Según cierta leyenda, un emperador chino preguntó a un sabio qué recompensa exigiría a cambio de un importante servicio. El sabio puso su precio: nada más que arroz, dos granos colocados en la primera casilla de un tablero de ajedrez, cuatro en la segunda, ocho en la tercera y así sucesivamente. Una modesta petición, pensó el emperador, y la concedió alegremente; pero él no había entendido el principio de las progresiones geométricas. Toda la cosecha de arroz del imperio hubiera tenido que ir a una sola casilla, mucho antes de que se alcanzase la sexagésimo cuarta.
Fue el mismo cálculo simple, tan obvio para cualquiera versado en números, lo que llevó a lo que presumiblemente ha sido la innovación tecnológica más importante de nuestro tiempo. Le valió a Kary Mullis, el iconoclasta biólogo norteamericano, el premio Nobel en 1943. Así es como él recuerda el momento cegador de la revelación, una experiencia reservada sólo a unos pocos científicos en toda una vida de trabajo.
A última hora de la tarde de un viernes de primavera [de 1983] iba en coche a Mendocino County [en California] con una amiga que era una excelente química. Ella estaba dormida. Cada fin de semana yo iba al norte, a mi cabaña, y en el camino pasaba tres horas sentado en el coche; me gusta conducir a medianoche; mis manos ocupadas, mi mente libre. Esa noche estaba pensando sobre mi experimento de secuenciación propuesto.
Mullis, que trabajaba para Cetus, una joven compañía de biotecnología, estaba sopesando una idea que podría mejorar la eficiencia del procedimiento utilizado para determinar la secuencia de nucleótidos en el ADN. Los nucleótidos son los eslabones que forman las largas cadenas de ADN. Son de cuatro tipos, abreviados como A, C, G y T. La «secuencia» de ADN es el orden en que aparecen estas unidades a lo largo de la cadena. Las dos hebras de la famosa doble hélice [88] tienen secuencias «complementarias»: cada A tiene enfrente y está ligado a un T en la cadena opuesta, y cada C está ligado a un G. El proceso de secuenciación utiliza un enzima que en forma natural copia el ADN durante la división celular. Para que el enzima (ADN polimerasa) empiece a recorrer la cadena y haga su trabajo se necesita un denominado primero. Este es un corto segmento de una hebra de ADN, fácilmente sintetizado en el laboratorio, complementario del inicio del segmento de ADN que va a ser secuenciado. Mullis pensaba que si se envolviera el segmento deseado entre dos primeros, uno en cada hebra de la doble hélice (hecha de dos hebras que corren en direcciones opuestas), las moléculas del enzima seguirían el ADN en ambas direcciones y las secuencias de ambas hebras podrían determinarse simultáneamente. Esto daría una importante comprobación interna de la corrección de la respuesta, pues si se conoce la secuencia de una hebra puede inferirse inmediatamente la de su hebra complementaria. (Tal como está, el esquema no habría trabajado).
Entonces llegó el golpe de inspiración: con los dos primeros en extremos opuestos, el segmento entre ambos sería copiado por el enzima. Supongamos ahora que uno separaba las dos hebras del ADN recién formado, algo que se hace fácilmente por calentamiento; entonces, si hubiese suficientes moléculas de primeros en la mezcla, el enzima empezaría otra vez sobre las nuevas hebras. A partir de dos copias vendrían cuatro, a partir de cuatro, en el ciclo siguiente, ocho, y así sucesivamente. La única pega era que a la temperatura necesaria para separar las hebras de ADN, el enzima estaría inactivo y habría que añadir cada vez una dosis nueva. Esta dificultad, no obstante, podría superarse utilizando una preparación enzimática de una bacteria termófila —una bacteria que crece en fuentes calientes y contiene proteínas resistentes al calor—. Mullis continúa:
La idea de repetir un procedimiento una y otra vez podría haber parecido inaceptablemente aburrida. Sin embargo, yo había pasado mucho tiempo escribiendo programas de ordenador y me había familiarizado con los bucles iterativos —procedimientos en los que una operación matemática se aplica repetidamente a los productos de iteraciones anteriores—. Esa experiencia me había enseñado lo potentes que son los procesos iterativos de crecimiento exponencial. El procedimiento de replicación de ADN que yo había imaginado sería simplemente uno de tales procesos. Excitado, empecé a recorrer mentalmente las potencias de dos: 2, 4, 8, 16, 32… Recordaba vagamente que 2 elevado a 10 era aproximadamente mil y que, por lo tanto, 2 elevado a 20 era alrededor de un millón. Detuve el automóvil en una salida que daba a Anderson Valley. Saqué de la guantera papel y lápiz. Necesitaba comprobar mis cálculos. Jennifer, mi pasajera dormida, se quejó medio en sueños por el retraso y la luz, pero yo exclamé que había descubierto algo fantástico. Sin impresionarse, ella se volvió a dormir. Yo confirmé que 2 elevado a 20 era más de un millón y seguí conduciendo.
El lunes por la mañana, Mullis, desbordante de excitación, contó su idea a sus colegas de la Cetus Corporation, para la que acuñó el nombre de «reacción en cadena de la polimerasa», o PCR; pero ellos siguieron obstinadamente impávidos… hasta que se demostró que el método funcionaba.
Esta es, al menos, la versión de Mullis de la historia aunque no coincide demasiado con los recuerdos de otros. La actuación errática de Mullis en el laboratorio y su estilo brusco e hiperbólico no le habían hecho simpático a sus colegas, e incluso había algunos en la compañía que pensaban que sería mejor librarse de su molesta presencia. Su pobre crédito en esa época puede explicar en parte por qué la presentación de su idea de la PCR en un seminario interno encontró una fría acogida. Pero había una razón adicional: uno de los socios de Mullis en Cetus ha comentado que el aspecto más extraño de la historia de la PCR es que no se desarrolló pensando en un problema especial. Podía haber sido útil para la modesta empresa que Mullis tenía entre manos pero sus implicaciones más amplias no fueron percibidas hasta que ya se había puesto en marcha. Y entonces las aplicaciones empezaron a amontonarse. La tecnología fue desarrollada por un equipo de investigadores de Cetus. Hizo de Cetus una de las compañías norteamericanas punteras en biotecnología y cambió el rostro de la biología y de las industrias biotecnológica, farmacéutica y agrícola. Todo laboratorio de biología tiene ahora aparatos automatizados para amplificar ADN mediante PCR. La PCR permite generar cantidades manejables de ADN a partir de muestras de no más de unas pocas moléculas —por ejemplo, de una mancha de sangre o semen [135]—. Visto en retrospectiva, para la mayoría de los biólogos parece difícilmente comprensible que la idea se le ocurriera a Mullis y no a ellos.
Para un comentario sobre el descubrimiento de la PCR, que acepta en general la versión de Mullis, véase, Walter Bodmer y Robin McKie, The Book of Man: The Quest to Discover our Genetic Heritage (Little, Brown, Londres, 1994), pero para una exposición más detallada y equilibrada véase el libro de Paul Rabinow, Making PCR: A Story of Biochemistry (University of Chicago Press, Chicago, 1996).