Postfacio

En este breve capítulo intento responder a la necesidad de una especie de sumario, no de cada uno de los temas tratados a lo largo de todo el libro, sino del tema central de la simplicidad, la complejidad y los sistemas complejos adaptativos, el tema que conecta el quark con el jaguar y éstos con la humanidad.

El quark y el jaguar no es un tratado. No es un libro técnico, y se introduce en gran número de áreas que no puede explorar exhaustivamente o en profundidad. Por otra parte, muchos de los trabajos que están descritos con algún detalle son trabajos en curso, lo que quiere decir que aunque fueran tratados de modo más completo, con ecuaciones y toda la jerga científica pertinente, todavía quedarían muchas cuestiones importantes sin responder. Evidentemente, la función principal del libro es estimular la reflexión y la discusión.

A lo largo de todo el texto la idea de la interacción entre las leyes fundamentales de la naturaleza y la intervención del azar está siempre presente. Las leyes que gobiernan las partículas elementales (quarks incluidos) están comenzando a revelar su simplicidad. La teoría cuántica unificada de todas las partículas y fuerzas puede muy bien estar al alcance de la mano en la forma de teoría de supercuerdas. Esta elegante teoría se basa en una variante del principio de autoconsistencia, que requiere que cualquier partícula elemental sea describible a partir de las otras de modo autoconsistente. La otra ley fundamental de la naturaleza es el estado inicial simple del universo al comienzo de su expansión. Si la propuesta de Hartle y Hawking es correcta, entonces ese estado inicial puede expresarse en términos de la teoría de partículas unificada, y las dos leyes básicas se transforman en una sola.

El azar entra necesariamente en escena porque las leyes fundamentales son mecanocuánticas, y la mecánica cuántica proporciona sólo probabilidades para las historias alternativas no detalladas del universo. El grado de detalle, o resolución, debe ser lo bastante bajo como para que las probabilidades estén bien definidas. Esto permite además una descripción de la naturaleza aproximadamente clásica y determinista, con frecuentes excursiones cortas (y ocasionalmente largas) fuera de la clasicidad. Dichas excursiones, especialmente las más largas, tienen como resultado la ramificación de las historias. De hecho todas las historias no detalladas alternativas forman un árbol o «jardín de los caminos que se bifurcan» denominado «dominio cuasiclásico». La indeterminación de la mecánica cuántica va, pues, mucho más allá del famoso principio de incertidumbre de Heisenberg. Por otra parte, en los sistemas no lineales esta indeterminación puede amplificarse en virtud del fenómeno del caos, lo que significa que el resultado de un proceso es arbitrariamente sensible a las condiciones iniciales, como pasa a menudo, por ejemplo, en meteorología. El mundo que vemos a nuestro alrededor corresponde al dominio cuasiclásico, pero estamos restringidos a una versión muy tosca de él debido a las limitaciones de nuestros sentidos e instrumentos. Dado lo mucho que queda oculto a nuestra vista, el elemento de azar cobra aún más importancia.

En ciertas ramas de la historia, y en ciertas épocas y lugares del universo, las condiciones son apropiadas para la evolución de sistemas complejos adaptativos. Éstos son sistemas que captan información en la forma de un flujo de datos y perciben regularidades en el mismo (como se ilustra en el diagrama de la Figura 2), tratando el resto del material como aleatorio. Dichas regularidades son comprimidas en un esquema empleado para describir el mundo, predecir hasta cierto punto el futuro y prescribir el comportamiento del propio sistema complejo adaptativo. El esquema puede experimentar cambios que producen multitud de variantes que compiten entre sí. El resultado de esta competencia depende de las presiones selectivas, que representan la retroacción del mundo real. Estas presiones pueden reflejar la precisión de las descripciones y prescripciones, o hasta qué punto dichas prescripciones conducen a la supervivencia del sistema. Las presiones selectivas no están relacionadas con el «triunfo» de los esquemas por un conjunto de rígidas correlaciones, sino más bien por tendencias. Además, la respuesta a las presiones puede ser imperfecta. De este modo el proceso de adaptación de los esquemas conduce a resultados sólo aproximadamente «adaptativos» para el sistema. También pueden darse esquemas «no adaptativos».

A veces la inadaptación es sólo aparente, y surge porque algunas presiones selectivas importantes son pasadas por alto en la definición de lo que es adaptativo. En otros casos se dan situaciones genuinamente no adaptativas porque la adaptación es demasiado lenta para responder a las presiones selectivas cambiantes.

Los sistemas complejos adaptativos funcionan mejor en un régimen intermedio entre el orden y el desorden. Tales sistemas explotan las regularidades que proporciona el determinismo aproximado del dominio cuasiclásico, y al mismo tiempo se aprovechan de las indeterminaciones (describibles como ruido, fluctuaciones, calor, incertidumbre, etc.) que pueden ser de ayuda en la búsqueda de esquemas «mejores». La noción de adaptación o adecuación, que daría sentido a la palabra «mejor», suele ser difícil de concretar, en cuyo caso puede ser más útil concentrarse en las presiones selectivas en danza. En ocasiones puede definirse bien un grado de adaptación porque ésta es «exógena», impuesta desde fuera, como en el caso de un ordenador programado para buscar estrategias ganadoras en un juego como las damas o el ajedrez. Cuando la adaptación es «endógena», resultado de los caprichos de un proceso evolutivo sin ningún criterio externo para el éxito, suele estar muy mal definida. Pero la idea de un relieve adaptativo es útil, siempre y cuando se emplee sólo como metáfora. La variable adaptación corresponde a la altura (que arbitrariamente considero menor cuanto mayor es la adaptación) y todas las variables que especifican el esquema se distribuyen a lo largo de una línea o plano horizontal. La búsqueda de esquemas más adaptados se corresponde entonces con la exploración de una línea o superficie bidimensional irregular a la búsqueda de depresiones profundas. Como se ilustra en la Figura 19, esta búsqueda probablemente acabaría en una depresión relativamente somera si no fuera por una cierta cantidad de ruido apropiada (o calor, obedeciendo a lo que Seth Lloyd llama el principio de Goldilocks: ni demasiado caliente, ni demasiado frío, sólo lo justo). El ruido o calor puede sacar el sistema de una cuenca poco profunda y permitirle así acceder a otra más profunda en las cercanías.

La diversidad de sistemas complejos adaptativos existentes aquí en la Tierra se ilustra en el diagrama de la Figura 1, que muestra la tendencia de tales sistemas a dar origen a otros. Así, los sistemas terrestres, todos conectados de alguna manera con la vida, van desde las reacciones químicas prebióticas que originaron los primeros seres vivos, pasando por la evolución biológica y la evolución cultural de la humanidad, hasta los ordenadores equipados con circuitos o programas apropiados, e incluso posibles avances futuros tratados por la ciencia ficción, como seres humanos compuestos por la interconexión de cerebros individuales.

Cuando un sistema complejo adaptativo describe otro sistema (o a sí mismo) construye un esquema, abstrayendo del conjunto de datos las regularidades percibidas y expresándolas de forma concisa. La longitud de dicha descripción concisa de las regularidades de un sistema, por ejemplo a cargo de un observador humano, es lo que yo llamo la complejidad efectiva del sistema, que se corresponde con lo que solemos entender por complejidad tanto en la práctica científica como en el habla cotidiana. La complejidad efectiva no es intrínseca, sino que depende de la resolución y del lenguaje o código empleado por el sistema observador.

La complejidad efectiva, sea o no interna, es insuficiente por sí misma para describir las potencialidades de un sistema complejo, adaptativo o no. Un sistema puede ser relativamente simple y, en cambio, tener una alta probabilidad de evolucionar, en un intervalo de tiempo dado, hacia algo mucho más complejo. Es el caso, por ejemplo, de los seres humanos modernos. Cuando aparecieron no eran mucho más complejos que sus parientes cercanos los grandes monos, pero, dada la probabilidad tan alta que tenían de acabar desarrollando culturas de enorme complejidad, se puede decir que poseían una gran cantidad de lo que yo llamo complejidad potencial. De modo similar, cuando, muy pronto en la historia del universo, ciertas fluctuaciones de materia llevaron a la formación de las galaxias, la complejidad potencial de estas fluctuaciones era considerable.

La complejidad efectiva de un sistema o flujo de datos contrastaría con el contenido de información algorítmica, relacionado con la longitud de una descripción concisa de la totalidad del sistema o flujo de datos que incluya tanto las regularidades como los rasgos aleatorios. Cuando el contenido de información algorítmica es muy pequeño o está cerca del máximo posible, la complejidad efectiva se acerca a cero. La complejidad efectiva sólo puede ser grande en la región de contenido de información algorítmica intermedio. De nuevo el régimen interesante es el intermedio entre el orden y el desorden absolutos.

Un sistema complejo adaptativo descubre regularidades en el flujo de datos de entrada advirtiendo que ciertas partes del mismo tienen rasgos comunes. Las similaridades se miden por lo que se denomina información mutua entre las partes. En el mundo real las regularidades surgen de la combinación de leyes fundamentales simples con la intervención del azar, que puede producir accidentes congelados. Éstos son sucesos aleatorios de resultados particulares, aunque pudieran haber sido diferentes, y que tuvieron múltiples derivaciones. El origen común de todas ellas en un suceso aleatorio antecedente puede dar lugar a una gran cantidad de información mutua en un flujo de datos determinado. He puesto como ejemplo la llegada de Enrique VIII al trono de Inglaterra tras la muerte de su hermano mayor, resultando en la existencia de un enorme número de referencias al rey Enrique en monedas, documentos y libros. Todas estas regularidades surgen de un accidente congelado.

La mayor parte de accidentes, por ejemplo la gran mayoría de fluctuaciones a escala molecular, tiene lugar sin que se amplifiquen de manera que tengan repercusiones significativas, y no dejan tras de sí demasiada regularidad. Estos accidentes pueden contribuir a la fracción aleatoria del flujo de datos que llega a un sistema complejo adaptativo.

Con el paso del tiempo, la acumulación de accidentes congelados, en conjunción con las leyes fundamentales, produce regularidades. Así, sistemas de complejidad cada vez mayor tienden a surgir a través de la autoorganización, incluso en el caso de sistemas no adaptativos como galaxias, estrellas y planetas. Sin embargo, no todo aumenta de complejidad sin cesar, sino que más bien es la complejidad máxima la que tiene tendencia a aumentar. En el caso de los sistemas complejos adaptativos, dicha tendencia puede verse significativamente intensificada por las presiones selectivas que favorecen la complejidad.

La segunda ley de la termodinámica nos dice que la entropía (una medida del desorden) de un sistema cerrado tiene tendencia a aumentar o permanecer invariable. Por ejemplo, si un cuerpo caliente y un cuerpo frío entran en contacto (sin interaccionar demasiado con el resto del universo), el calor tiende a fluir del caliente al frío, reduciéndose la diferenciación ordenada de la temperatura en el sistema combinado.

La entropía es un concepto útil sólo cuando se aplica una cierta resolución a la naturaleza, de modo que ciertas clases de información sobre el sistema cerrado se contemplan como importantes y el resto se considera irrelevante y se ignora. La cantidad de información total no varía y, si está inicialmente concentrada en información importante, parte de ella tenderá a convertirse en información irrelevante que no se tiene en cuenta. A medida que esto ocurre la entropía, que equivale a la ignorancia de información importante, tiende a incrementarse.

Una clase fundamental de resolución es la que aportan las historias que componen un dominio cuasiclásico. Para el universo observado por un sistema complejo adaptativo, la resolución efectiva puede considerarse mucho más baja, pues el sistema sólo puede captar una cantidad de información relativamente pequeña sobre el universo.

A medida que pasa el tiempo el conjunto del universo va perdiendo cuerda, y la misma tendencia se observa en las partes relativamente independientes entre sí. Las diversas flechas del tiempo apuntan todas hacia delante, no sólo la que se corresponde con el incremento de entropía, sino también las relacionadas con la secuencia de causas y efectos, la emisión de radiaciones y la formación de registros (memorias incluidas) del pasado y no del futuro.

De vez en cuando hay quien, por alguna razón dogmática, rechaza la evolución biológica argumentando que la aparición de formas de vida cada vez más complejas viola de algún modo la segunda ley de la termodinámica. Naturalmente esto no es así, pues la evolución biológica no viola la segunda ley más de lo que lo hace la aparición de estructuras de complejidad creciente a escala galáctica. La autoorganización siempre puede producir orden local. Por otra parte, en la evolución biológica se puede ver cómo, a medida que los seres vivos se adaptan mejor a su entorno, se incrementa una especie de entropía «informacional» a la vez que se reduce una discrepancia informacional que recuerda la diferencia de temperatura entre un objeto frío y otro caliente. De hecho, todos los sistemas complejos adaptativos exhiben este fenómeno; el mundo real ejerce presiones selectivas sobre los sistemas y los esquemas tienden a responder ajustando la información que contienen de acuerdo con dichas presiones. La evolución, la adaptación y el aprendizaje por parte de los sistemas complejos adaptativos son todos aspectos de la pérdida de cuerda del universo.

Podemos preguntamos si el sistema en evolución y su entorno alcanzan un equilibrio, del mismo modo que un cuerpo caliente y uno frío acaban por alcanzar la misma temperatura. En ocasiones es así. Si se programa un ordenador para desarrollar estrategias en un juego determinado, cuando existe una estrategia óptima y la encuentra se acabó la búsqueda. Éste sería el caso del juego del tres en raya. Pero si el juego es el ajedrez, el ordenador podría descubrir la estrategia óptima algún día, pero hasta entonces esa estrategia es desconocida, y el ordenador continúa explorando en un enorme espacio abstracto de estrategias buscando una mejor que la anterior. Esta situación es muy común.

En unos pocos casos puede verse cómo, en el curso de la evolución biológica, un problema adaptativo parece haberse resuelto de una vez para siempre muy pronto en la historia de la vida, al menos en lo que se refiere al fenotipo. Los extremófilos que viven en el medio caliente, ácido y sulfuroso de las profundidades oceánicas en los límites entre placas tectónicas son probablemente muy similares, al menos metabólicamente, a los organismos que vivían en este mismo ambiente hace más de 3500 millones de años. Pero la mayoría de problemas propios de la evolución biológica no son como el juego del tres en raya, ni siquiera como el ajedrez, que sin duda será un problema resuelto algún día. En primer lugar, las presiones selectivas no son de ningún modo constantes. En la mayor parte de la biosfera el medio ambiente fisicoquímico está en continuo cambio. Por otro lado, en las comunidades naturales las diversas especies forman parte del entorno de las otras especies. Los organismos coevolucionan, y puede no haber ningún verdadero equilibrio alcanzable.

En diversos momentos y lugares parece llegarse a un equilibrio aproximado y temporal, incluso para comunidades enteras, pero al cabo de un cierto tiempo aparecen «puntuaciones», unas veces debidas a cambios fisicoquímicos y otras a un pequeño número de mutaciones que siguen a un largo periodo de «deriva», es decir, una secuencia de cambios genéticos que afectan sólo ligeramente al fenotipo sin comprometer la supervivencia del organismo. La deriva puede preparar el camino para cambios genotípicos muy pequeños pero capaces de causar importantes alteraciones fenotípicas.

De vez en cuando tales cambios genotípicos relativamente modestos pueden conducir a sucesos umbral, en los que surgen tipos completamente nuevos de organismos. Un ejemplo es la aparición de los eucariotas unicelulares, así llamados porque la célula posee un núcleo propiamente dicho y otros orgánulos —cloroplastos o mitocondrias— que se cree descienden de organismos originalmente independientes incorporados por la célula. Otro ejemplo es el origen de los animales y plantas multicelulares a partir de organismos unicelulares, presumiblemente por agregación, gracias a un invento bioquímico decisivo, una especie de adhesivo capaz de mantener unidas las células.

Cuando un sistema complejo adaptativo da lugar a una nueva clase de sistema complejo adaptativo de orden superior, sea por agregación o por cualquier otro mecanismo, esto puede considerarse un suceso umbral. Un ejemplo familiar es la evolución del sistema inmunitario de los mamíferos, cuyo funcionamiento recuerda el de la evolución biológica misma, pero a una escala temporal mucho más corta, ya que los invasores del organismo pueden ser identificados y combatidos en cuestión de horas o días, en comparación con los cientos de miles de años que se requieren muchas veces para la evolución de nuevas especies.

Muchos de los rasgos más visibles de la evolución biológica se encuentran también, en forma muy similar, en otros sistemas complejos adaptativos, como el pensamiento humano, la evolución social y la programación adaptativa. Todos estos sistemas exploran posibilidades abriendo nuevas vías, descubriendo puertas y, ocasionalmente, engendrando nuevos tipos de sistema complejo adaptativo. Al igual que surgen nuevos nichos ecológicos en la evolución biológica, en economía continúan descubriéndose nuevas formas de ganarse la vida, en la ciencia se inventan nuevas teorías, etc.

La agregación de sistemas complejos adaptativos en un sistema complejo adaptativo compuesto es un modo efectivo de crear un nuevo nivel de organización. El sistema compuesto consiste entonces en agentes adaptativos que construyen esquemas para considerar el comportamiento de los otros y obrar en consecuencia. Los sistemas económicos son un buen ejemplo, lo mismo que las comunidades ecológicas.

Tales sistemas compuestos están siendo intensamente investigados en diversos campos. Los resultados indican que dichos sistemas tienden a situarse en una zona de transición bien definida entre el orden y el desorden, donde se caracterizan por una adaptación eficiente y por una distribución de recursos que obedece a leyes potenciales. Esta zona recibe a veces la denominación, más bien metafórica, de «límite del caos».

No existe evidencia de que haya algo terriblemente especial en la formación de un sistema planetario como el sistema solar ni en el hecho de que incluya un planeta como la Tierra. Tampoco hay evidencia de que las reacciones químicas que iniciaron la vida en este planeta sean improbables, ni mucho menos. Es probable, por lo tanto, que los sistemas complejos adaptativos existan en algunos de los numerosos planetas dispersos por el universo y que al menos algunos de ellos compartan muchos de los rasgos de la evolución biológica terrestre y las formas de vida resultantes. Sin embargo, todavía se discute si la bioquímica de la vida es única, o casi, o si es sólo una de entre un gran número de posibilidades. En otras palabras, aún no está del todo claro si está determinada principalmente por la física o debe su carácter en gran parte a la historia.

Los cerca de 4000 millones de años de evolución biológica sobre la Tierra han producido, mediante el ensayo y el error, una gigantesca cantidad de información acerca de los diferentes modos de vida de los organismos en el seno de la biosfera. De modo similar, a lo largo de más de 50 000 años, los seres humanos modernos han desarrollado una extraordinaria cantidad de información sobre maneras de vivir, en interacción mutua y con el resto de la biosfera. Tanto la diversidad biológica como la cultural se encuentran ahora severamente amenazadas, y trabajar para su preservación es una tarea de importancia capital.

Pero la preservación de la diversidad cultural presenta algunas paradojas y conflictos con otras metas. Uno de los desafíos más difíciles es reconciliar esta diversidad con la creciente necesidad de unidad entre los pueblos, que se enfrentan ahora con problemas comunes a escala global. Otro es el representado por la hostilidad que evidencian algunas culturas localistas hacia la cultura secular, científica y universalizante; precisamente de estas culturas salen muchos de los más vigorosos defensores de la preservación de la diversidad cultural.

La conservación de la naturaleza y la salvaguardia de tanta diversidad biológica como sea posible son necesidades urgentes, pero estas metas parecen imposibles de alcanzar a largo plazo a menos que se contemplen dentro del marco más amplio de los problemas medioambientales en general, y éstos a su vez deben considerarse junto con los problemas demográficos, tecnológicos, económicos, sociales, políticos, militares, diplomáticos, institucionales, informacionales e ideológicos a los que la humanidad tiene que hacer frente. En particular, los desafíos planteados en todos estos campos pueden contemplarse en conjunto como la necesidad de llevar a cabo una serie de transiciones interconectadas hacia una situación más sostenible en el curso del siglo venidero. Una mayor sostenibilidad, si es que puede conseguirse, significaría una estabilización de la población, a escala global y regional, unas prácticas económicas que favorezcan el pago de costes reales, el crecimiento en calidad más que en cantidad y vivir de las rentas de la naturaleza más que de su capital, una tecnología que tenga un impacto ambiental relativamente escaso, un reparto más equitativo de la riqueza, especialmente en el sentido de hacer desaparecer la miseria, unas instituciones transnacionales más fuertes para tratar de los problemas globales urgentes, una opinión pública mucho mejor informada sobre los desafíos múltiples e interactivos de cara al futuro, y, quizá lo más importante y difícil de todo, el predominio de actitudes que favorezcan la unidad en la diversidad —cooperación y competencia no violenta entre las diferentes naciones y tradiciones culturales— así como una coexistencia sostenible con los organismos con los que compartimos la biosfera. Una tal situación parece utópica y quizá imposible de conseguir, pero es importante intentar construir modelos del futuro —no como anteproyectos, sino como estímulos para la imaginación— y ver si pueden esbozarse caminos que puedan conducir a ese mundo deseable y sostenible a finales del próximo siglo, un mundo en el que el conjunto de la humanidad y el resto de la naturaleza funcionen como un sistema complejo adaptativo a una escala mucho mayor de lo que lo hacen en la actualidad.