Viaje a las estrellas
En este capítulo
El ciclo de vida de las estrellas
Estimación de las propiedades estelares
Estudia las estrellas binarias, múltiples y variables
Encuentra personalidades estelares
Observa estrellas y únete a proyectos de ciencia ciudadana
Cientos de miles de millones de estrellas, como el Sol, forman la Vía Láctea (también llamada “la Galaxia”), donde se encuentra la Tierra. Del mismo modo, los miles de millones de otras galaxias que se encuentran en el universo contienen enormes números de estrellas. Al igual que las personas, las estrellas encajan en docenas de clasificaciones. La inmensa mayoría se incluye en varios tipos simples. Estos tipos corresponden a etapas del ciclo de vida de las estrellas, igual que uno clasifica a las personas según su edad.
Cuando comprendas qué es una estrella y cómo es su ciclo de vida, apreciarás esas luces resplandecientes del cielo nocturno y también otros elementos que no brillan tanto.
En este capítulo destacaré la masa inicial de una estrella (la masa con la que nació) como el principal factor que determinará en qué se convertirá. Después me centraré en las propiedades clave de las estrellas, junto con las características de las estrellas binarias, múltiples y variables que las convierten en algo tan fascinante.
Y ninguna conversación sobre las estrellas está completa sin algún cotilleo sobre los famosos, así que te presento a algunas celebridades del cielo nocturno que querrás conocer, puesto que son los personajes más famosos del vecindario solar.
Las categorías de estrellas más importantes corresponden a las sucesivas etapas del ciclo de vida de una estrella: bebé, adulto, sénior y moribunda. (No, no hay adolescentes. El universo saltó directamente desde su tierna infancia hasta la edad adulta.) Evidentemente, ningún astrofísico que se precie utiliza esos términos. Los astrónomos se refieren a las etapas de las estrellas como objetos estelares jóvenes, estrellas de secuencia principal, gigantes rojas y estrellas en las etapas finales de la evolución estelar, respectivamente. Muchas estrellas en realidad no mueren, sino que continúan en un estado nuevo, se convierten en enanas blancas, estrellas de neutrones o agujeros negros. Sin embargo, en algunos casos, quedan totalmente destruidas.
Éste es el ciclo de una estrella normal de una masa parecida a la del Sol:
Las estrellas de masas mucho más grandes que la del Sol tienen ciclos de vida distintos; en lugar de producir nebulosas planetarias y morir como enanas blancas, explotan como supernovas y dejan atrás estrellas de neutrones o agujeros negros. El ciclo de vida de una estrella masiva avanza rápidamente; el Sol puede durar diez mil millones de años, pero una estrella que empieza con una masa que es veinte o treinta veces la masa del Sol explota al cabo de unos cuantos millones de años después de su nacimiento.
Las estrellas con menos masa que el Sol apenas tienen ciclo de vida. Empiezan como objetos estelares jóvenes e ingresan en la secuencia principal para permanecer como enanas rojas para siempre. La explicación para este hecho es un principio fundamental de la astrofísica estelar: cuanto mayor es la masa, más feroz y más rápido es el fuego nuclear; cuanto menor es la masa, menos feroz es el fuego y más perdura.
Cuando nuestro Sol agote su núcleo de hidrógeno, tendrá una edad de, como mínimo, nueve mil millones de años. Sin embargo, a efectos prácticos una estrella enana roja quema hidrógeno tan despacio que brilla en la secuencia principal para siempre (si hubiera tiempo, una enana roja agotaría su combustible de hidrógeno, pero esa cantidad de tiempo es mucho mayor que la edad del universo, de forma que todas las enanas rojas que existieron alguna vez todavía resisten hoy en día).
En los siguientes apartados se describen las etapas estelares con más detalle.
Los objetos estelares jóvenes son estrellas recién nacidas que todavía están rodeadas o arrastradas por la nube de la que nacieron. La clasificación incluye a las estrellas T Tauri, llamadas así en honor a la primera de este tipo, la estrella T de la constelación Tauro y objetos Herbig-Haro, llamados así en honor a los dos astrónomos que las clasificaron (de hecho, los objetos H-H son brillantes burbujas de gas expulsado en direcciones opuestas desde la estrella joven que, normalmente, está oculta por el polvo de su nube de origen). Los objetos estelares jóvenes forman guarderías estelares (denominadas regiones H II) como la Nebulosa de Orión (consulta la figura 11-1), en la que en los últimos millón o dos millones de años han nacido cientos de estrellas.
Muchas de las espectaculares imágenes de nebulosas con aspecto de chorros, o jets, que nos ha proporcionado el telescopio espacial Hubble son imágenes de objetos estelares jóvenes. Esos jets y otros elementos del entorno de las nebulosas son bien visibles, pero las estrellas a veces apenas se ven (si es que puedes verlas), ya que están ocultas por el gas y el polvo circundantes. (Consulta el capítulo 12 para obtener más información sobre nebulosas.)
Figura 11-1:
La nebulosa de Orión acuna a muchos objetos estelares jóvenes
Las estrellas de la secuencia principal, que incluyen a nuestro Sol, se han desprendido de sus nubes de origen y ahora brillan gracias a la fusión nuclear del hidrógeno, que se transforma en helio, que se produce en el núcleo (consulta el capítulo 10 para obtener más información sobre la fusión nuclear del Sol). Por razones históricas, volviendo a la época en la que los astrónomos clasificaban estrellas antes de comprender sus diferencias, las estrellas de la secuencia principal también se denominan enanas. Una estrella de la secuencia principal es una enana aunque tenga diez veces más masa que el Sol.
Cuando los astrónomos y los autores de textos científicos se refieren a “estrellas normales”, suelen hablar de estrellas de la secuencia principal. Cuando escriben sobre “estrellas similares al Sol”, quieren decir estrellas de la secuencia principal de una masa comparable a la del Sol, aproximadamente un factor de no más de dos. Los escritores también puede que distingan entre estrellas de la secuencia principal, independientemente de lo masivas que sean, y estrellas como las enanas blancas y las estrellas de neutrones.
Las estrellas más pequeñas de la secuencia principal (mucho menos masivas que el Sol) son enanas rojas, que brillan con un resplandor rojo apagado. Las enanas rojas tienen poca masa, pero son muy abundantes. La gran mayoría de las estrellas de la secuencia principal son enanas rojas. Igual que los mosquitos a orillas de los ríos, estas estrellas flotan a tu alrededor, pero no puedes verlas. Las enanas rojas son tan tenues que no puedes ver ni la que está más cerca, Próxima Centauri (que es la estrella conocida más cercana más allá del Sol) sin ayuda de un telescopio.
Las enanas rojas son mucho más pequeñas, menos masivas y mucho más tenues que estrellas como el Sol, y quizá estés tentado de pasarlas por alto. Sin embargo, tal y como he mencionado anteriormente en este capítulo, una enana roja dura para siempre, mientras que estrellas más masivas, como el Sol, al final, mueren. Quizá estemos orgullosos de nuestro Sol, pero esas enclenques enanas rojas reirán las últimas.
Las estrellas gigantes rojas son harina de otro costal. Las gigantes rojas son mucho más grandes que el Sol. A menudo, la longitud de su ecuador es equivalente a la órbita de Venus o incluso a la de la Tierra. Las gigantes representan una etapa posterior en la vida de una estrella de masa intermedia (desde varias veces más a algo menos que la masa del Sol) tras pasar de categoría en la secuencia principal (consulta el apartado anterior).
Una gigante roja no quema hidrógeno en su núcleo; de hecho, quema hidrógeno en una región esférica fuera del núcleo llamada capa de combustión de hidrógeno. Una gigante roja no puede quemar hidrógeno en su núcleo porque ya ha convertido todo el hidrógeno de su núcleo en helio a través de la fusión nuclear.
Las estrellas más grandes son las más solitarias
Los observadores de SETI (Search for Extraterrestrial Intelligence; búsqueda de inteligencia extraterrestre, consulta el capítulo 14 si quieres obtener información más detallada al respecto) no apuntan sus radiotelescopios a estrellas masivas para buscar señales de radio de civilizaciones avanzadas. ¿Por qué no? Porque las estrellas masivas explotan y mueren al cabo de unas vidas tan cortas que los científicos no pueden imaginar que se haya desarrollado vida inteligente (ni siquiera vida primitiva) en ningún planeta circundante antes de que llegue el final.
Las estrellas masivas son mucho más raras que las estrellas de masa baja. Cuanto más masivas sean, menos habrá. Por eso, al final, cuando las estrellas existentes envejezcan y se agoten las nubes de origen para estrellas nuevas, la Vía Láctea estará formada prácticamente por dos tipos de estrellas: las enanas rojas que duran más o menos siempre y las enanas blancas que se irán apagando. Sí, las estrellas de neutrones y los agujeros negros de masa estelar salpicarán la Vía Láctea, pero como representan los restos de las más escasas estrellas masivas, serán insignificantes desde el punto de vista numérico en comparación con las enanas blancas y rojas, que proceden de los tipos más abundantes de estrellas de la secuencia principal.
Las estrellas son como las personas: las más grandes son escasas, como los jugadores de baloncesto de más de 2,26 metros de altura.
Las estrellas mucho más masivas que el Sol no se convierten en gigantes rojas, sino que crecen tanto que los astrónomos las llaman supergigantes rojas. Una supergigante roja típica puede ser mil o dos mil veces más grande que el Sol y lo suficientemente grande para superar la órbita de Júpiter, o incluso Saturno, si se pusiera en lugar del Sol.
Estados finales de la evolución estelar es un término amplio que engloba a estrellas cuyos mejores años hace tiempo que han quedado atrás. En esta categoría, se incluyen:
Estrellas centrales de nebulosas planetarias.
Enanas blancas.
Supernovas.
Estrellas de neutrones.
Agujeros negros.
Todos estos objetos son estrellas que están en la recta final del camino hacia el olvido.
Estrellas centrales de nebulosas planetarias
Las estrellas centrales de las nebulosas planetarias son pequeñas estrellas que hay en el centro (¡algo bastante obvio!) de un determinado tipo de nebulosas pequeñas y bonitas (puedes ver una foto en la galería de nuestra página web). Estas nebulosas no tienen nada que ver con los planetas, pero en los primeros telescopios, sus imágenes parecían planetas verdes como Urano, de ahí su nombre.
Las estrellas centrales de nebulosas planetarias son como las enanas blancas. De hecho, se convierten en enanas blancas. Por eso, las estrellas centrales también son restos de estrellas similares al Sol. Las nebulosas, compuestas por gas que una estrella expulsó durante decenas de miles de años, se expanden, se disipan y se extinguen. Al final, dejan atrás estrellas que ya no sirven como centro de nada, y se convierten en enanas blancas.
Enanas blancas
Las enanas blancas de hecho pueden ser blancas, amarillas o incluso rojas, en función de lo calientes que estén. Las enanas blancas son restos de estrellas similares al Sol, como esos viejos generales que, según Douglas MacArthur, nunca mueren, sólo se apagan.
Una enana blanca es como las brasas de un fuego recién extinguido. Ya no arden, pero aún dan calor. Las enanas blancas son las estrellas más comunes después de las enanas rojas, pero incluso la enana blanca más próxima a la Tierra es demasiado tenue para que pueda verse sin telescopio.
Las enanas blancas son estrellas compactas, pequeñas y muy densas. Una enana blanca típica puede tener tanta masa como el Sol, sin embargo, ocupa tanto espacio como la Tierra, o un poco más. Hay tanta materia metida en un espacio tan pequeño que una cucharada de café de enana blanca pesaría alrededor de una tonelada en la Tierra. No intentes medirla con tu cuchara de plata de la cubertería de fiesta porque la deformarás.
Supernovas
Las supernovas (que los expertos llaman supernovae, como si todos estudiaran latín, como los científicos de antaño) son enormes explosiones que destruyen estrellas enteras (consulta la figura 11-2). Existen varios tipos de supernovas, pero te presento las dos variedades principales.
El primer tipo que debes conocer es el de tipo II (oye, yo no inventé el sistema de numeración). Una supernova de tipo II es la explosión brillante y catastrófica de una estrella mucho más grande, brillante y masiva que el Sol. Antes de que la estrella explotara, era una supergigante roja o quizá estaba lo suficientemente caliente para ser una supergigante azul. Independientemente del color, cuando explota una supergigante, puede que deje atrás un pequeño recuerdo: una estrella de neutrones. Otra posibilidad es que gran parte de la estrella implosione (caiga sobre su propio centro) de forma tan efectiva que deje atrás un objeto todavía más extraño, un agujero negro.
El segundo tipo importante de supernova recibe el nombre de tipo Ia. Estas supernovas son más brillantes que las de tipo II, y explotan de una forma fiable. El brillo o luminosidad real de una supernova de tipo Ia siempre es aproximadamente igual; por lo tanto, cuando los astrónomos observan una supernova de tipo Ia, podemos hacernos una idea de lo lejos que está por el brillo que parece tener para nosotros en la Tierra. Cuanto más lejos esté, más tenue parecerá la supernova. Los astrónomos utilizan las supernovas de tipo Ia para medir el universo y su expansión. En 1998, dos grupos de astrónomos que estudiaban las supernovas de tipo Ia descubrieron que la expansión del universo no era progresivamente más lenta, sino que se está expandiendo a una velocidad cada vez mayor. Este descubrimiento iba en contra de la creencia anterior, así que hizo que los expertos revisaran sus teorías de cosmología y del Big Bang, y reconocieran la existencia de la misteriosa energía oscura (describo la energía oscura y el Big Bang en el capítulo 16).
Todas las supernovas de tipo Ia producen explosiones similares porque su erupción se produce en sistemas binarios (se explican más adelante en este capítulo) en las que el gas de una estrella fluye hacia otra (una enana blanca), creando una capa exterior caliente que llega a una masa crítica y, entonces, explota y hace añicos la enana blanca. Sin la suficiente masa crítica, no se produce explosión. Con masa crítica, se produce una explosión estándar. Si hay más cantidad que la masa crítica… ¡espera un segundo! ¡No puedes tener más masa que la masa crítica porque la estrella ya ha explotado! La astrofísica no es tan difícil, ¿verdad?
Los expertos llevan años discutiendo cuál es el tipo de sistema binario que produce una supernova de tipo Ia. Según una teoría, las dos estrellas del sistema son una enana blanca y una estrella más grande, como el Sol. La enana blanca absorbe gas de su compañera mayor. Otra teoría propone que las dos estrellas de un sistema binario son enanas blancas. En el momento de publicar este libro, a mediados de 2013, parecía que ambas teorías eran correctas; algunas supernovas proceden del tipo de sistema estrella grande/estrella pequeña, y otras, del sistema de estrellas iguales.
Figura 11-2:
Una supernova en la galaxia espiral M51
Estrella de neutrones
Las estrellas de neutrones son diminutas en comparación con las enanas blancas, pero, al mismo tiempo, tienen un peso superior al de las enanas blancas (en realidad, lo que es superior es su masa. El peso es solamente la fuerza que un planeta o bien otro cuerpo ejerce en un objeto de una masa determinada. Tú pesarías diferentes kilos en la Luna, Marte y Júpiter que en la Tierra, aunque tu masa siga siendo la misma, a menos que comas demasiado o hagas una dieta de choque).
Las estrellas de neutrones son como Napoleón: de pequeña estatura, pero algo que no se debe subestimar (la figura 11-3 presenta una estrella de neutrones). Una estrella de neutrones típica mide sólo una o dos docenas de kilómetros de diámetro, pero tiene una vez y media, o incluso dos veces, la masa del Sol. Una cucharada de café de material de las estrellas de neutrones pesaría alrededor de 1.000 millones de toneladas en la Tierra.
Algunas estrellas de neutrones se conocen como púlsares. Un pulsar es una estrella de neutrones altamente magnetizada y que gira muy rápido. Produce uno o más haces de radiación (que pueden ser ondas de radio, rayos X, rayos gamma y/o luz visible). Estos haces aparecen y desaparecen al pasar sobre la Tierra, de forma parecida al haz de luz que emite un faro, por eso nuestros telescopios reciben aumentos breves de radiación que llamamos pulsos. Adivina cómo se puso el nombre a los púlsares… La velocidad de tu pulso te indica la velocidad a la que te late el corzón. La velocidad de un pulsar te indica lo rápido que gira, y puede ser desde varios cientos de veces por segundo a una vez cada varios segundos.
Figura 11-3:
Una estrella de neutrones (en la flecha) fotografiada por el telescopio espacial Hubble
Agujeros negros
Los agujeros negros son objetos tan densos y compactos que hacen que las estrellas de neutrones y las enanas blancas parezcan algodón de azúcar. En un agujero negro, hay tanta materia metida en un espacio tan pequeño que su gravedad es lo suficientemente fuerte para impedir que cualquier cosa, incluso un rayo de luz, se escape. Los físicos tienen la teoría de que el contenido de un agujero negro a todos los efectos ha dejado nuestro universo. Si caes en un agujero negro, puedes despedirte de tu universo para siempre.
No puedes ver la luz de un agujero negro porque la luz no sale de allí, pero los científicos pueden detectarlos por sus efectos en los objetos circundantes. La materia que se encuentra cerca de un agujero negro se calienta y se acelera localmente, pero nunca se organiza, sino que la potente gravedad del agujero negro la atrae a su interior, y “eso es todo, amigos”.
De hecho, he simplificado demasiado; parte de la materia que gira en espiral alrededor del agujero negro sí que se escapa, justo a tiempo, a veces. El agujero lo expulsa en potentes chorros a una fracción importante de la velocidad de la luz (que es de 300.000 kilómetros por segundo en un vacío como el del espacio exterior).
Los científicos detectan agujeros negros de esta forma:
Mediante los gases que giran a su alrededor y que están demasiado calientes para estar en condiciones normales.
Por los chorros de partículas de energía elevada que se escapan y evitan caer en el agujero negro.
A través de las estrellas que recorren órbitas a velocidades fantásticas, conducidas por la fuerza gravitatoria de una enorme masa invisible.
Los astrónomos han encontrado muchas pruebas de dos tipos básicos de agujeros negros e información limitada, pero creciente, de una tercera clase. Aquí tienes un resumen de las tres clases:
Agujeros negros de masa estelar: Estos agujeros negros tienen (sí, lo has adivinado) la masa de una estrella, concretamente van desde unas tres veces la masa del Sol hasta quizá unos cientos de veces la masa solar, a pesar de que los astrónomos no hayan encontrado ninguna que tuviera este peso. Los agujeros negros de masa estelar tienen el tamaño aproximado de una estrella de neutrones. Un agujero negro que tenga diez veces la masa del Sol tiene un diámetro de unos 60 kilómetros. Si pudieras comprimir el Sol hasta un tamaño lo suficientemente compacto para hacer un agujero negro (por suerte, probablemente sea imposible), su diámetro sería de 6 kilómetros. Los agujeros negros de masa estelar se forman en las explosiones de supernovas y quizá también por otros medios.
Agujeros negros supermasivos: Estos monstruos tienen masas de cientos de miles hasta más de 20 mil millones de veces la masa del Sol (si quieres ver ejemplos, consulta la tabla 13-1 “Medidas de un agujero negro”). En general, los agujeros negros supermasivos están situados en los centros de las galaxias. Quiero decir que “gravitan” allí, pero lo más probable es que se formen allí, o que la galaxia se forme a su alrededor. La Vía Láctea tiene un agujero negro central, conocido como Sagitario A* (no, el asterisco no indica que haya una nota al pie. Cuando digas el nombre en voz alta, di Sagitario A Asterisco). Tiene unos 4 millones de masas solares, y, nosotros, en el Sistema Solar, orbitamos alrededor de ese agujero negro una vez cada 226 millones de años. Éste es el último valor que dio el Very Long Baseline Array, un radiotelescopio compuesto de varias antenas que se extienden por Estados Unidos, desde las Islas Vírgenes, a través de Norteamérica hasta llegar a Hawái. Los astrónomos piensan que existe un agujero negro supermasivo en el centro de cualquier galaxia o, como mínimo, en el centro de cualquier galaxia de tamaño estándar. No estamos seguros acerca de las galaxias enanas (si deseas más información sobre las galaxias, consulta el capítulo 12).
Cuando hablo sobre el tamaño de un agujero negro, me refiero al diámetro de su horizonte de sucesos. El horizonte de sucesos es la superficie esférica alrededor del agujero negro donde la velocidad necesaria para que algo escape del agujero negro es igual a la velocidad de la luz. Fuera del horizonte de sucesos, la velocidad de escape es más pequeña, por eso la luz o incluso la materia a alta velocidad puede escapar.
Agujeros negros de masa intermedia: Los agujeros negros de masa intermedia son un tipo de agujeros negros que se comprenden poco, es decir, los astrónomos no saben lo que son. Han estimado masas que van desde unos cientos hasta diez mil o más veces la masa del Sol. Un agujero negro de masa intermedia es más masivo que cualquier estrella conocida, así que probablemente no se formó por la extinción de una única estrella (que es como se forman los agujeros negros de masa estelar). Por otra parte, los agujeros negros de masa intermedia se encuentran fuera de las regiones centrales de las galaxias, mientras que los agujeros negros supermasivos siempre se encuentran en los centros de las galaxias, donde probablemente se formaron. Por lo tanto, los agujeros negros de masa intermedia no se forman donde lo hacen los agujeros negros supermasivos y no se crean en la extinción de una estrella, como en el caso de los agujeros negros de masa estelar. ¿Qué crea un agujero negro de masa intermedia? Las mentes inquisitivas quieren saberlo.
En realidad, los agujeros negros supermasivos no son estrellas. Lo más probable es que tampoco lo sean los agujeros negros de masa intermedia. Sin embargo, ¡los tengo que mencionar en algún sitio! No puedes considerarte astrónomo si no conoces los agujeros negros. (Consulta el capítulo 13 para ver más información al respecto.) Si te haces pasar por astrónomo, la gente te hará todo tipo de preguntas sobre los agujeros negros. Pero ¿cuántas preguntas crees que te harán sobre las estrellas de la secuencia principal y los objetos estelares jóvenes?
La importancia de los distintos tipos de estrellas (consulta el apartado “Ciclo de vida de las estrellas calientes y masivas”) queda mucho más claro cuando ves los datos básicos observacionales expuestos en el gráfico de un astrofísico. Los datos son las magnitudes (o brillos) de las estrellas, y aparecen en el eje vertical, y los colores (o temperatura), en el eje horizontal. Este gráfico recibe el nombre de diagrama de color-magnitud, diagrama Hertzsprung-Russell o diagrama H-R, en honor a los dos astrónomos que hicieron esos diagramas por primera vez (consulta la figura 11-4).
Figura 11-4:
El diagrama Hertzsprung-Russell muestra el brillo y la temperatura de una estrella
Como profesor de Astronomía en una universidad, siempre sabía quién había estudiado y quién no… Cuando preguntaba qué datos señalaba el diagrama H-R, sabía que los estudiantes que respondían “H y R” intentaban adivinarlo.
Hertzsprung y Russell no tenían buena información sobre los colores ni las temperaturas de las estrellas, así que mostraron el tipo espectral en el eje horizontal de sus diagramas originales. El tipo espectral es un parámetro asignado a una estrella en función de su espectro. El espectro es la forma que adopta la luz de una estrella cuando la dispersa un prisma u otro dispositivo óptico de un instrumento denominado espectrógrafo.
Al principio, los astrónomos no sabían qué significaban los tipos espectrales, así que se limitaban a agrupar las estrellas (las llamaban estrellas de tipo A, de tipo B y así sucesivamente) en función de las similitudes de sus espectros. Más adelante, algunos astrónomos se dieron cuenta de que los tipos espectrales reflejan las temperaturas y otras condiciones físicas de la atmósfera de las estrellas, donde su luz emerge al espacio. Cuando los científicos comprendieron lo que significaban los colores, organizaron los tipos espectrales por orden de temperatura, y Hertzsprung y Russell lo mostraron en sus diagramas. Algunos de los tipos originales se consideraron superfluos, así que fueron retirados.
Los principales tipos espectrales del diagrama H-R son O, B, A, F, G, K y M, que va de las estrellas más calientes a las más frías. Los estudiantes universitarios memorizan esta secuencia con ayudas nemotécnicas como la frase en inglés “Oh, be a fine girl (guy), kiss me” (‘Oh, pórtate bien chica/o y bésame’). En la tabla 11-1 se describen las propiedades generales de las estrellas de cada tipo espectral.
Los tipos espectrales O, B, A, F, G, K y M tienen subdivisiones siguiendo números arábigos, lo que permite que los astrónomos clasifiquen las estrellas con más precisión. Cada letra correspondiente a un tipo espectral tiene hasta diez subdivisiones. Por ejemplo, las estrellas G incluyen diez tipos, desde G0 hasta G9. Cuanto más bajo sea el número de la subdivisión, más caliente es la estrella. El tipo espectral del Sol es G2, mientras que Beta Aquilae (que aparece en la tabla 11-1) tiene un tipo espectral G8. Es decir, el Sol es más caliente que Beta Aquilae y esta última es casi lo suficientemente fría como para pertenecer al tipo espectral K.
Te cuento todo esto para que, cuando busques una estrella como el Sol o Beta Aquilae en un libro de astronomía (o, por ejemplo, internet), sepas qué significa cuando clasifican al Sol como G2 o a Beta Aquilae como G8.
Pero, espera, aún hay más: algunos libros sólo utilizan G2 o G8 para estas dos estrellas, pero otros describen el Sol y otras estrellas con una etiqueta más, normalmente un numeral romano. Por lo tanto, puedes ver que, para referirse al Sol, dicen G2 V y para referirse a Beta Aquilae, escriben G8 IV. Los astrónomos denominan a este numeral romano clase de luminosidad de la estrella.
El tipo espectral, como G2, se refiere a la temperatura de una estrella, mientras que la clase de luminosidad, como IV o V, describe su tamaño y su densidad media (porque las estrellas más grandes normalmente tienen una densidad menor que las estrellas pequeñas). Resumo las estrellas según su tamaño y clase de luminosidad en la tabla 11-2.
En alguna ocasión, encontrarás una estrella que aparece clasificada en la lista dentro de la clase de luminosidad Ia o Ib. Estas designaciones aportan más información a los astrónomos: Ia hace referencia a una supergigante más brillante, mientras que Ib indica una supergigante más tenue. Sin embargo, cualquier supergigante es mucho más brillante que las estrellas de las otras clases de luminosidad.
D, la clase de luminosidad para las enanas blancas, podría haber sido definida como el numeral romano D, que equivale a 500. Pero es simplemente la letra D, del alfabeto, abreviatura de la palabra inglesa Dwarf, que en español significa “enana”. Tras dominar el tema de los tipos espectrales y las clases de luminosidad, puedes cantar victoria, pero, para un astrofísico, la letra V, más que “victoria”, significa “enana de la secuencia principal”.
Una estrella con una masa mayor concentra un fuego más potente en su núcleo y produce más energía que una estrella de masa inferior. Por lo tanto, una estrella de la secuencia principal más masiva es más brillante y caliente que una estrella menos masiva de la misma secuencia. Las estrellas más masivas también suelen ser las más grandes. Con esta información, puedes seguir el punto fundamental de la astrofísica estelar reflejado en el diagrama H-R: la masa determina la clase.
En el diagrama H-R (consulta la figura 11-4), la parte superior indica una magnitud (o luminosidad) más brillante, mientras que el tipo espectral se indica con las estrellas más calientes a la izquierda y, las más frías, a la derecha. La temperatura va de derecha a izquierda, y la magnitud, de arriba abajo.
En cualquier diagrama H-R, el gráfico de datos observacionales reales, donde cada punto representa a una única estrella, revela mucho al lector atento:
La mayoría de las estrellas están en una banda que va diagonalmente desde la parte superior izquierda hasta la parte inferior derecha. La banda diagonal representa la secuencia principal, y todas las estrellas de la banda son como el Sol, que queman hidrógeno en sus núcleos.
Algunas estrellas están en una banda más ancha, menos densa y aproximadamente vertical que se extiende hacia arriba y ligeramente hacia la derecha desde la banda diagonal hasta temperaturas más frías y magnitudes más brillantes (luminosidades mayores). Esta banda es la secuencia de gigantes y está formada por estrellas gigantes rojas.
Un número reducido de estrellas se encuentra por toda la parte superior del diagrama, de izquierda a derecha. Estas estrellas son supergigantes; las supergigantes azules están en el lado izquierdo del diagrama, más o menos, y las supergigantes rojas (que superan en número a las azules) están en el lado derecho.
Un número reducido de estrellas están muy por debajo de la línea diagonal, en la parte inferior izquierda y la parte inferior central del diagrama. Estas estrellas son enanas blancas.
Los astrónomos sitúan una estrella de la secuencia principal en el diagrama H-R en función de su brillo y temperatura, pero su brillo y temperatura dependen de su masa. La forma diagonal de la secuencia principal representa una tendencia de las estrellas de masa elevada a las de baja masa. Las estrellas que están en el lado superior izquierdo de la secuencia principal tienen masas más elevadas que el Sol, y las estrellas situadas en el punto más alejado de la derecha tienen masas más bajas.
Los astrónomos no suelen indicar los objetos estelares jóvenes en el mismo diagrama H-R junto a las demás estrellas, pero, si lo hicieran, colocarían los objetos estelares jóvenes en el lado derecho del diagrama, por encima de la secuencia principal (pero no tan alto como las estrellas supergigantes). Las estrellas de neutrones y los agujeros negros son demasiado tenues para aparecer en los mismos diagramas H-R junto a las estrellas normales.
Con alguna explicación más, tú también podrás ser un astrofísico estelar y comprender por qué las estrellas aparecen en distintas partes del diagrama H-R. Los investigadores pasaron décadas averiguándolo, pero a ti, te lo pongo en bandeja. Para simplificar, comento un diagrama H-R calibrado en el que todas las estrellas se indican en función de su brillo.
Considera por qué una estrella es más brillante o más tenue que otra. Existen dos factores que determinan el brillo de una estrella: la temperatura y el área de su superficie. Cuanto mayor sea la estrella, mayor área tendrá su superficie, y cada centímetro cuadrado de la superficie producirá luz. Cuantos más centímetros cuadrados tenga, más luz habrá. Pero ¿qué sucede con la cantidad de luz que produce un centímetro cuadrado? Los objetos calientes queman con más brillo que los fríos, así que, cuanto más caliente sea una estrella, más luz generará por centímetro cuadrado de superficie.
¿Lo has entendido todo? Veamos:
Las enanas blancas están cerca de la parte inferior del diagrama debido a su pequeño tamaño. Como tienen muy pocos centímetros cuadrados de superficie (en comparación con estrellas como el Sol), las enanas blancas no brillan tanto. Cuando se apagan lentamente como viejos generales, se mueven hacia abajo en el diagrama (porque se vuelven más tenues) y hacia la derecha (porque se enfrían). En el lado derecho del diagrama H-R no se ven muchas enanas blancas porque las enanas blancas frías son tan tenues que normalmente caen por debajo de la parte inferior del diagrama tal y como se imprime en los libros.
Las supergigantes están cerca de la parte superior del diagrama H-R porque son supergrandes. Una supergigante roja puede ser más de mil veces más grande que el Sol (si colocaras una supergigante en el lugar del Sol, se extendería más allá de la órbita de Júpiter). Con toda esa superficie, las supergigantes son naturalmente muy brillantes.
El hecho de que las supergigantes estén casi a la misma altura en el diagrama de izquierda a derecha indica que las supergigantes azules (las que están a la izquierda) son más pequeñas que las supergigantes rojas (las que están a la derecha). ¿Cómo lo sabes? Las supergigantes son azules porque son más calientes, por eso producen más luz por centímetro cuadrado. Como sus magnitudes son aproximadamente las mismas (todas las supergigantes están cerca de la parte superior del diagrama), las supergigantes rojas deben tener superficies mayores para producir la misma luz total (porque producen menos luz en cada centímetro cuadrado).
Las estrellas de la secuencia principal están en la banda diagonal que va desde la parte superior izquierda a la parte inferior derecha del diagrama, porque la secuencia principal incluye todas las estrellas que queman hidrógeno en sus núcleos, independientemente de su tamaño. Pero una diferencia de tamaño afecta al lugar en el que aparecen las estrellas de la secuencia principal en el diagrama H-R. Las estrellas más calientes de la secuencia principal (las que están a la izquierda) son también mayores que las estrellas frías de la secuencia principal; por lo tanto, las estrellas de la secuencia principal tienen dos características: sus superficies son mayores y producen más luz por centímetro cuadrado que las estrellas frías. Las estrellas de la secuencia principal en el extremo derecho son las tenues y frías enanas rojas.
Las enanas marrones no son las primeras de la lista
Las enanas marrones (descubiertas a mediados de la década de los noventa) se han añadido recientemente al inventario celeste. Son más pequeñas y menos masivas que las estrellas y aproximadamente igual de grandes que un planeta gigante de gas como Júpiter, pero son mucho más masivas que éste (la masa de las enanas marrones es de trece a setenta veces la masa de Júpiter). Brillan con su propia luz, como una estrella, no por luz reflejada, como Júpiter. Sin embargo, las enanas marrones no son en realidad estrellas porque la fusión nuclear funciona brevemente en sus núcleos. Cuando finaliza la fusión, no generan más energía, así que, simplemente, se enfrían y se apagan.
Sus tipos espectrales van desde el extremo frío del tipo M hasta los tipos más fríos siguientes, L y T (los astrónomos sospechan que puede que haya enanas marrones incluso más frías; de ser así, pertenecerían a la clase espectral Y). En el diagrama H-R de la figura 11-4, las enanas marrones se sitúan en el extremo de la parte inferior derecha o incluso justo fuera del gráfico, a la derecha de la esquina inferior derecha.
Los grupos de dos estrellas y los de tres o más estrellas que orbitan alrededor de un centro común de masa reciben el nombre de estrellas binarias o estrellas múltiples, respectivamente. El estudio de estos tipos de estrellas permiten que los científicos comprendan cómo evolucionan las estrellas. Estos pequeños sistemas estelares resultan divertidos de observar con telescopios de jardín.
Casi la mitad de todas las estrellas vienen de dos en dos. Estas estrellas binarias casi siempre son coetáneas, una palabra elegante que significa que nacieron juntas. Las estrellas que se forman juntas, unidas por su gravedad mutua a medida que se condensan a partir de sus nubes de nacimiento, suelen quedarse juntas. Lo que la gravedad ha unido, rara vez lo pueden separar otras fuerzas celestes. Una estrella que ha crecido en un sistema binario nunca ha tenido otra compañera (bueno, prácticamente, nunca. Se han dado algunos extraños casos en densos cúmulos de estrellas, en los que las estrellas se aproximan tanto entre sí que, realmente, pueden perder o ganar una compañera).
Un sistema binario está formado por dos estrellas que orbitan alrededor de un centro común de masas. El centro de masas de dos estrellas cuyas masas son exactamente iguales se encuentra a medio camino entre las dos. Pero si una estrella tiene el doble de masa que la otra, el centro de masa estará más cerca de la estrella más masiva; de hecho, el centro está dos veces más lejos de la estrella más ligera que de la más masiva. Si una estrella tiene un tercio de la masa de su compañera de mayor masa, orbita tres veces más lejos del centro de masas y así sucesivamente. Las dos estrellas son como niños jugando en un balancín: el que pesa más tiene que sentarse más cerca del eje central para que los dos mantengan el equilibrio.
Si dos estrellas de un sistema binario tienen la misma masa, ambas seguirán órbitas de igual tamaño. Las estrellas con masas distintas siguen órbitas de tamaños diferentes. La regla general es la siguiente: los elementos grandes siguen órbitas más pequeñas. Quizá pienses que los sistemas binarios son como nuestro Sistema Solar, donde, cuanto más cerca del Sol orbite un planeta, más de prisa va y menos tiempo tarda en hacer una órbita completa. Esa idea puede sonar razonable, pero es un error.
En los sistemas binarios, la estrella grande que sigue la órbita más pequeña viaja más despacio que la estrella pequeña con una órbita grande. De hecho, sus respectivas velocidades dependen de sus masas. La estrella que tiene un tercio de la masa de su compañera se mueve tres veces más de prisa. Al medir la velocidad orbital, los astrónomos pueden determinar las masas relativas de los miembros de un sistema binario.
El hecho de que las velocidades orbitales de las estrellas miembros de un sistema binario dependan de la masa hace que las estrellas binarias despierten un gran interés entre los astrónomos. Si una estrella es tres veces más masiva que la otra, se mueve alrededor de su órbita en el sistema de estrellas binarias a un tercio de la velocidad orbital de su compañera. Para averiguar las masas relativas de las estrellas (es decir, cuánto más masiva es una estrella que la otra), todo lo que deben hacer los astrónomos es medir sus velocidades. Pero sólo en contadas ocasiones los astrónomos pueden hacer un seguimiento de las estrellas mientras se mueven porque la mayoría de las estrellas binarias están tan lejos que no las vemos moverse alrededor de sus órbitas. Por suerte, en lugar de tirar la toalla, los astrónomos han sido capaces de medir las masas de las estrellas estudiando la luz de una estrella binaria y analizando su espectro (un espectro que puede ser la luz combinada de ambas estrellas del sistema binario).
El fenómeno llamado efecto Doppler ayuda a los astrónomos a averiguar las masas de estrellas binarias estudiando sus espectros estelares.
Aquí tienes todo lo que debes saber acerca del efecto Doppler, llamado así en honor a Christian Doppler, un físico austriaco del siglo XIX:
La frecuencia o la longitud de onda del sonido o la luz, tal y como las detecta el observador, cambia en función de la velocidad de la fuente emisora respecto al observador. En el caso del sonido, la fuente emisora puede ser el silbido de un tren. Respecto a la luz, la fuente puede ser una estrella (los sonidos de frecuencias superiores tienen un tono más alto; una soprano tiene un tono más alto que un tenor). Las ondas de luz de frecuencia elevada tienen longitudes de onda más cortas, y las ondas de luz de frecuencia más baja tienen longitudes de onda más largas. En el sencillo caso de la luz visible, las longitudes de onda más cortas son azules y las más largas, rojas.
Según el efecto Doppler:
Si la fuente se acerca a ti, aumenta la frecuencia que detectas o mides, por tanto:
• El tono del silbido del tren parece más alto.
• La luz de la estrella parece más azul.
Si la fuente se aleja de ti, disminuye la frecuencia, por tanto:
• El silbido que oyes tiene un tono más bajo.
• La estrella parece más roja.
El silbido del tren es el ejemplo oficial del efecto Doppler que los profesores utilizan desde hace generaciones para dar explicaciones a estudiantes universitarios y de instituto que son, a veces, poco entusiastas. Pero ¿queda alguien que todavía oiga el silbido del tren? Una analogía que resulta más familiar es la forma de notar las olas en el agua cuando uno va en una lancha motora. Cuando conduces en dirección contraria a las olas, sientes que la lancha se mueve de prisa en el mar picado. En cambio, cuando vuelves hacia la playa, en el sentido de las olas, el balanceo de la lancha es mucho más suave y las olas se vuelven más suaves. En el primer caso, te diriges hacia las olas, y te las encuentras antes de lo que hubiera correspondido en el caso de que hubieras flotado o te hubieras quedado quieto. Por lo tanto, la frecuencia a la que las olas chocan con tu barco es mayor que si el barco se hubiera quedado quieto. La frecuencia de las olas en sí no cambia, pero se modifica la frecuencia de las olas que notas tú.
El espectro de una estrella contiene algunas líneas oscuras, es decir, lugares (longitudes de onda o colores) en los que la estrella no emite tanta luz como en las longitudes de onda adyacentes. La reducción de la emisión en esas longitudes de onda está causada por la absorción de luz por tipos concretos de átomos de la atmósfera de la estrella. Las líneas oscuras forman patrones reconocibles, y, cuando la estrella se mueve adelante y atrás en su órbita, el efecto Doppler provoca que los patrones de líneas se muevan adelante y atrás en el espectro detectado en la Tierra. Cuando las líneas espectrales cambian hacia longitudes de onda más largas, el fenómeno se denomina desplazamiento al rojo. Cuando cambian hacia longitudes de onda más cortas, se trata de un desplazamiento al azul. Existen otras formas de producir un desplazamiento al rojo y al azul, pero la causa más corriente es el efecto Doppler.
Por lo tanto, observando los espectros de las estrellas binarias y viendo cómo se desplazan sus líneas espectrales de rojo a azul y a rojo de nuevo mientras las estrellas orbitan, los astrónomos pueden determinar sus velocidades y, en consecuencia, sus masas relativas. Y viendo cuánto tarda una línea espectral en ir hasta el extremo más rojo y, después, ir al extremo azul para volver al extremo más rojo de nuevo, los astrónomos pueden determinar la duración o período de la órbita de la estrella binaria.
Si sabes que el período de una órbita completa es de 60 días, por ejemplo, y sabes lo rápido que se mueve la estrella, puedes averiguar la circunferencia de la órbita y, por tanto, también el radio de su órbita. Al fin y al cabo, si conduces sin parar desde la ciudad de Nueva York a una ciudad que esté al norte del estado durante 3 horas a 100 kilómetros por hora (¡buena suerte con el tráfico!), sabes que la distancia que has recorrido es de 3 × 100, es decir, 300 kilómetros.
Las estrellas dobles son dos estrellas que parecen estar cerca tal y como se ven desde la Tierra. Algunas estrellas dobles son realmente binarias, orbitan alrededor de centros comunes de masa. En cambio, otras sólo son dobles ópticas, o dos estrellas que resultan estar casi en la misma dirección vistas desde la Tierra, pero a distancias muy distintas. No tienen relación entre sí; ni siquiera han sido presentadas.
Las estrellas triples son tres estrellas que parecen estar cerca pero que, como los miembros de una estrella doble, puede que lo estén o no. Un sistema de estrellas triple, igual que un sistema binario, está formado por tres estrellas unidas por su gravitación mutua que orbitan alrededor de un centro común de gravedad.
Espectroscopia estelar en pocas palabras
La espectroscopia estelar es el análisis de las líneas de los espectros de las estrellas y, con diferencia, es la herramienta más importante de la que dispone un astrónomo para investigar la naturaleza física de las estrellas. La espectroscopia revela:
Velocidades radiales de las estrellas (movimientos de aproximación o alejamiento de la Tierra).
Masas relativas, períodos orbitales y tamaños de las órbitas de las estrellas en sistemas binarios.
Temperaturas, densidades atmosféricas y gravedad en la superficie de las estrellas.
Campos magnéticos y su intensidad en las estrellas.
Composición química de las estrellas (átomos que están presentes y en qué estados existen).
Ciclos de manchas solares de las estrellas (bueno, ciclos de manchas estelares).
Toda esta información procede de la medición de las posiciones, anchos e intensidades (lo oscuras o brillantes que sean) de las pequeñas líneas oscuras (a veces, brillantes) de los espectros de las estrellas. Los científicos las analizan con ayuda del efecto Doppler para averiguar lo rápido que se mueven las estrellas, el tamaño de sus órbitas y sus masas relativas. Otros fenómenos, como el efecto Zeeman y el efecto Stark, afectan al aspecto de las líneas espectrales. Aplicando su conocimiento de estos efectos, los astrónomos pueden averiguar la intensidad del campo magnético de la estrella a partir del efecto Zeeman y determinar la densidad y la gravedad en la superficie de la atmósfera de la estrella a partir del efecto Stark. La presencia de líneas espectrales concretas, cada una procedente de un tipo específico de átomo que absorbe (líneas oscuras) o emite (líneas brillantes) luz en la atmósfera de una estrella, muestra a los astrónomos algunos de los elementos químicos presentes en la atmósfera de la estrella y la temperatura de la estrella a la que estos átomos emiten o absorben la luz.
Las líneas espectrales incluso indican a los astrónomos en qué condición o estado de ionización se encuentran los átomos. Las estrellas están tan calientes que el calor puede quitar átomos de hierro, por ejemplo, de uno o más de sus electrones, convirtiéndolos en iones de hierro. En función de cuántos electrones haya perdido, cada tipo de ión de hierro produce líneas espectrales con distintos patrones característicos y posiciones en el espectro. Si se comparan los espectros de las estrellas registrados mediante telescopios con los espectros de los iones y elementos químicos medidos en experimentos de laboratorio o los calculados por ordenador, los astrónomos pueden analizar una estrella sin llegar a acercarse nunca a años luz de ella.
En los gases estelares fríos, gran parte del hierro pierde un electrón por átomo; así, produce los espectros de hierro de un único ión. Sin embargo, en las partes muy calientes de las estrellas (como la corona a un millón de grados del Sol), el hierro puede perder diez electrones; el elemento está en un estado de ionización elevado y produce el patrón correspondiente de líneas espectrales. Este patrón apunta a la existencia de una región a muy alta temperatura en la estrella.
Algunas partes del espectro del Sol cambian con el ir y venir de las regiones perturbadas del Sol, que alcanza su punto máximo aproximadamente cada once años (tal y como explico en el capítulo 10). En los espectros de otras estrellas similares al Sol se producen cambios parecidos. De esta forma, los astrónomos pueden averiguar la longitud del ciclo de actividad de una estrella distante utilizando la espectroscopia, aunque la estrella esté demasiado lejos para poder ver sus manchas solares.
Quizá nos sirva compararla con la felicidad conyugal (o de la soltería). “Tres son multitud” es una expresión de la inestabilidad en la mayoría de los acuerdos románticos cuando entra en escena una tercera persona. Lo mismo ocurre con los sistemas de estrellas triples. Estos sistemas constan de una pareja o sistema binario y de una tercera estrella en una órbita mucho mayor. Si estas tres estrellas se movieran en órbitas próximas, interactuarían gravitatoriamente de forma caótica, y el grupo se rompería, y, como mínimo, una estrella se iría volando para no volver jamás. Por lo tanto, un sistema triple es, en efecto, una “estrella binaria” en la que un miembro es, de hecho, una pareja de estrellas.
Las estrellas cuádruples suelen ser “dobles dobles”, y están formadas por dos sistemas de estrellas binarias próximas que giran alrededor del centro común de masas de las cuatro estrellas.
Estrellas múltiples es el término colectivo para referirse a sistemas estelares más grandes que los binarios: triples, cuádruples, etc. En algún momento, la distinción entre un sistema de estrellas grande y múltiple y un cúmulo pequeño de estrellas se difumina. Uno es, esencialmente, igual que el otro. (Describo los cúmulos de estrellas en el capítulo 12.)
No todas las estrellas son, como escribió Shakespeare, “tan constantes como la Estrella Polar”. De hecho, la Estrella Polar tampoco es constante. La famosa estrella, también llamada Polaris, es una estrella variable, es decir, su brillo cambia con el tiempo. Durante muchos años, los astrónomos pensaban que tenían totalmente dominados los cambios de brillo de la Estrella Polar. Parecía brillar y apagarse un poco una y otra vez, de forma reproducible. Sin embargo, de repente, sus cambios se modificaron. Con el tiempo, esta diferencia de patrón puede significar un cambio físico y los científicos están estudiando su significado. Recientemente, los astrónomos de la Universidad de Villanova (Pensilvania) han llegado a la conclusión de que la Estrella Polar ha aumentado su brillo aproximadamente una magnitud (unas dos veces y media) desde la Antigüedad.
Las estrellas variables son de dos tipos básicos:
Estrellas variables intrínsecas: Estas estrellas experimentan cambios en su brillo debido a cambios físicos en las propias estrellas. Estas estrellas se dividen en tres categorías principales:
• Estrellas pulsantes.
• Estrellas fulgurantes.
• Estrellas explosivas.
Estrellas variables extrínsecas: Estas estrellas parecen cambiar de brillo porque algo externo altera su luz, tal y como se ve desde la Tierra. Las dos clases principales de estrellas variables extrínsecas son:
• Binarias eclipsantes.
• Microlentes.
Describo cada clase de estrellas variables en el siguiente apartado.
Las estrellas pulsantes se hinchan y deshinchan, aumentan y se reducen, se enfrían y calientan, se hacen más brillantes y más tenues. Estas estrellas oscilan como corazones que palpitan en el cielo.
Estrellas variables Cefeidas
Las estrellas pulsantes más importantes desde el punto de vista científico son las estrellas variables Cefeidas, llamadas así en honor a la primera estrella estudiada de este tipo, Delta, en la constelación Cefeo (Delta Cephei).
La astrónoma estadounidense Henrietta Leavitt descubrió que las Cefeidas tienen una relación período-luminosidad. Esto significa que, cuanto mayor sea el período de variación (el intervalo entre sucesivos picos del brillo), mayor será el brillo verdadero medio de la estrella. Así pues, un astrónomo que mide la magnitud aparente de una estrella variable Cefeida a medida que cambia con los días y las semanas y que, de esta forma, calcula el período de variabilidad, puede deducir fácilmente el verdadero brillo de la estrella.
¿Qué importancia tiene para los astrónomos? Conocer el brillo verdadero nos permite determinar la distancia de la estrella. Al fin y al cabo, cuanto más lejos esté la estrella, más tenue parece, pero mantiene el mismo brillo verdadero.
La distancia atenúa las estrellas según la ley de la inversa del cuadrado: cuando una estrella está el doble de lejos, parece cuatro veces más tenue; cuando se triplica la distancia, la estrella parece nueve veces más tenue; y cuando una estrella está diez veces más lejos, parece que sea cien veces más tenue.
Los titulares del telescopio espacial Hubble en los que se determinaban la edad y la escala de distancia del universo procedieron de un estudio del Hubble sobre las estrellas variables Cefeidas. Dichas Cefeidas se encuentran en galaxias lejanas. Al hacer un seguimiento de sus cambios de brillo, y utilizando la relación período-luminosidad, los observadores del Hubble averiguaron a qué distancia están las galaxias.
Estrellas RR Lyrae
Las estrellas RR Lyrae se parecen a las Cefeidas, pero no son tan grandes ni tan brillantes. Algunas estrellas RR Lyrae están situadas en cúmulos globulares de estrellas en nuestra Vía Láctea, y también tienen una relación período-luminosidad.
Los cúmulos globulares son enormes bolas de estrellas viejas que nacieron mientras la Vía Láctea aún se estaba formando. Entre cientos de miles y un millón de estrellas abarrotan una región del espacio que solamente mide entre 60 y 100 años luz. Mediante la observación de los cambios en el brillo de las estrellas RR Lyrae, los astrónomos pueden estimar sus distancias, y cuando las estrellas están en cúmulos globulares, nos indican a qué distancia se encuentran dichos cúmulos. (Si quieres obtener más información sobre los cúmulos globulares y de otro tipo, consulta el capítulo 12.)
¿Por qué es tan importante conocer la distancia de un cúmulo estelar? Por la siguiente razón: todas las estrellas de un determinado cúmulo nacieron a partir de una nube común al mismo tiempo y todas están prácticamente a la misma distancia de la Tierra porque se encuentran en el mismo cúmulo. Por eso, cuando los científicos dibujan el diagrama H-R de estrellas de un cúmulo, el diagrama no tiene los errores que podrían haber causado las diferencias en las distancias de las estrellas. Y si los científicos conocen la distancia del cúmulo, pueden convertir todas las magnitudes trazadas en luminosidades reales, o las tasas a las que las estrellas producen energía por segundo. Estas cantidades se pueden comparar directamente con teorías astrofísicas de las estrellas y cómo generan su energía. Este tema mantiene ocupados a los astrofísicos.
Estrellas variables de largo período
Los astrofísicos celebran la información que averiguan gracias a las estrellas variables Cefeidas y RR Lyrae. Por otra parte, los aficionados a la astronomía se deleitan observando las variables de largo período, también llamadas estrellas Mira (o variables Mira). Mira es otra forma de designar a la estrella Ómicron Ceti, en la constelación Cetus (la Ballena), la primera estrella variable de largo período conocida.
Las variables Mira son enormes estrellas rojas que palpitan como las Cefeidas, pero tienen períodos mucho más largos, de una media de diez meses o más, y el cambio en su luz visible es aún mayor. En su punto más luminoso, Mira es visible a simple vista, y en su punto más tenue, necesitarás un telescopio para verla. Los cambios de una estrella variable de largo período también son mucho más variables que los cambios de una Cefeida. La magnitud más brillante que alcanza una estrella variable de largo período en particular puede diferir bastante de un período al siguiente. Estos cambios se pueden observar fácilmente y constituyen información científica básica. Tú puedes ayudar en este y otros estudios de estrellas variables, tal y como describo en el último apartado de este capítulo.
Las estrellas fulgurantes son pequeñas enanas rojas que sufren grandes explosiones, como fulguraciones solares ultrapotentes. No puedes ver la mayoría de las fulguraciones solares sin ayuda de filtros especiales de colores porque la luz de las fulguraciones es sólo una diminuta fracción de la luz total del Sol. Solamente las raras fulguraciones muy grandes de “luz blanca” son visibles en el Sol sin filtros especiales. (Ten en cuenta que es necesario utilizar una de las técnicas de observación solar segura que describo en el capítulo 10.) Sin embargo, las explosiones de las estrellas fulgurantes son tan brillantes que la magnitud de la estrella cambia notablemente. Estás mirando la estrella a través de un telescopio, y, de repente, tiene más brillo. No todas las enanas rojas experimentan estas explosiones frecuentes. Próxima Centauri, la estrella más cercana más allá de nuestro Sol, es una estrella fulgurante.
Las explosiones de novas y supernovas son tan grandes que no las puedo agrupar con las estrellas fulgurantes; son enormemente más poderosas y tienen efectos mucho mayores.
Novas
Una nova explota a través de un proceso de acumulación sobre una enana blanca en un sistema binario, de forma similar a las explosiones de las supernovas de tipo Ia que ya he descrito en este capítulo. En el caso de una supernova, la enana blanca se destroza; en una nova, la enana blanca no se destruye. Sólo estalla la parte superior de la estrella, y entonces se estabiliza, atrapando más gas de su compañera en su capa superficial. La potente gravedad de la enana blanca comprime y calienta esta capa y, tras siglos o milenios, vuelve a activarse. Como mínimo, ésa es la teoría. Ningún científico ha vivido tiempo suficiente para ver una nova clásica o normal explotar dos veces. Existen sistemas binarios similares en los que las explosiones no son tan poderosas como en una nova clásica, pero se dan con la suficiente frecuencia para que los aficionados a la astronomía siempre las estén controlando, listos para anunciar el descubrimiento de una nueva explosión y avisar a los profesionales para que la estudien. Estos objetos reciben varios nombres, como novas enana y sistemas AM Herculis.
Las novas clásicas, las novas enanas y otros objetos similares se conocen con el nombre colectivo de variables cataclísmicas.
Una nova tan brillante como para ser observada a simple vista se da aproximadamente una vez cada década. Estudié una en Hércules para mi tesis doctoral, en 1963. Si no hubiera explotado justo en el momento adecuado, habría tenido que esperar diez años para encontrar un tema para la tesis. Recientemente, una nova brillante en Escorpio deslumbró a los astrónomos en 2007.
Supernovas
Las supernovas expulsan nebulosas, denominadas remanentes de supernovas, a grandes velocidades (consulta la figura 11-5). Al principio, la nebulosa está formada por el material que componía la estrella que ha quedado destrozada, excepto los restos de cualquier objeto central que haya podido quedar, ya fuera estrella de neutrones o agujero negro (consulta el apartado “Hora de cerrar: la última parte de la evolución estelar”, que aparece en este capítulo). Sin embargo, a medida que se expande en el espacio, la nebulosa barre gas interestelar igual que un quitanieves que acumula nieve. Al cabo de miles de años, el remanente de la supernova es, principalmente, gas barrido y no basura de supernova.
Figura 11-5:
Parte del Bucle de Cygnus, un remanente de supernova
Las supernovas son increíblemente brillantes y bastante raras. Los astrónomos estiman que en una galaxia como la Vía Láctea se da una supernova cada veinticinco o cien años, pero no hemos presenciado ninguna supernova en nuestra galaxia desde la Estrella de Kepler en 1604, antes de la invención del telescopio. Puede que hayan aparecido otras, que hayan estado ocultas debido a las nubes de polvo de la Galaxia. Una enorme estrella del sur conocida como Eta Carinae parece que esté a punto de transformarse en supernova en la Vía Láctea, pero eso, en la jerga de los astrónomos, significa que podría explotar en cualquier momento dentro del próximo millón de años.
Solamente se ha visto una supernova a simple vista desde 1604. Fue la Supernova 1987A, situada en nuestra galaxia vecina, la Gran Nube de Magallanes, o GNM (que describo en el capítulo 12). La supernova estaba demasiado al sur para que pudiera verse desde Estados Unidos continentales, pero no iba a perderme un fenómeno celeste tan poco frecuente, así que viajé hasta Chile para verlo. Los astrónomos chilenos me dieron una cálida acogida.
Hipernovas
Las hipernovas son supernovas especialmente brillantes que, como mínimo, parecen producir algunos de los estallidos de rayos gamma que de vez en cuando emiten destellos en el cielo. Los estallidos son explosiones muy potentes de radiación de alta energía emitida en haces como los rayos de los focos reflectores. La NASA lanzó el satélite Swift en noviembre de 2004 para descubrir más cosas sobre estos fenómenos. Cuando este satélite detecta un estallido procedente de cierta dirección, rápidamente lo notifica a los observatorios de la Tierra para que apunten hacia esa parte del cielo. Las hipernovas son mucho más raras que otras supernovas, y nunca se ha visto una hipernova en nuestra galaxia.
Si quieres conocer mejor el satélite Swift y sus descubrimientos, visita el sitio web de Swift de la NASA en www.nasa.gov/mission_pages/swift/main/index.html y Swift Education and Public Outreach en http://swift.sonoma.edu. Si tienes un iPad o iPhone, abre iTunes y descarga la aplicación gratuita Swift Explorer de la Pennsylvania State University. Tiene algunas funciones geniales. Incluso puedes programarla para que te envíe un mensaje al teléfono cada vez que Swift detecte un estallido de rayos gamma.
Las estrellas binarias eclipsantes son sistemas binarios cuyo brillo verdadero no cambia (a menos que una de las dos estrellas resulte ser una estrella pulsante, fulgurante u otra variable intrínseca), aunque parezcan estrellas variables. El plano orbital del sistema (el plano que contiene las órbitas de las dos estrellas) está orientado de forma que incluye nuestra línea de visión hacia el sistema binario. Así, en cada órbita, una estrella eclipsa a la otra, como se ve desde la Tierra, y el brillo de la estrella se reduce durante el eclipse (evidentemente, la situación se revierte medio período orbital después, cuando la estrella eclipsada se convierte en la que provoca el eclipse).
Si las dos estrellas de un sistema binario tienen períodos orbitales de cuatro días, cada cuatro días la estrella más masiva del sistema, por lo general denominada A, pasa exactamente por delante de la otra estrella según la visión que se tiene desde la Tierra. Este paso bloquea toda o la mayoría de la luz que proviene de la estrella B, y así, no llega a la Tierra (a veces, en función de su tamaño comparado con A, la estrella menos masiva es más grande que su pesada compañera), por lo tanto, la estrella binaria parece más tenue. Los astrónomos llaman a este fenómeno eclipse estelar. Dos días después del eclipse, la estrella B pasa por delante de la estrella A, con lo que crea otro eclipse.
En el apartado “Estrellas binarias y efecto Doppler” he mencionado cómo utilizan los astrónomos las velocidades orbitales para averiguar las masas relativas de las estrellas. También pueden utilizar estas velocidades para calcular el diámetro de las estrellas. Los científicos cogen los espectros y averiguan la velocidad a la que orbitan las estrellas utilizando el efecto Doppler, y miden la duración de los eclipses en las binarias eclipsantes. Un eclipse estelar de la estrella B comienza cuando el borde de entrada de la estrella A empieza a pasar por delante de ella. El eclipse acaba cuando el borde trasero de A acaba de pasar por delante de B. Así, la velocidad orbital multiplicada por la duración del eclipse informa a los científicos de lo grande que es la estrella A.
En todos estos métodos, los detalles son un poco más complicados, pero te lo he explicado de manera que entiendas los principios de la investigación estelar.
La binaria eclipsante más famosa es Beta Persei, conocida también por el nombre de Algol (que significa ‘estrella endemoniada’). Pero, pese a su nombre, no las pasarás canutas observando los eclipses de Algol en el hemisferio norte, ya que es una estrella brillante bien situada para su observación en el cielo del norte en otoño. Puedes ver sus eclipses sin telescopio e incluso sin prismáticos. Cada dos días y veintiuna horas, el brillo de Algol se atenúa un poco más que una magnitud (más de un factor de 2,5) durante unas dos horas. Pero debes saber cuándo buscar un eclipse. No es aconsejable que te quedes en el jardín durante casi tres días. Los vecinos hablarán. Consulta las páginas de Sky & Telescope que ofrecen información para los observadores. Normalmente, hay un párrafo titulado “Mínimo de Algol” en el que se indican las fechas y horas de los eclipses que se producirán durante un mes o dos (si no encuentras la lista en el ejemplar actual, Algol debe de estar demasiado cerca del Sol para que se pueda observar ese mes).
Mínimo hace referencia a los instantes en los que las estrellas variables, extrínsecas o intrínsecas, alcanzan los niveles más bajos de brillo. Máximo son los instantes en los que las estrellas brillan más.
A veces, una estrella lejana pasa delante de una estrella que está aún más lejos. Las dos estrellas no están relacionadas entre sí y puede que estén a miles de años luz, pero la gravedad de la estrella más cercana desvía las trayectorias de los rayos de luz de la estrella más lejana de forma que, durante días o semanas, la estrella distante parece mucho más brillante desde la Tierra. Este efecto está predicho por la teoría de la relatividad general de Einstein y los astrónomos lo detectan con regularidad. Cuando la gravedad de un objeto enorme como una galaxia desvía luz, los astrónomos denominan a este proceso lente gravitacional o gravitatoria. Cuando la gravedad de un cuerpo tan pequeño como una estrella desvía la luz, recibe el nombre de microlente.
Quizá pienses que es poco probable que dos estrellas sin relación se alineen perfectamente con la Tierra, ¡y tendrías razón! Felicidades por pensarlo. Para detectar ese fenómeno tan raro de forma regular, los astrónomos utilizan telescopios con cámaras electrónicas que pueden grabar cientos de miles a millones de estrellas al mismo tiempo. Con todas esas estrellas bajo observación, una estrella en primer plano pasa delante de una estrella distante cada cierto tiempo, aunque los astrónomos no sepan con antelación qué dos estrellas son.
El truco consiste en apuntar la cámara electrónica a una región en la que puedas ver un gran número de estrellas simultáneamente en el campo de visión. Estas regiones incluyen la Gran Nube de Magallanes, una galaxia satélite cercana de la Vía Láctea (consulta el capítulo 12), y el bulbo central de la propia Vía Láctea, donde hay un enorme conjunto de estrellas.
Cuando miras Alfa Centauri a simple vista, ves una estrella brillante. Cuando la observas con un telescopio, ves dos estrellas brillantes juntas en el mismo campo de visión. Las dos estrellas forman un sistema binario. Pero hay una tercera estrella, Próxima Centauri, que lo convierte en un sistema triple. No ves Próxima Centauri en el campo de visión con las dos estrellas brillantes porque está en una órbita enorme alrededor de ellas, y, tal y como se ve desde la Tierra, está a más de 2° de distancia, o más de cuatro veces el diámetro aparente de la luna llena (y Próxima, una estrella enana roja tenue, no se ve a simple vista. Ya te la he presentado en el apartado “Estrellas de la secuencia principal: cómo disfrutar de una longeva edad adulta” anteriormente en este capítulo).
Si quieres conocer todo el sistema triple, consulta la siguiente lista:
Alfa Centauri A (también llamada Rigil Kentaurus): Estrella de tipo G, brillante, en la constelación del sur Centaurus (consulta la figura 11-6). Es una enana de la secuencia principal con casi el mismo color que el Sol pero ligeramente más brillante.
Alfa Centauri B: Compañera naranja de Alfa Centauri; es una enana de la secuencia principal ligeramente más pequeña y más fría.
Alfa Centauri C: Nuestro vecino estelar más cercano más allá del Sol, la pequeña enana roja y estrella fulgurante, también recibe el nombre de Próxima Centauri.
Figura 11-6:
Alfa Centauri es un sistema de estrellas triple situado muy al sur en el cielo
El sistema Alfa Centauri está a unos 4,4 años luz de la Tierra, con Próxima Centauri en la parte más cercana, a 4,2 años luz. El sistema se encuentra muy al sur en el cielo, por lo tanto, debes estar en el hemisferio sur, o, como mínimo, en la parte más meridional del hemisferio norte para verla.
Sirio, a una distancia de 8,5 años luz, es la estrella más brillante del cielo nocturno. Su nombre oficial es Alfa Canis Majoris, en Canis Major (el Can Mayor; consulta la figura 11-7). Sirio se encuentra ligeramente al sur del Ecuador celeste y se puede ver desde la mayor parte de los lugares habitados de la Tierra. Se trata de una estrella blanca de tipo A de la secuencia principal que brilla lo suficiente como para que la gente diga: “¿Cuál es esa estrella tan grande?”.
Figura 11-7:
Sirio es el jefe de la manada en Canis Major
Como la mayoría de las estrellas, Sirio tiene una estrella compañera: Sirio B, una enana blanca. Sirio se conoce como la “estrella perro”, así que cuando en 1862 el fabricante de telescopios estadounidense Alvan Clark descubrió a su diminuta compañera, Sirio B, fue natural que alguien la apodara “cachorro”.
Una leyenda y algunos registros escritos abiertos a distintas interpretaciones sugieren que hace miles de años Sirio era una estrella roja. A pesar de muchos esfuerzos, los astrofísicos no han sido capaces de explicar este color según procesos físicos conocidos, por lo tanto, como es natural afirman que esta historia no es cierta.
Vega es Alfa Lyrae, la estrella más brillante de la constelación de la Lyra (Lira). Aparece alta en el cielo en latitudes templadas del norte (por ejemplo, Estados Unidos continental o España), en las noches de verano, y es un objeto que la mayoría de los aficionados a la astronomía conocen como la palma de su mano. Vega está a unos 26 años luz de la Tierra, y es una estrella de tipo A de la secuencia principal, como Sirio. Vega es una bengala blanca y brillante y una de las estrellas más visibles del cielo.
Betelgeuse no está en el vecindario solar; es una estrella supergigante roja de tipo espectral M, a unos 640 años luz de la Tierra. Pero a todo el mundo le gusta su nombre, que muchos pronuncian “Beetle Juice” (jugo de escarabajo, en inglés), que es una manera tan buena de pronunciarlo como cualquier otra, y los observadores disfrutan de su profundo color rojo. Al fin y al cabo, es una supergigante roja, más de veinte mil veces más brillante que el Sol. A pesar de que Betelgeuse sea Alfa Orionis, la estrella más brillante de Orión es en realidad Rigel (Beta Orionis).
Miles de estrellas están bajo vigilancia porque su brillo varía o porque muestran alguna otra característica especial. Los astrónomos profesionales no pueden controlarlas todas, y ahí es donde tú entras en escena. Tú puedes controlar algunas estrellas con tus propios ojos, con prismáticos o con un telescopio.
Debes ser capaz de reconocer las estrellas y juzgar sus magnitudes. El brillo de muchas estrellas cambia de forma tan significativa (por un factor de dos, diez o incluso cientos) que las estimaciones visuales son lo suficientemente precisas como para hacer un seguimiento de ellas. El truco es utilizar un gráfico de comparación, es decir, un mapa estelar que muestra la posición de la estrella variable y las posiciones y magnitudes de las estrellas de comparación. Una estrella de comparación tiene un brillo conocido que no varía (o eso esperamos).
La AAVSO (Asociación Norteamericana de Observadores de Estrellas Variables) ofrece abundante información sobre cómo observar estrellas variables. Su sitio web es www.aavso.org.
La AAVSO anima a los aficionados a la observación, tanto si son principiantes como expertos. Puedes descargarte su Manual para la observación visual de estrellas variables, que está en inglés y en otros idiomas, incluido el español (los aficionados a la astronomía del mundo aportan sus observaciones de estrellas variables a la investigación de la AAVSO).
Consulta el Variable Star Plotter (VSP) en la web de la AAVSO. Puedes introducir el nombre o el número de una estrella variable, y el VSP creará una carta celeste para la estrella que puedes descargar para utilizarla con tu telescopio. Tras haber leído el manual y aprendido cómo estimar las magnitudes de las estrellas, estarás listo para observar estrellas variables y enviar tus descubrimientos a la AAVSO.
Aunque vivas en un lugar en el que las condiciones climáticas y/o la iluminación urbana no permiten hacer observaciones astronómicas con frecuencia, puedes ayudar a los astrónomos practicando la ciencia ciudadana: examina datos de telescopios obtenidos desde el espacio o desde observatorios profesionales con base en tierra, según las instrucciones que se facilitan por internet. Lo único que debes hacer es inscribirte en una web de proyectos, estudiarte el manual del proyecto y empezar a examinar los datos.
Miles de personas se apuntan a estos proyectos, de forma que, a pesar de que quizá alguien no tenga el mejor criterio científico, se establece una media de la información proporcionada por muchos participantes. En general, los descubrimientos de los científicos ciudadanos alertan a los astrónomos profesionales de objetos o fenómenos interesantes y posiblemente importantes desde el punto de vista científico en las bases de datos (literalmente) astronómicas que ningún experto puede examinar por su cuenta.
Éstos son dos buenos proyectos de ciencia ciudadana que vale la pena considerar:
Proyecto de la Vía Láctea (MWP, Milky Way Project, www.milkywayproject.org/tutorial): Este proyecto de investigación busca información nueva sobre cómo se forman las estrellas. Está patrocinado por el Adler Planetarium de Chicago (Illinois) y el programa de ciencia ciudadana Zooniverse, y utiliza imágenes del telescopio Spitzer Space de la NASA. Cuando participas en este proyecto, utilizas las herramientas informáticas que facilitan en la web del MWP para dibujar círculos alrededor de los denominados nudos verdes (green knots) de la Vía Láctea (se ponen ejemplos para que sepas qué buscar). Dichos nudos pueden ser lugares en los que la formación de estrellas está en proceso. También puedes ir a la caza de pequeños cúmulos de estrellas, previamente desconocidos, y rodearlos con un círculo. Los astrónomos profesionales utilizan la información que tú envías para las investigaciones en curso sobre las estrellas. (Describo la Vía Láctea y sus cúmulos de estrellas en el capítulo 12.)
Proyecto de búsqueda de estrellas explosivas (supernovas) (http://supernova.galaxyzoo.org): Puedes cazar supernovas desde la comodidad de tu hogar uniéndote al proyecto cuyo nombre oficial es The Search for Exploding Stars (Supernovae). Cuando este programa funcione con regularidad, recibirás imágenes telescópicas de una cámara automática del Observatorio del Monte Palomar de California y buscarás supernovas nuevas en ellas. (Digo “cuando” porque, a principios de mayo de 2012, los voluntarios ya habían agotado los datos disponibles del Observatorio del Monte Palomar y los recién llegados a la web son temporalmente redirigidos a otros proyectos de ciencia ciudadana que también valen la pena.)
Si te unes a Exploding Stars, descubrirás cómo identificar una supernova y avisar de su existencia. A partir de los avisos que dais tanto tú como otros voluntarios, los astrónomos profesionales apuntan sus poderosos telescopios a las estrellas en explosión y reúnen información astrofísica fresca.
Creo que Exploding Stars supera a Angry Birds cualquier día de la semana. Además, es gratuito, y no se hace daño a ningún animal (a menos que estén en un planeta cercano a una supernova).