez la radiación del fondo cósmico de microondas en la década de 1960, parecía tener una temperatura uniforme a través del cielo. Ninguna región del cielo estaba más caliente ni más fría, como mínimo no para los límites de detección de los instrumentos que había disponibles. Aquella uniformidad era un enigma, pues esas diminutas variaciones de la temperatura debían estar presentes para explicar cómo el universo había empezado como una sopa homogénea de partículas y radiación, y había evolucionado hasta llegar a ser una serie grumosa de galaxias, estrellas y planetas.
Según esta teoría, el universo primitivo no era completamente homogéneo. Igual que los grumos de un puré, tenía zonas un poco más o menos densas, con más o menos átomos por centímetro cúbico. Estas zonas representan las semillas diminutas alrededor de las cuales la materia podría haber empezado a agruparse para formar galaxias. Los científicos deberían ver ahora las variaciones de densidad como fluctuaciones diminutas o anisotropías en la temperatura de la radiación del fondo cósmico de microondas (una anisotropía es la variación de las propiedades físicas del espacio, como la temperatura y la densidad, según la dirección en la que se examina).
En 1992, el satélite COBE (Cosmic Background Explorer; Explorador de Fondo Cósmico) de la NASA, que tres años antes había medido la temperatura del fondo de microondas con una precisión sin precedentes, logró lo que muchos astrónomos consideran un triunfo todavía mayor: detectó puntos calientes y fríos en la radiación del fondo cósmico de microondas. Las mediciones del satélite COBE dieron el premio Nobel de Física de 2006 a mi colega de la NASA John Mather y a George Smoot, de la Universidad de California (Berkeley).
Las variaciones son minúsculas (menos de una diezmilésima de un grado kelvin más frío o más caliente que la temperatura media de 2,73 °C). La princesa que notaba un guisante bajo todos aquellos colchones no habría percibido estas diferencias. Sin embargo, estas variaciones cósmicas son lo suficientemente grandes como para explicar el crecimiento de la estructura del universo. Puedes reflexionar largo y tendido sobre este tema.
Para averiguar si el universo es plano o tiene forma de silla de montar, los científicos buscaron respuestas en la radiación del fondo cósmico de microondas. Un universo plano exigiría que las fluctuaciones de temperatura siguieran un patrón. Una gran cantidad de telescopios con globos y base en tierra sugerían que el fondo de microondas podría tener este patrón.
En 2003, la NASA informó de que su sonda WMAP había medido y trazado un mapa del fondo de microondas por todo el cielo con más detalles que nunca. El equipo de la sonda WMAP, dirigido por Charles Bennett, respondió la mayor parte de las preguntas existentes sobre el Big Bang excepto qué lo provocó y qué es exactamente la energía oscura. El equipo llegó a las siguientes conclusiones:
La edad actual del universo es de 13.700 millones de años (posteriormente, el equipo de la WMAP afirmó que era de 13.730 millones de años, y algunos expertos la cifran en 13.740 millones de años).
La radiación del fondo cósmico de microondas se originó cuando el universo tenía 379.000 años.
Las primeras estrellas empezaron a brillar aproximadamente unos 200 millones de años después del Big Bang.
El universo es plano, algo que es coherente con la teoría de la inflación (consulta el apartado “Inflación: cuando el universo creció”, anteriormente en este capítulo).
Las cantidades relativas de masa y energía del universo son las siguientes:
• Materia normal (materia oscura bariónica como la que se encuentra en la Tierra): 4 %.
• Materia oscura (consulta el capítulo 15): 23 %.
• Energía oscura: 73 %.
Los científicos habían hecho estimaciones de todas estas cantidades, pero ahora disponen de valores precisos.
Puedes leer toda la información relativa a la sonda WMAP y sus descubrimientos en la web oficial de esta sonda en el Centro de Vuelo Espacial Goddard: http://map.gsfc.nasa.gov. Encontrarás animaciones que explican la evolución del universo y otros temas cósmicos.
Una de las preguntas tradicionales de astronomía era “¿Qué edad tiene el universo?”. Ahora, gracias a la sonda WMAP, el telescopio espacial Hubble y otros instrumentos, sabemos que la respuesta es 13.730 millones de años. ¿Cómo han averiguado este número mágico los científicos? Se basaron en información relacionada con la expansión del universo: candelas estándares, que utilizan los astrónomos para medir las distancias de las galaxias; y la constante de Hubble, que relaciona las distancias de las galaxias con la velocidad a la que se expande el universo. Comento estos temas en los siguientes apartados.
La mayoría de las estrategias para medir distancias exigen algún tipo de candela estándar, el equivalente cósmico a una bombilla de potencia conocida.
Por ejemplo, supongamos que crees que conoces el brillo verdadero, o luminosidad, de un tipo de estrella. La luz de una fuente distante se atenúa en proporción con el cuadrado de la distancia, así que el brillo aparente de una estrella del mismo tipo en una galaxia distante indica lo lejos que está la galaxia.
Las estrellas amarillentas y pulsantes conocidas como variables Cefeidas siguen siendo una de las candelas estándares más fiables para estimar la distancia que hay hasta galaxias relativamente próximas (consulta el capítulo 12). Estas estrellas jóvenes brillan y se atenúan periódicamente. En 1912, Henrietta Leavitt, del Harvard College Observatory, detectó que la rapidez con la que las Cefeidas cambian su brillo está directamente relacionada con su luminosidad verdadera. Cuanto más largo sea el período, mayor será la luminosidad. Ha pasado un siglo desde el descubrimiento de Leavitt y los astrónomos todavía utilizan las Cefeidas para medir distancias en el espacio.
Las supernovas de tipo Ia (consulta el capítulo 11) son otra clase de candela estándar. Como las supernovas son mucho más brillantes que las Cefeidas, las podemos observar en galaxias mucho más distantes. En los cálculos recientes de la constante de Hubble se emplearon estas dos candelas y se lograron resultados que encajan entre sí y con los datos del satélite WMAP.
Las estimaciones de la edad del cosmos han dependido de un número que ha atraído la atención de los astrónomos durante décadas: la constante de Hubble, que representa la velocidad a la que se expande el universo en la actualidad. El número recibió este nombre en honor a Edwin Hubble, que descubrió que vivimos en un universo en expansión. Hubble hizo un descubrimiento extraordinario: toda galaxia distante (las que están más allá del Grupo Local de Galaxias, que describo en el capítulo 12) parece estar alejándose velozmente de la nuestra, la Vía Láctea.
Hubble descubrió que, cuanto más remota es la galaxia, más rápido retrocede. Esta relación se conoce como ley de Hubble. Por ejemplo, consideremos dos galaxias, una de las cuales se halla al doble de distancia de la Vía Láctea que la otra. La galaxia que está dos veces más lejos parece moverse dos veces más rápido (según la teoría de la relatividad general de Albert Einstein, las galaxias no se mueven, sino que es el entramado de espacio en el que residen el que se expande).
La constante de proporcionalidad que relaciona la distancia de una galaxia con su velocidad de recesión es la constante de Hubble, también denominada Ho. Es decir, la velocidad a la que una galaxia se aleja es igual a Ho multiplicada por la distancia a la galaxia. Ho proporciona una medida de la velocidad de la expansión del universo y, por tanto, de su edad (si sabes lo lejos que está una galaxia ahora y la velocidad a la que se ha estado moviendo, puedes calcular cuánto ha tardado en recorrer esa distancia). Según la teoría del Big Bang, el universo una vez tuvo un tamaño infinitesimal y entonces el espacio empezó a expandirse. Los puntos del espacio en los que estamos ahora y en los que está una galaxia concreta una vez estuvieron uno encima del otro, pero a medida que el universo envejecía, los puntos se separaron. El tiempo que tardaron en recorrer la distancia que los separa ahora es la edad del universo.
La constante de Hubble se mide en kilómetros por segundo por megapársec (un megapársec es 3,26 millones de años luz). Después de años de estudio, los astrónomos que utilizaban el telescopio espacial Hubble informaron de un valor de 70 para la constante de Hubble. Ese número significa que una galaxia que está a unos 30 megapársecs (alrededor de 100 millones de años luz) de la Tierra se aleja a 2.100 kilómetros por segundo. Según los descubrimientos del WMAP, el valor es 71; es un acuerdo bastante bueno, a pesar de que otras observaciones recientes sugieren que la constante de Hubble podría llegar a ser de 74.
Gracias a las candelas estándares y a la constante de Hubble, ahora los astrónomos disponen de datos fiables sobre la velocidad de expansión actual del universo, y sabemos que la energía oscura está aumentando esa velocidad de expansión. Sin embargo, la naturaleza de la energía oscura sigue siendo un misterio profundo y oscuro.
La energía oscura hace que, a medida que pasa el tiempo, el universo se expanda cada vez más de prisa. Por lo tanto, la constante de Hubble no es constante durante mucho tiempo, sino que crece. Es decir, la constante de Hubble es más bien “la inconstante de Hubble”.
Al expandirse el universo cada vez a mayor velocidad, llegará un momento en el que otras galaxias se separarán de nosotros a una velocidad mayor que la velocidad de la luz. Al leer la frase anterior, puede que hayas pensado: “Espera, en el capítulo 13 nos dijiste que las cosas no pueden ir más rápido que la velocidad de la luz, excepto los taquiones, unas partículas que quizá ni siquiera existen. Entonces, ¿qué ocurre con estas galaxias?”.
La respuesta es que, algún día, dentro de billones de años en el futuro, las galaxias que se muevan a una velocidad mayor que la velocidad de la luz no se estarán moviendo por sí mismas. Recuerda que al principio de este capítulo te conté que el Big Bang era “el origen y la rápida expansión del espacio en sí mismo”. Las aparentemente grandes velocidades de las galaxias que se alejan las unas de las otras a gran velocidad no son movimientos reales de las galaxias, sino que están provocadas por la expansión del espacio en sí. El espacio no es materia, y puede ir tan de prisa como la energía oscura haga que se expanda.
Cuando esas otras galaxias se muevan a una velocidad superior a la velocidad de la luz, su luz ya no llegará a la Vía Láctea. El Sol habrá desaparecido mucho antes de que eso ocurra, puesto que de aquí a 4.000 millones de años ya habrá agotado su núcleo de hidrógeno (consulta el capítulo 11 para más obtener información) y poco después se convertirá en una gigante roja, perderá sus capas más externas y se apagará como enana blanca. Pero puede que haya otras estrellas de la Vía Láctea que todavía resistan, con planetas e incluso con seres inteligentes. Esos extraterrestres no verán las galaxias cuya luz no les llegue. El universo estará a oscuras.
En el pasado, los astrónomos pensaban que el universo permanecería tal y como lo conocemos hasta un futuro lejano. Sin embargo, el descubrimiento de la energía oscura cambió esta idea. Tal y como afirma la célebre frase de Yogi Berra: “El futuro ya no es lo que era”.
Ron Cowen escribe artículos sobre astronomía y el espacio para muchas publicaciones y elaboró este capítulo para la primera edición del libro. El autor, Stephen P. Maran, lo actualizó para las ediciones posteriores de Astronomía para Dummies. Todas las opiniones expresadas en este capítulo pertenecen al autor.