Capítulo 7

El cinturón de asteroides y los NEO

En este capítulo

triangle.png Descubrirás aspectos fundamentales sobre los asteroides

triangle.png Evaluarás el riesgo de que se produzca un impacto asteroideo contra la Tierra

triangle.png Observarás asteroides en el cielo nocturno

Los asteroides son rocas grandes que rodean al Sol. La gran mayoría de los asteroides están más allá de la órbita de Marte, en una zona segura llamada cinturón de asteroides, pero miles de otros asteroides siguen órbitas que se acercan o cruzan la órbita de la Tierra. Muchos científicos creen que un asteroide chocó contra la Tierra hace unos 65 millones de años y exterminó a los dinosaurios y a muchas otras especies.

En este capítulo te introduciré estas grandes rocas y te explicaré cuáles son las mejores formas de observarlas. Y por si te preocupa, te contaré la verdad sobre el riesgo de que un asteroide o algún otro NEO (siglas inglesas para Near-Earth Objects u objetos cercanos a la Tierra) choque contra la Tierra en el futuro y te informaré de la investigación que están llevando a cabo los científicos para enfrentarse a dicha posibilidad.

Breve visita al cinturón de asteroides

Los asteroides también reciben el nombre de planetas menores porque, cuando los descubrieron, los expertos pensaron que eran objetos como los planetas. En cambio, hoy en día, los astrónomos creen que los asteroides son restos de la formación del Sistema Solar, es decir, objetos que nunca se fusionaron con suficientes escombros espaciales para convertirse en un planeta. Algunos asteroides, como Ida, incluso tienen sus propias lunas (consulta la figura 7-1). Los asteroides están formados por rocas silicatadas, como las de la Tierra, y de metal (sobre todo, de hierro y níquel). Algunos asteroides puede que también contengan rocas carbonáceas (con carbono) y, en los últimos años se ha encontrado hielo en algunos asteroides.

154.jpeg

Figura 7-1:

El asteroide Ida tiene su propia luna, Dactyl

La mayoría de los asteroides conocidos se encuentran en una gran región aplanada, cuyo centro es el Sol, situada entre las órbitas de Marte y Júpiter. Esta zona recibe el nombre de Cinturón de asteroides. Los asteroides tienen un tamaño que va desde los 952 kilómetros de diámetro que tiene Ceres, a meteoroides grandes, es decir, fragmentos de asteroides (consulta el capítulo 4). Una roca espacial grande es un asteroide muy pequeño o un meteoroide muy grande; puedes elegir la que quieras.

Los meteoroides asteroidales, que describo en el capítulo 4, están compuestos por roca y/o hierro; cuando caen en la Tierra, reciben el nombre de meteoritos. Puedes ver estos meteoritos en muchos museos de geología e historia natural. Los asteroides son fragmentos mucho mayores de la misma materia. Para ver meteoritos, consulta el sitio web Meteor Collector, en www.meteoritecollector.org/museums.html, y busca una colección en algún museo que se encuentre cerca de ti.

En la tabla 7-1 aparecen los cuatro objetos más grandes del cinturón de asteroides. Los dos mayores, Ceres y Palas, están prácticamente a la misma distancia media del Sol, a pesar de que Palas tenga una órbita mucho más elíptica.

155.jpeg

A finales de 2011, había unos seiscientos mil asteroides conocidos, de los cuales, unos dieciséis mil habían sido bautizados (entre ellos uno que la Unión Astronómica Internacional tuvo la amabilidad de nombrar en mi honor; me alegro de que no le llamaran Dummy). En general, fueron descubiertos en los últimos años por telescopios robóticos diseñados para tal propósito; sin embargo, los aficionados a la astronomía experimentados que han montado cámaras digitales avanzadas en sus telescopios también están haciendo interesantes descubrimientos.

Puedes ver los asteroides más grandes, como Ceres y Vesta, a través de telescopios pequeños (visita el apartado “En busca de pequeños puntos de luz” para saber más sobre la observación de asteroides).

Ceres y Vesta son tan grandes que su propia gravedad hace que sean esféricos. Un cráter de Vesta, Rheasilvia, es casi tan ancho como el asteroide en sí. Los depósitos de material oscuro de la superficie de Vesta pueden proceder de los impactos de meteoroides que tienen carbono o de colisiones con pequeños asteroides que fundieron su superficie y provocaron flujos de lava. Probablemente también haya mucho hielo en lugares fríos y oscuros de Vesta.

Los asteroides pequeños suelen tener forma de patata y, con frecuencia, parecen producto de una explosión (consulta la figura 7-2) porque, de hecho, lo han sido. Los asteroides del cinturón chocan constantemente entre sí, por lo que se forman cráteres de impacto y producen fragmentos grandes y pequeños (aporta un significado nuevo al verbo machacar). Los fragmentos grandes son sólo asteroides más pequeños, y los pequeños, meteoroides asteroidales.

En contadas ocasiones los asteroides pequeños (o los meteoroides grandes) golpean con fuerza la Tierra (consulta el apartado siguiente para obtener más información sobre este fenómeno). Los impactos de asteroides (y los impactos de cometas) también han cubierto la Luna, Marte y Mercurio de cráteres; Venus también tiene cráteres, pero no tantos (describo estos objetos con cráteres en los capítulos 5 y 6).

consejo.pngLos asteroides también tienen cráteres, pero son más difíciles de ver con los telescopios porque estos cuerpos celestes son muy pequeños. En la mayoría de los telescopios, un asteroide es sólo un punto de luz, como una estrella. Puedes ver cráteres y otros rasgos de Vesta en la web de la sonda espacial Dawn de la NASA. Dawn llegó a Vesta en julio de 2011 para estudiarlo antes de partir hacia Ceres, donde llegará en el año 2015. Para ver las imágenes y conocer los descubrimientos de esta sonda mientras Dawn arroja luz sobre estos asteroides, visita http://dawn.jpl.nasa.gov.

La NASA ya había enviado una sonda anteriormente, la NEAR (Near Earth Asteroid Rendezvous-Shoemaker), que allanó el camino a la Dawn explorando el asteroide Eros, de 33,8 kilómetros de largo, que cruza el interior de la órbita de Marte. Esa sonda orbitó alrededor de Eros durante un año y aterrizó el 12 de febrero de 2001. Puedes ver un vídeo de este alargado asteroide en la web de NEAR Shoemaker (www.discovery.nasa.gov/near.cfml).

156.jpeg

Figura 7-2:

Algunos asteroides parecen patatas enormes

Comprende la amenaza que suponen los NEO

No todos los asteroides orbitan de forma segura más allá de Marte. Miles de pequeños asteroides siguen órbitas que cruzan o se acercan a la de la Tierra. Los astrónomos denominan a todos estos vecinos NEO (NearEarth Objects; objetos cercanos a la Tierra), y hasta marzo de 2012 habían considerado que 1.296 de ellos eran asteroides potencialmente peligrosos, conocidos como PHA (del inglés, Potentially Hazardous Asteroid). Algún día, uno de estos aterradores vecinos puede que se acerque incómodamente a la Tierra o incluso que choque contra nuestro planeta. El Minor Planet Center (Centro de Planetas Menores) de la Unión Astronómica Internacional sigue la pista a los asteroides potencialmente peligrosos. Además, varios observatorios barren el cielo para descubrir más asteroides de este tipo.

consejo.pngEl sitio web del Minor Planet Center (www.minorplanetcenter.net) ofrece información para expertos y aficionados a la astronomía, incluye mapas del Sistema Solar interior y exterior, actualizados a diario, que muestran dónde se encuentran los planetas y muchos de los asteroides.

Actualmente, los astrónomos no saben si hay algún objeto específico que suponga una amenaza para la Tierra. Sin embargo, una roca de unos cuantos kilómetros que chocara contra la Tierra a 11 kilómetros por segundo provocaría una catástrofe mucho mayor que la explosión simultánea de todas las armas nucleares fabricadas. Sería uno de esos casos raros en los que la astronomía no es divertida. Asteroides de este tamaño chocan contra la Tierra cada diez millones de años, aproximadamente, y otros más pequeños chocan más a menudo. Los asteroides más grandes impactan contra la Tierra con menos frecuencia porque son menos numerosos.

Los aficionados a las teorías conspirativas piensan que si los astrónomos supiéramos que nos va a caer un asteroide el día del juicio final, no lo diríamos. Pero, la verdad, si yo supiera que el mundo está en peligro, ¡zanjaría todos mis asuntos y me iría a los Mares del Sur en vez de seguir aquí sentado acabando este capítulo!

En 1998, las películas de Hollywood Armageddon y Deep Impact presentaron versiones sensacionalistas de lo que puede suceder si un cometa o un gran asteroide estuviera a punto de chocar contra la Tierra. En parte, estas historias catastrofistas se inspiran en la conclusión, ampliamente aceptada, de que un asteroide de unos 10 kilómetros de ancho chocó contra la Tierra hace unos 65 millones de años. El cráter Chicxulub, una formación geológica de 180 kilómetros de ancho situada en parte en la península del Yucatán, en México, y en parte en el mar, en el golfo de México, puede ser el rastro que ha sobrevivido de aquel impacto, que, según se han teorizado, acabó con los dinosaurios.

El clima y los procesos geológicos, como la formación de montañas, la erosión y el vulcanismo, han erosionado los cráteres de impacto en la Tierra y en su mayoría los han eliminado. En la página web de Earth Impact Database, de la Universidad de New Brunswick, te ofrecen una lista de más de ciento ochenta de los cráteres que quedan en nuestro planeta, con fotografías y mapas de algunos de ellos (www.passc.net/EarthIm pactDatabase/index.html).

Las inundaciones, la erosión, el vulcanismo y otros procesos afectan al paisaje de la Tierra y entierran, llenan o destruyen en parte muchos cráteres de impacto, y algunos de ellos todavía no se han encontrado. Si haces muchas excusiones, exploraciones u observaciones aéreas, puede que llegues a descubrir el cráter dejado por un impacto. Si ves un posible cráter, consulta la base de datos de impactos en la Tierra que he comentado en el párrafo anterior. Allí dispones de un formulario en línea para informar de tu descubrimiento.

consejo.pngEl impacto de un asteroide pequeño causó el famoso Meteor Crater o Cráter del Meteoro (que, en realidad, debería llamarse Cráter del Meteoroide o Cráter del Asteroide) en el norte de Arizona, cerca de Flagstaff. El lugar merece una visita, ya que es el cráter de impacto más grande y mejor conservado de la Tierra. Durante la década de los sesenta, siendo yo uno de los jóvenes científicos del Kitt Peak National Observatory de Arizona, bastaba con decir al recepcionista del Cráter del Meteoro que eras astrónomo y entrabas gratis. Hoy en día, todo el mundo que tenga más de cinco años debe pagar entrada, pero vale la pena. Visita la web www.meteor crater.com para obtener información sobre las horas en las que se puede visitar el cráter, cómo llegar hasta allí y más datos.

Durante un breve tiempo, en marzo de 1998, muchas personas temieron que un NEO pequeño y recién descubierto pudiera chocar contra la Tierra en el año 2028. Los astrónomos desmontaron esa posibilidad en cuestión de un día, con observaciones adicionales que mostraron que la órbita del asteroide no cruzaba la Tierra. Algunos expertos incluso estaban en desacuerdo con la predicción inicial (algo que suele suceder con los expertos).

A pesar de que por ahora la Tierra parezca un sitio seguro, los científicos pueden descubrir un NEO en una trayectoria de colisión con la Tierra en el futuro, por eso dedican tiempo a estudiar qué se puede hacer ante esta posibilidad.

Si quieres explorar las consecuencias de una colisión, descarga la aplicación CraterSizeXL en tu iPhone o iPad. Introduce el tamaño y la velocidad de un cuerpo que cae, y la aplicación calcula el tamaño del cráter que formará. O puedes visitar el sitio web Impact Earth!, de la Purdue University (www.purdue.edu/impactearth) y calcular la catástrofe en línea.

Cuando la cosa se pone fea: cómo desviar un asteroide

Algunos expertos proponen desarrollar un potente misil nuclear para interceptar a un asteroide asesino antes de que pueda chocar contra la Tierra. Pero si hacemos estallar un asteroide que se dirige hacia nosotros, los resultados podrían ser peores que el daño causado por el impacto del asteroide intacto. Sería como la escena de la película Fantasía, de Walt Disney, en la que el aprendiz de brujo rompe a hachazos la escoba mágica porque, tras el hechizo, está fuera de control y no deja de recoger agua. Al final, acaba con un montón de escobas pequeñas, todas las cuales también empiezan a recoger agua.

Si hiciéramos estallar un asteroide con una bomba nuclear, se desintegraría creando un sinfín de rocas más pequeñas que seguirían la misma mortífera trayectoria. El golpe de estas rocas sería mayor que el de todas las armas del Pentágono juntas. Es mejor utilizar el misil nuclear (o algún otro tipo de misil) sólo para desviar suavemente el asteroide, de manera que pase a través de su punto de intersección con la órbita de la Tierra un poco antes o un poco después, cuando la Tierra aún no haya llegado a ese punto o ya lo haya pasado. ¡Buf!

A la hora de desviar suavemente un asteroide el problema es que los científicos no saben cuánta fuerza aplicar. No queremos romperlo, pero no conocemos la resistencia mecánica de los asteroides y no sabemos con cuánta fuerza golpearlo. Los asteroides pueden estar formados por rocas duras o por piedras frágiles. Algunos pueden ser de metal sólido. Si no conocemos a nuestro enemigo, empeoraremos las cosas si le atacamos de forma incorrecta.

En lugar de arriesgarnos a sufrir consecuencias no deseadas al intentar hacer estallar un asteroide amenazante o al darle un empujón, los ingenieros sugieren utilizar un tractor de gravedad. Una nave espacial muy robusta volaría junto al asteroide durante años. Sin llegar a tocar el cuerpo amenazante, la nave espacial cambiaría despacio la velocidad a la que se mueve el asteroide, gracias a la atracción gravitatoria entre ambos cuerpos. Este plan debería hacer que el asteroide se mantuviera intacto pero con una trayectoria que evitaría la Tierra. El problema de este método es que implica lanzar una nave espacial muy pesada cerca del asteroide y, después, mantenerla cerca de la gran roca durante una década o más. Puede que no quede tiempo suficiente para hacerlo después de haber predicho la colisión.

Los expertos han ofrecido muchas otras ideas sobre cómo evitar la amenaza que supone un asteroide, pero no está claro cuál es el mejor método.

En la película Fantasía, el propio brujo rompe el hechizo de la escoba encantada, pero sin un hechicero que haga desaparecer los asteroides, necesitamos datos concretos para diseñar un sistema que pueda proteger la Tierra frente a los asteroides.

Hombre precavido vale por dos: inspección de los NEO para proteger la Tierra

Los astrónomos tienen un plan que ayudaría a diseñar un sistema que pueda proteger la Tierra de asteroides rebeldes:

  1. Hacen un censo de los NEO para asegurarse de que hemos localizado todas las rocas que tienen más de 1 kilómetro de tamaño en nuestra zona del Sistema Solar.

    Los NEO de este tamaño se pueden convertir en asteroides potencialmente peligrosos si sus órbitas les acercan a la Tierra.

  2. Hacen un seguimiento de estos NEO y calculan sus órbitas para determinar si es probable que choquen contra la Tierra en un futuro.
  3. Estudian las propiedades físicas de los asteroides para descubrir lo máximo sobre ellos.

    Por ejemplo, hacen observaciones telescópicas para determinar de qué tipo de roca o metal están formados.

  4. Cuando los astrónomos conocen la amenaza, un equipo de ingeniería puede diseñar una misión espacial para contraatacarlo.

consejo.pngPara examinar los NEO, existen telescopios especializados en el descubrimiento de asteroides. Puedes visitar sus webs y ver sus recientes descubrimientos. Éstos son los proyectos más importantes:

visto.png El programa LINEAR (Lincoln Near Earth Asteroid Research, programa de Investigación de Asteroides Cercanos a la Tierra), en White Sands Missile Range, Nuevo México, con el apoyo de las fuerzas aéreas de Estados Unidos y la NASA (www.ll.mit.edu/mission/space/linear).

visto.png El proyecto para el seguimiento de asteroides cercanos a la Tierra NEAT (Near-Earth Asteroid Tracking) de la NASA, que observa desde el Maui Space Surveillance Site de Hawái y el Observatorio Palomar de California (http://neat.jpl.nasa.gov).

Los astrónomos encuentran NEO y determinan sus órbitas. Entonces los expertos pueden calcular la probabilidad de que un asteroide choque contra la Tierra en un futuro próximo. Pero (y esto puede que te sorprenda) no hay nadie encargado de reaccionar ante la amenaza de colisión de un asteroide si llegara el caso. Los departamentos de Defensa y los mandos militares de todo el mundo son responsables de proteger sus territorios nacionales y (en ocasiones) los territorios de las naciones aliadas. Pero ninguna agencia espacial ni fuerza armada tiene la misión de defender la Tierra contra una amenaza del espacio. Esperemos que se establezca una agencia de protección y que reciba las competencias y recursos necesarios antes de que todos la necesitemos. De lo contrario, estaremos realmente entre la espada y la pared.

En busca de pequeños puntos de luz

telescopi.pngBuscar asteroides es como mirar el cielo con atención para buscar cometas (consulta el capítulo 4), pero en lugar de una imagen borrosa buscas un pequeño punto de luz que parece una estrella. Pero, a diferencia de una estrella, un asteroide se mueve de forma perceptible contra el fondo de otras estrellas hora tras hora y noche tras noche.

consejo.pngPuedes ver los asteroides más grandes, como Ceres y Vesta, a través de telescopios pequeños; las revistas de astronomía publican notas breves y mapas celestes para indicarte con antelación cuáles son los períodos buenos de observación (en general, no hay un mejor momento del día o del año para ver asteroides). La mayoría de los softwares de planetario (y de aplicaciones de smartphone) muestran mapas celestes que indican la ubicación de los asteroides. (Consulta el capítulo 2 para obtener más información sobre revistas, aplicaciones y programas de planetario; consulta el capítulo 3 para saber más sobre los telescopios.)

Hasta que no tengas años de experiencia, no estarás preparado para buscar asteroides desconocidos o “nuevos” de forma sistemática. Los aficionados avanzados buscan asteroides nuevos con cámaras electrónicas acopladas a sus telescopios. Recogen una serie de imágenes de zonas seleccionadas del cielo, en general, en dirección opuesta al Sol (que, evidentemente, está por debajo del horizonte). Cuando ven un pequeño punto de luz (que parece una estrella) que cambia de ubicación, probablemente están viendo un asteroide.

La actividad para principiantes relacionada con asteroides consiste en intentar observar sus ocultaciones. Una ocultación es un tipo de eclipse que se da cuando un cuerpo en movimiento del Sistema Solar pasa por delante de una estrella. Los cuerpos responsables pueden ser la Luna (ocultación lunar), las lunas de otros planetas (ocultación de satélite planetario), los asteroides (ocultación asteroidal) o los planetas (ocultación planetaria). Los cometas y los anillos de los planetas también pueden causar ocultaciones. Una ocultación no es nada espectacular: durante el eclipse, ves desaparecer la estrella unos instantes.

Puedes disfrutar de una ocultación asteroidal sin obtener datos científicos, pero, ¡vaya desperdicio de una oportunidad única! Los detalles de la ocultación difieren de un lugar a otro de la Tierra. Por ejemplo, la misma ocultación puede durar más tiempo vista desde un punto de la Tierra que desde otro, o puede que no se produzca en un sitio concreto. Por eso, en algunos puntos, ves que la estrella está siendo eclipsada y, en otros, ves la estrella sin eclipse. A partir de los datos de la ocultación, los astrónomos pueden conseguir una imagen más precisa de algunos objetos celestes. Por ejemplo, en ocasiones, las ocultaciones revelan que lo que parece una estrella ordinaria es, en realidad, un sistema binario estrecho (es decir, dos estrellas en órbita alrededor de un centro de masa común; consulta el capítulo 11 para obtener más información sobre las estrellas binarias).

En los siguientes apartados te indico cómo hacer el seguimiento y controlar el tiempo de una ocultación asteroidal.

Cómo hacer el seguimiento de una ocultación

telescopi.pngLas ocultaciones asteroidales son mucho más difíciles de observar que las ocultaciones lunares porque a menudo los astrónomos no pueden predecirlas con precisión. Los astrónomos van a varios puntos de la trayectoria predicha de la ocultación (una franja estrecha que cruza la superficie de la Tierra en la que los astrónomos esperan que la ocultación sea visible, como la franja de totalidad en un eclipse de Sol, que describo en los capítulos 2 y 5) e intentan observar ocultaciones asteroidales. Sin embargo, como los diámetros, órbitas y formas de la mayoría de los asteroides no se conocen con precisión, las predicciones no pueden ser exactas. Dado que la ocultación puede ser visible en algunos lugares y en otros no, los astrónomos necesitan voluntarios que controlen una ocultación asteroidal desde distintos puntos. Las observaciones de los aficionados ayudan a determinar el tamaño y la forma de los asteroides que las originan. Tú también puedes participar.

consejo.pngInforma de tus observaciones a la IOTA (International Occultation and Timing Association); consulta su página, www.occultations.org. En su web puedes descargar el Manual para Observadores de la IOTA gratuito y rellenar y enviar un formulario para informar sobre ocultaciones asteroidales. El sitio web de la IOTA se actualiza regularmente para proporcionar las últimas predicciones de ocultaciones por parte de asteroides y otros objetos, así que no te olvides de visitarlo con asiduidad.

consejo.pngLa IOTA recomienda que empieces a estudiar la ocultación haciendo observaciones con un astrónomo experimentado, para cogerle el tranquillo. ¡Seguro que disfrutarás al máximo!

Cómo controlar el tiempo de una ocultación asteroidal

telescopi.pngPara que tu observación de asteroides sea útil desde un punto de vista científico, tienes que cronometrar con precisión y conocer la ubicación exacta (latitud, longitud y altitud) de la ocultación que estés estudiando. En el pasado, los observadores averiguaban su ubicación consultando mapas topográficos. Hoy en día, puedes utilizar un GPS o una aplicación para smartphone que te permita determinar las coordenadas de tu lugar de observación.