72. Experimento erróneo, conclusión correcta

Durante el apogeo de la física atómica en los años treinta del siglo XX, uno de los físicos más emprendedores fue Ernest Orlando Lawrence (1901-1958), quien construyó en Berkeley, en California, el primer ciclotrón: un instrumento para acelerar partículas cargadas, en particular protones, a lo largo de una trayectoria espiral. Los protones alcanzaban unas altas velocidades sin precedentes y suficientes para escindir con frecuencia los núcleos del blanco sobre el que incidían. El primer ciclotrón fue el precursor de los aceleradores gigantes de hoy situados en túneles subterráneos de kilómetros de diámetro. Lawrence era un hombre de energía demoniaca e impaciencia incontrolable. Había razones para creer (correctamente, como resultó más tarde) que los deuterones —los núcleos del recientemente descubierto hidrógeno pesado o deuterio, que contienen un neutrón además del protón— serían agentes destructivos mucho más efectivos; por ello, Lawrence ansiaba tener en sus manos algo de esta sustancia que, casualmente, un colega en el Departamento de Química, G. N. Lewis, estaba produciendo en forma de agua pesada.

Lawrence siguió preguntando a Lewis cuánta agua pesada tenía hasta que, aproximadamente a primeros de marzo, Lewis pudo mostrarle todo un centímetro cúbico. Era suficiente para acelerar, pero en este trance Lewis no se comportó como un físico. Preocupado por si había fabricado un veneno, dio toda la muestra a un ratón. No le hizo ni bien ni mal al ratón, pero a Lawrence casi le produjo una apoplejía. «¡Este fue el cocktail más caro que haya tomado nunca un ratón o un hombre!», se quejaba.

En realidad, Lewis pensaba que el ratón había mostrado signos de intoxicación. Pero, de hecho, el agua pesada es inocua. Mucho más tarde, en los años posteriores a la segunda guerra mundial, la radiactividad entró en el mundo de los biólogos. Los compuestos biológicos que incorporan isótopos radiactivos [20] se hicieron indispensables para el estudio de las reacciones fisiológicas. (Su uso se basa en el hecho de que los isótopos de cualquier elemento son idénticos en términos químicos, ya que tienen el mismo número de electrones fuera del núcleo; entonces, una pequeña proporción de un isótopo radiactivo en el compuesto bajo estudio actuará como una etiqueta mediante la que podrá observarse el progreso de la sustancia en un organismo biológico). Los compuestos bioquímicos radiactivos son ahora algo estándar pero en los primeros días sólo estaban disponibles para unos pocos investigadores.

Puede decirse que el nuevo campo de la medicina atómica empezó realmente en la Universidad de California donde la radiactividad artificial se hizo disponible por primera vez para investigación biológica y médica. Observando a todos los jóvenes que trabajaban alrededor del ciclotrón, bombardeando nuevos blancos y midiendo las radiaciones con contadores Geiger y cámaras de niebla Wilson, pronto me contagié de la excitación de los primeros experimentos. Se sabía muy poco de los efectos biológicos de los rayos de neutrones producidos por el ciclotrón, y este parecía un lugar importante para empezar a trabajar.

Para las exposiciones a rayos de neutrones en Berkeley hicimos un pequeño cilindro de metal para alojar a una rata de modo que pudiera colocarse cerca del ciclotrón. Después de colocar a la rata en posición, pedimos al equipo que pusiera en marcha el ciclotrón y lo desconectase de nuevo al cabo de dos minutos. Esta exposición de dos minutos era arbitraria, puesto que no teníamos ninguna base para calcular qué dosis produciría un efecto observable en el animal. Una vez que habían pasado los dos minutos nos arrastramos hasta el pequeño espacio entre las D (los electrodos semicirculares por los que discurre la trayectoria espiral que siguen las partículas aceleradas) del ciclotrón de 37 pulgadas, abrimos el cilindro y encontramos que la rata estaba muerta. Todos se amontonaron para mirar la rata, y nació un saludable respeto por la radiación nuclear. Hoy día, por supuesto, las medidas de protección frente a la radiación son una parte integral de todos los programas de investigación en energía atómica, pero pienso que este incidente con nuestra primera rata jugó un gran papel en el excelente record de seguridad de la Universidad. De hecho, no hemos tenido ningún caso de cataratas por radiación entre los trabajadores del primer ciclotrón. Más tarde descubrimos que la muerte de la rata había sido resultado de la asfixia y no de la radiación. Pero puesto que nuestro fallo en airear adecuadamente la cámara de la rata había producido un efecto tan saludable sobre el equipo, preferimos no dar amplia circulación al informe post mortem.

John H. Lawrence, el escritor, registra que los físicos, en busca apresurada de resultados, eran siempre reacios a dejar sus instrumentos para experimentos con animales y consideraban a los biólogos y médicos visitantes como una molestia. Él cree que esta opinión pudo haberse intensificado cuando se acercó demasiado al ciclotrón con un par de alicates inadvertidamente guardados en su bolsillo. El campo magnético hizo que los alicates salieran disparados y quedasen pegados a las D, donde estuvieron durante tres semanas.

El primer pasaje es de Nuel Pharr Davis, Lawrence and Oppenheimer (Jonathan Cape, Londres, 1969). Los recuerdos de Lawrence están en California Monthly, núm. de diciembre (1957), reproducido en Science with a Smile, de Robert L. Weber (Institute of Physics, Bristol y Filadelfia, 1992).