Una visión contemporánea de la mecánica cuántica
La mecánica cuántica y la aproximación clásica
Cuando se descubrió la mecánica cuántica, el hecho más sorprendente fue el contraste entre su carácter probabilístico y las certidumbres de la antigua física clásica, en la cual un conocimiento exacto y completo de las condiciones iniciales permitiría en principio, por medio de la teoría correcta, especificar completa y exactamente la realización de cualquier suceso. No se puede aplicar a la mecánica cuántica un determinismo perfecto de este tipo, pero a menudo se aplica de modo aproximado bajo las condiciones en las que la física clásica es casi correcta —lo que podemos llamar el dominio cuasiclásico—. Este dominio puede caracterizarse, a grandes rasgos, como el de los objetos masivos. Por ejemplo, el movimiento de los planetas en torno al Sol puede calcularse para cualquier propósito práctico sin considerar correcciones cuánticas, por completo despreciables en un problema de este tipo. Si el dominio cuasiclásico no fuese tan importante, los físicos no hubieran desarrollado y empleado la física clásica en primer lugar, y las teorías clásicas, como las de Maxwell y Einstein, no habrían conseguido sus maravillosos éxitos en la predicción de los resultados de las observaciones. Éste es otro caso en el que no se descarta el antiguo paradigma (como lo llamaría Kuhn) cuando se adopta uno nuevo, sino que permanece como una aproximación válida en un marco apropiado (como la teoría de la gravitación de Newton, que continúa siendo inmensamente útil como aproximación de la teoría de Einstein cuando las velocidades implicadas son relativamente pequeñas comparadas con la de la luz). Sin embargo, la física clásica es sólo una aproximación, mientras que la mecánica cuántica es, hasta donde sabemos, absolutamente correcta. Aunque han transcurrido muchas décadas desde su descubrimiento en 1924, sólo ahora los físicos se están aproximando a una interpretación realmente satisfactoria de la mecánica cuántica, interpretación que permite una comprensión más profunda de cómo surge el dominio cuasiclásico de nuestra experiencia cotidiana a partir del carácter mecanocuántico subyacente de la naturaleza.
Cuando fue formulada originalmente por sus descubridores, la mecánica cuántica era presentada a menudo de una manera curiosamente restrictiva y antropocéntrica. Más o menos, se asume que cierto experimento (como la desintegración radiactiva de núcleos atómicos de una clase particular) se repite de forma idéntica una y otra vez. Se observa cada vez el resultado del experimento, preferiblemente por parte de un físico que emplea algún tipo de instrumento. Se supone que es importante que el físico y su aparato sean externos al sistema objeto de estudio. El físico registra los porcentajes con que ocurren los diferentes resultados posibles del experimento (tales como los tiempos de desintegración). Cuando el número de repeticiones tiende a infinito, estos porcentajes tienden a aproximarse a las probabilidades de los diferentes resultados, probabilidades predichas por la mecánica cuántica. (La probabilidad de la desintegración radiactiva en función del tiempo está estrechamente relacionada con la fracción de núcleos que permanecen sin desintegrarse después de transcurrido un cierto tiempo, como se muestra en la Figura 10. La probabilidad de desintegración sigue una curva similar.)
Esta interpretación original de la mecánica cuántica, restringida a la repetición de experimentos realizados por observadores externos, es demasiado estrecha para resultar aceptable hoy día como caracterización fundamental, especialmente desde que se ha ido aclarando que la mecánica cuántica debe aplicarse al universo como un todo. La interpretación original no es incorrecta, pero sólo puede aplicarse a las situaciones para las cuales fue desarrollada. Más aún, en un contexto más amplio esta interpretación debe considerarse aproximada además de particular. Podemos referimos a ella como «mecánica cuántica aproximada de sistemas objeto de medida».
Para describir el universo, se hace necesaria una interpretación más general de la mecánica cuántica, dado que en este caso no existen experimentadores ni instrumentos externos, ni la posibilidad de realizar repeticiones para observar muchas copias (en cualquier caso, al universo le trae sin cuidado que unos seres humanos surgidos en un oscuro planeta estudien su historia, y seguirá obedeciendo las leyes mecanocuánticas de la física independientemente de la observación a que se le someta). Este hecho es una de las razones del desarrollo en las últimas décadas de lo que yo llamo la interpretación moderna de la mecánica cuántica. La otra razón principal es la necesidad de una comprensión más clara de la relación entre la mecánica cuántica y la descripción clásica aproximada del mundo que nos rodea.
En las primeras discusiones sobre la mecánica cuántica, a menudo se consideraba implícitamente, si no de modo explícito, la existencia de un dominio clásico apartado de la mecánica cuántica, de modo que la teoría física básica de algún modo requería leyes clásicas además de las mecanocuánticas. Esta situación podía parecer satisfactoria para una generación educada en la física clásica, pero a muchos hoy nos parece estrafalaria además de innecesaria. La interpretación moderna de la mecánica cuántica propone que el dominio cuasiclásico surge de las leyes de la mecánica cuántica, incluyendo las condiciones iniciales al comienzo de la expansión del universo. El mayor desafío reside en comprender la manera en que surge este dominio.
El pionero de la interpretación moderna fue Hugh Everett III, un estudiante graduado que trabajaba con John A. Wheeler en Princeton, posteriormente miembro del Grupo de Evaluación de Sistemas Armamentísticos del Pentágono. Varios físicos teóricos han trabajado en ella desde entonces, incluyendo a James Hartle y a mí mismo. Hartle (perteneciente a la Universidad de California en Santa Bárbara y al Instituto de Santa Fe) es un eminente cosmólogo teórico, experto en la teoría de la relatividad general de Einstein. A principios de los sesenta, dirigí su tesis sobre la teoría de las partículas elementales en Caltech. Más tarde, Stephen Hawking y él escribieron un artículo fundamental titulado «La función de onda del universo», que desempeñó un papel primordial en la conformación del nuevo campo de la cosmología cuántica. Desde 1986, Jim y yo hemos trabajado juntos intentando clarificar cómo debe concebirse la mecánica cuántica, especialmente en relación con el dominio cuasiclásico.
Nosotros consideramos útiles e importantes las contribuciones de Everett, pero creemos que todavía queda mucho que hacer en esa dirección. En algunos casos, la elección del vocabulario, tanto suya como de sus divulgadores, ha provocado cierta confusión. Su interpretación se describe a menudo en términos de «múltiples mundos», lo que nosotros reinterpretamos como «múltiples historias alternativas del universo». Además, los «múltiples mundos» se describen como «igualmente reales», mientras que nosotros pensamos que es menos confuso hablar de «múltiples historias, tratadas de modo equitativo por la teoría excepto en lo que se refiere a sus probabilidades respectivas». El lenguaje que proponemos conduce a la noción familiar de que un sistema puede tener diferentes historias posibles, cada una con su propia probabilidad; no es necesario indigestarse intentando concebir muchos «universos paralelos», todos ellos igualmente reales. (Un distinguido físico, versado en mecánica cuántica, dedujo de ciertos comentarios sobre la interpretación de Everett que cualquiera que la aceptase querría jugar apostando dinero a la ruleta rusa, porque en alguno de los mundos «igualmente reales» el jugador sobreviviría y se haría rico.)
Otro problema lingüístico proviene de que Everett evitó la palabra «probabilidad» en la mayoría de contextos, utilizando en su lugar la noción matemáticamente equivalente, pero menos familiar, de «medida». Hartle y yo no encontramos ninguna ventaja en esto. Dejando de lado las palabras, Everett dejó algunos problemas importantes sin resolver, y el principal desafío no es una cuestión de lenguaje, sino rellenar los vacíos existentes en nuestra comprensión de la mecánica cuántica.
Jim Hartle y yo formamos parte de un grupo internacional de físicos teóricos que intenta de diversas maneras elaborar una interpretación moderna de la mecánica cuántica. Entre los que han realizado aportaciones especialmente valiosas figuran Robert Griffiths y Roland Omnés, con quienes compartimos la fe en la importancia de las historias, así como Erich Joos, Dieter Zeh y Wojciech («Wojtek») Zurek, que tienen puntos de vista algo diferentes. La formulación de la mecánica cuántica en términos de historias se debe a Dick Feynman, quien la elaboró a partir del trabajo preliminar de Paul Dirac. Esta formulación no sólo permite clarificar la interpretación moderna; es también particularmente útil para describir la mecánica cuántica en interacción con la gravitación einsteniana, como ocurre en la cosmología cuántica. La geometría del espacio-tiempo se encuentra entonces sujeta a la indeterminación mecanocuántica, y el método basado en las historias permite manejar particularmente bien esta situación.
La noción de estado cuántico es un ingrediente fundamental de cualquier tratamiento de la mecánica cuántica. Consideremos una imagen algo simplificada del universo, en la cual cada partícula no tiene más atributos que la posición y el momento, y no se tiene en cuenta la indistinguibilidad de las partículas de una clase dada (por ejemplo, el hecho de que todos los electrones sean intercambiables). ¿Qué significa en este caso un estado cuántico de todo el universo? Para comenzar, es preferible considerar el estado cuántico de una única partícula, y después de dos, antes de abarcar el universo entero.
En la física clásica sería legítimo especificar exactamente y al mismo tiempo la posición y el momento de una partícula dada, pero en mecánica cuántica, como es bien sabido, esto está prohibido por el principio de incertidumbre, o de indeterminación. Se puede especificar exactamente la posición de una partícula, pero entonces su momento estará por completo indeterminado; esta situación caracteriza un tipo particular de estado cuántico para una sola partícula, un estado definido por su posición. En otro tipo de estado cuántico es el momento el que se especifica y la posición está por completo indeterminada. Existe una variedad infinita de posibles estados cuánticos para una única partícula, en los cuales no están determinados exactamente ni el momento ni la posición, sino sólo una distribución de probabilidad para cada uno. Por ejemplo, en un átomo de hidrógeno, formado por un único electrón (cargado negativamente) dentro del campo eléctrico de un único protón (cargado positivamente), el electrón puede hallarse en el estado de mínima energía, en el que la posición está difuminada en una región del tamaño del átomo y su momento se halla igualmente distribuido.
Consideremos ahora un «universo» formado por dos electrones. Técnicamente es posible que su estado cuántico sea tal que cada electrón por separado esté en un estado cuántico definido. Sin embargo, esto no suele pasar en la realidad, dado que los dos electrones interactúan, especialmente a través de la repulsión eléctrica mutua. El átomo de helio, por ejemplo, consta de dos electrones situados dentro del campo eléctrico generado por un núcleo central con dos cargas positivas. En el estado de mínima energía del átomo de helio, no es cierto que cada electrón por separado se encuentre en un estado cuántico definido, aunque a veces, como aproximación, se considere que es así. Lo que ocurre es que, como resultado de la interacción entre los electrones, su estado cuántico conjunto es tal que los estados de ambos electrones se confunden (están correlacionados). Si se está interesado en el comportamiento de uno de los electrones, se debe integrar («sumar») sobre todas las posiciones (o los momentos, o los valores de cualquier otro atributo) del segundo electrón, y entonces el electrón considerado no se hallará en un estado cuántico definido («puro»), sino que podrá encontrarse en varios estados puros de un solo electrón, cada uno con una cierta probabilidad. Se dice que el electrón se encuentra en un «estado cuántico mezcla».
Ahora podemos pasar directamente a considerar el universo entero. Si se encuentra en un estado cuántico puro, éste es tal que los estados de las partículas individuales que contiene están correlacionados entre sí. Si integramos todas las situaciones en ciertas partes del universo, entonces el resto (lo que «se sigue», la parte no integrada) está en un estado cuántico mezcla.
El universo como un todo podría estar en un estado cuántico puro. Con esta suposición, Hartle y Hawking han propuesto una forma particular para el estado puro que existía cerca del comienzo de la expansión del universo. Como ya se dijo antes, su hipótesis especifica este estado cuántico inicial en función de la teoría unificada de las partículas elementales. Esta misma teoría unificada determina la evolución temporal de dicho estado cuántico. No obstante, la completa especificación del estado cuántico de todo el universo —no sólo inicialmente, sino en todo momento— no proporciona todavía una interpretación de la mecánica cuántica.
El estado cuántico del universo es como un libro que contiene la respuesta a una variedad infinita de preguntas. Un libro así en realidad no es útil a menos que se disponga de una lista de las cuestiones a consultar. La interpretación moderna de la mecánica cuántica se está construyendo a partir de considerar las preguntas que deben plantearse al estado cuántico del universo.
Puesto que la mecánica cuántica es probabilística y no determinista, esas cuestiones se refieren inevitablemente a probabilidades. Hartle y yo, así como Griffiths y Omnés, nos servimos del hecho de que las cuestiones se refieren siempre, en última instancia, a las historias alternativas del universo. (Con el término «historia» no pretendemos dar preponderancia al pasado a expensas del futuro, ni hacemos referencia a los registros escritos de la historia del hombre; una historia es, simplemente, la narración de una secuencia temporal de sucesos pasados, presentes o futuros.) Las cuestiones sobre las historias alternativas pueden ser del tipo, «¿cuál es la probabilidad de que ocurra esta historia particular del universo, en lugar de aquellas otras?», o «dadas estas afirmaciones sobre la historia del universo, ¿cuál es la probabilidad de que estas otras sean también ciertas?». A menudo, este último tipo de cuestiones adopta la forma familiar, «dadas estas afirmaciones sobre el pasado o el presente, ¿cuál es la probabilidad de que se hagan realidad estas otras afirmaciones sobre el futuro?».
Un lugar apropiado para encontrar probabilidades es el hipódromo, donde aparecen en relación con las apuestas. Si las apuestas en contra de que un caballo gane una carrera están 3 a 1, la probabilidad de que gane es 1/4; si las apuestas están 2 a 1, la probabilidad es 1/3, etc. (Por supuesto, las apuestas reales que se cotizan en un hipódromo no corresponden a probabilidades verdaderas; más tarde volveremos sobre este punto.) Si en una carrera participan diez caballos, cada uno de ellos tiene una probabilidad positiva de ganar (¡o una probabilidad cero, en un caso realmente desesperado!), y estas diez probabilidades suman 1, si es que ha de haber exactamente un ganador entre ellos. Los diez resultados posibles son mutuamente excluyentes (sólo uno puede ocurrir) y exhaustivos (uno de ellos debe ocurrir). Una propiedad natural de estas diez probabilidades es que son aditivas: la probabilidad de que gane el tercer o el cuarto caballo será la suma de las probabilidades individuales de que gane el tercer caballo y de que gane el cuarto.
Se puede trazar un paralelismo más cercano entre la experiencia del hipódromo y las historias del universo considerando una secuencia de carreras, ocho por ejemplo, en cada una de las cuales corren diez caballos. Supongamos para simplificar que sólo tenemos en cuenta a los ganadores (no la clasificación de otros caballos) y que sólo hay un ganador por carrera (no pueden darse empates). Cada lista de ocho ganadores representa una historia, y estas historias son mutuamente excluyentes y exhaustivas, como en el caso de una única carrera. El número de historias alternativas es igual al producto de ocho factores de diez, uno por carrera, es decir, cien millones.
Las probabilidades de las diferentes secuencias de victorias tienen la misma propiedad aditiva que las probabilidades de ganar de los caballos individuales: la probabilidad de que se dé una u otra secuencia particular de ganadores es igual a la suma de las probabilidades de ambas secuencias. Podríamos llamar «historia combinada» a una situación en la que se produjese una u otra de las secuencias.
Etiquetemos cada una de las historias alternativas individuales como A y B, respectivamente. La propiedad aditiva determina que la probabilidad de la historia combinada «A o B» es la probabilidad de A más la probabilidad de B. En otras palabras, la probabilidad de que mañana vaya a París o me quede en casa es la suma de la probabilidad de que mañana vaya a París más la probabilidad de que me quede en casa. Una magnitud que no obedezca esta regla no es una probabilidad.
Imaginemos que especificamos un conjunto de historias alternativas del universo, mutuamente excluyentes y exhaustivas. ¿Les asigna siempre la mecánica cuántica una probabilidad a cada una? Sorprendentemente, no siempre. En su lugar, asigna a cada par de tales historias una magnitud llamada D, y proporciona una regla para calcular D en función del estado cuántico del universo. Las dos historias de un par dado pueden ser distintas, como las alternativas A y B, o la misma, como A y A. El valor de D se indica por la expresión D(A, B). que se lee D de A y B. Si las dos historias del par son la misma, tendremos D(A, A). Si ambas son la historia combinada A o B, designaremos el valor de D por D(A o B, A o B).
Cuando las dos historias del par son la misma, D es un número entre cero y uno, como una probabilidad. De hecho, bajo ciertas condiciones puede interpretarse como la probabilidad de la historia. Para ver de qué condiciones se trata, examinemos la relación entre las siguientes cantidades:
D(A o B, A o B).
D(A, A).
D(B, B).
D(A, B) más D(B, A).
Las tres primeras cantidades son un número entre cero y uno, y podrían ser probabilidades. La última puede ser positiva, negativa o cero, por lo que no es una probabilidad. La regla para calcular D en mecánica cuántica establece que la primera cantidad es la suma de las otras tres. Pero si la última cantidad es siempre cero cuando A y B son diferentes, entonces D(A o B, A o B) es igual a D(A, A) más D(B, B). En otras palabras, si D vale siempre cero cuando las dos historias son diferentes, entonces el valor de D para una historia posee siempre la propiedad aditiva y puede así interpretarse como la probabilidad de dicha historia.
La cuarta cantidad de la lista se denomina término de interferencia entre las historias A y B. Si no vale cero para todo par de historias diferentes, no es posible asignar a estas historias unas probabilidades mecanocuánticas. Se dice entonces que las historias «interfieren» entre sí.
Como lo máximo que la mecánica cuántica puede hacer en cualquier situación es predecir una probabilidad, no sirve para nada en el caso de historias que interfieran entre sí. Estas historias sólo son útiles para componer historias combinadas que no interfieran.
Las historias completamente detalladas del universo son aquellas que proporcionan una descripción del universo entero tan completa como sea posible en todo momento. ¿Qué puede decimos sobre ellas la mecánica cuántica?
Prosigamos con nuestra imagen simplificada del universo, en la que las partículas no tienen más atributos que su posición y momento, y en la que no consideramos la indistinguibilidad de las partículas de una clase dada. Si la física clásica determinista fuese absolutamente correcta, entonces podríamos especificar, en cualquier instante dado, la posición y el momento de todas las partículas del universo. La dinámica clásica podría, en principio, predecir con certeza las posiciones y momentos de todas las partículas en cualquier tiempo futuro. (El fenómeno del caos produce situaciones en las que la menor imprecisión en las condiciones iniciales conduce a incertidumbres arbitrariamente grandes en las predicciones futuras, pero la teoría clásica, perfectamente determinista, sería aún correcta si asumimos una información inicial perfecta.)
¿Cuál sería la situación correspondiente en la mecánica cuántica, frente a la cual la física clásica es una mera aproximación? Por una parte, carece de sentido especificar a la vez la posición y el momento exactos de una partícula al mismo tiempo; esto forma parte del célebre principio de incertidumbre. En mecánica cuántica, el estado del universo simplificado en un instante dado podría caracterizarse especificando la posición de todas las partículas (o la posición de algunas y el momento de las demás, o el momento de todas, o cualquier otra combinación posible). Un tipo de historia completamente detallada de nuestro universo simplificado consistiría en las posiciones de todas las partículas en todo momento.
Dado que la mecánica cuántica es probabilística en lugar de determinista, uno podría esperar que nos proporcionase una probabilidad para cada historia detallada. Sin embargo, no ocurre así. Los términos de interferencia entre historias detalladas no son siempre nulos, de modo que no es posible asignarles probabilidades.
En el hipódromo, sin embargo, el apostador no tiene que preocuparse por ningún término de interferencia entre una secuencia de ganadores y otra. ¿Por qué no? ¿Por qué el apostador maneja verdaderas probabilidades, que se suman correctamente, mientras que la mecánica cuántica sólo proporciona, al nivel de las historias detalladas, cantidades cuya suma se ve estorbada por los términos de interferencia? La respuesta a esta cuestión es que, para obtener probabilidades reales, es necesario considerar historias lo suficientemente poco detalladas.
La secuencia de ocho carreras de caballos no es sólo una metáfora, sino un ejemplo real de historia muy poco detallada del universo. Dado que sólo consideramos la lista de ganadores, su ausencia de detalle, es decir, su baja resolución, reside en los siguientes puntos:
Para las historias del universo consideradas en mecánica cuántica, la baja resolución significa tener en cuenta únicamente ciertas cosas en ciertos instantes y sólo con un cierto grado de detalle. Podemos imaginamos una historia no detallada como una clase de historias detalladas alternativas, todas ellas coincidentes en lo que se sigue, pero que se diferencian en el comportamiento posible de todo lo accesorio, es decir, aquello que se integra. En nuestro ejemplo de las carreras de caballos, cada historia no detallada es la clase de todas las historias detalladas que comparten la misma secuencia de ocho ganadores en una tarde y un hipódromo particulares; cada historia detallada, por su parte, difiere de las demás en las posibles alternativas para cualquier otro rasgo de la historia del universo.
Así pues, todas las historias detalladas del universo se agrupan en clases, de manera que cada cual pertenece a una clase y sólo una. Estas clases exhaustivas y mutuamente excluyentes constituyen historias no detalladas (tales como las diferentes secuencias posibles de ganadores de ocho carreras sin empates). Supongamos que una clase dada está formada por sólo dos historias detalladas, J y K; la historia no detallada será «J o K», lo que significa que ocurre J u ocurre K. De modo análogo, si la clase comprende muchas historias detalladas, la historia no detallada será la historia combinada en la que ocurre una cualquiera de las historias detalladas.
Los matemáticos llamarían a las historias no detalladas «clases de equivalencia» de historias detalladas. Cada historia detallada pertenece a una y sólo una clase de equivalencia, y los miembros de cada clase se consideran equivalentes.
Imaginemos que las únicas cosas que hay en el universo son los caballos de las ocho carreras y algunos tábanos, y que todo lo que puede hacer cada caballo es ganar una carrera o no ganarla. Cada historia detallada de este universo absurdamente supersimplificado consiste en una secuencia de caballos ganadores y una narración de lo que han hecho los tábanos. Si las historias no detalladas consideran únicamente los caballos y sus victorias, ignorando los insectos, entonces cada una estará formada por todas las historias detalladas con una secuencia particular de caballos ganadores y un destino cualquiera para los tábanos. En general, cada historia no detallada es una clase de equivalencia de historias detalladas caracterizadas por un narración particular que describe los fenómenos que se siguen y una narración cualquiera de entre las posibles alternativas que describen todo aquello que se ignora.
Cuando tratamos con las historias mecanocuánticas del universo, ¿cómo pueden agruparse las historias detalladas en clases de equivalencia que correspondan a historias no detalladas con verdaderas probabilidades? ¿Cómo se consigue que las historias no detalladas apropiadas no tengan términos de interferencia entre ellas? Todo ello es posible porque el término de interferencia entre dos historias no detalladas es la suma de todos los términos de interferencia entre pares de historias detalladas pertenecientes a cada una de las dos historias no detalladas. La suma de todos los términos, de signo positivo y negativo, puede producir muchas cancelaciones y dar un resultado pequeño, o incluso cero. (Recordemos que el valor de D para una historia emparejada con ella misma está siempre entre cero y uno, como una probabilidad real; cuando se suman cantidades de este tipo, no pueden cancelarse.)
El comportamiento de cualquier cosa del universo ignorada en una historia no detallada se dice que ha sido «integrado» en este proceso de sumación. Todos los detalles accesorios, todos los instantes de tiempo, lugares y objetos ajenos a nuestra consideración, se integran. Una clase de equivalencia podría, por ejemplo, agrupar todas las historias detalladas en las que ciertas partículas tienen una posición dada en cada instante de tiempo, mientras que el resto de partículas de nuestro universo simplificado puede encontrarse en cualquier lugar. Diríamos entonces que se siguen en cada momento las posiciones del primer conjunto de partículas, y que las del segundo conjunto se integran y se ignoran.
Una resolución aún más baja se podría conseguir siguiendo la posición del primer conjunto de partículas sólo en determinados instantes, de modo que se integra todo lo que sucede en cualesquiera otros momentos.
Si el término de interferencia entre cada par de historias no detalladas vale cero, de manera exacta o con una muy buena aproximación, entonces se dice que estas historias son decoherentes. El valor de D para cada historia no detallada y ella misma es entonces una probabilidad verdadera, con la propiedad aditiva. En la práctica, la mecánica cuántica se aplica siempre a conjuntos de historias no detalladas decoherentes, y por ello es capaz de predecir probabilidades. (D se denomina, dicho sea de paso, funcional decoherente; la palabra «funcional» se refiere a que depende de las historias consideradas.)
En el caso de las carreras vespertinas, la resolución empleada puede resumirse como sigue: se integra el destino de cualquier objeto del universo, excepto los ganadores de las carreras de un determinado hipódromo, así como los sucesos en cualquier instante de tiempo, excepto los momentos en que se producen las victorias en las ocho carreras de un día en particular. Las historias no detalladas resultantes son decoherentes y poseen probabilidades auténticas. Dada nuestra experiencia cotidiana, no nos sorprende que las cosas funcionen de este modo, pero debería intrigarnos el por qué es así.
¿Cuál es el fundamento de la decoherencia, el mecanismo que hace que los términos de interferencia sumen cero permitiendo así la asignación de probabilidades? Lo que ignoramos o integramos en las historias no detalladas es la maraña de sucesos que éstas no describen. Los caballos y jinetes de las carreras están en contacto con las moléculas del aire, los granos de arena de la pista, los fotones del sol y los tábanos; todos estos elementos están integrados en las historias no detalladas de las carreras. Los diferentes resultados posibles de las carreras están correlacionados con los diferentes destinos de todo lo que se ignora en las historias no detalladas. Pero estos destinos están integrados, y la mecánica cuántica nos dice que en el proceso de sumación, bajo las condiciones apropiadas, los términos de interferencia entre historias con diferentes destinos para lo que se ignora desaparecen. Debido a la confusión entre sucesos, los términos de interferencia entre los diferentes resultados de las carreras también se anulan.
Produce vértigo considerar, en lugar de historias no detalladas decoherentes, el caso extremo de historias detalladas con términos de interferencia no nulos y sin probabilidades verdaderas. Estas historias seguirían, durante una carrera, la evolución de cada partícula elemental contenida en cada caballo y en todo lo que estuviera en contacto con él. Pero no hace falta llegar a tales extremos para encontrar historias lo suficientemente libres de confusión como para que interfieran entre sí. Consideremos el famoso experimento en que un fotón proveniente de una fuente puntual pasa a través de una pantalla con dos rendijas que se interpone en su camino hasta un detector. Estas dos historias interfieren y no se les puede asignar probabilidades. Carece de sentido entonces preguntarse qué rendija atravesó el fotón.
Para que quede completamente claro, hay que recalcar una vez más que, para historias lo suficientemente poco detalladas, las probabilidades que ofrece la mecánica cuántica (junto con una teoría física correcta) son las mejores que pueden calcularse. Para una secuencia de carreras, se corresponden con lo que antes hemos llamado «apuestas». Sin embargo, las apuestas reales que se hacen en un hipódromo tienen un carácter radicalmente distinto. Reflejan simplemente la opinión de los apostantes sobre las carreras futuras. Es más, las probabilidades correspondientes ni siquiera suman 1, dado que el hipódromo tiene que obtener algún beneficio de ellas.
Para ilustrar la generalidad de la decoherencia, podemos pasar de lo mundano a lo celestial en busca de otro ejemplo: la descripción aproximada de la órbita de un cuerpo en el sistema solar. Este cuerpo puede ser desde una molécula a todo un planeta; en una escala intermedia, podría ser un grano de polvo, un cometa o un asteroide. Consideremos historias no detalladas en las que se integra el destino de cualquier otro objeto del universo, así como las propiedades internas del cuerpo en cuestión, siguiendo únicamente la posición de su centro de masas. Supongamos además que tratamos esta posición aproximadamente, de manera que sólo consideramos pequeñas regiones del espacio, dentro de las cuales integramos todos los valores posibles de la posición. Finalmente, supongamos que las historias no detalladas integran todo lo que sucede la mayor parte del tiempo, de manera que siguen la posición aproximada del cuerpo celeste en una secuencia discreta de instantes separados por cortos intervalos de tiempo.
Pongamos que el cuerpo en órbita tiene una masa M, que las dimensiones lineales de las pequeñas regiones del espacio son del orden de X y los intervalos de tiempo son del orden de T. Las diferentes historias no detalladas posibles del cuerpo en el sistema solar serán decoherentes en alto grado dentro de una amplia gama de valores de M, X y T. De nuevo, el mecanismo responsable de esta decoherencia es la interacción frecuente con objetos cuyos destinos están integrados. En un conocido ejemplo, estos objetos son los fotones de la radiación cósmica de fondo, el eco de la explosión inicial del universo (el llamado Big Bang). En su órbita, nuestro cuerpo celeste topará continuamente con dichos fotones y los dispersará. Cada vez que esto sucede, el cuerpo y los fotones dispersados emergerán de la colisión con sus trayectorias alteradas. Pero las posibles direcciones y energías de los fotones están integradas, lo que elimina los términos de interferencia entre dichas direcciones y energías, y en consecuencia elimina también los términos de interferencia entre las diferentes historias no detalladas de nuestro cuerpo en órbita.
La decoherencia de las historias (que especifican las sucesivas posiciones aproximadas del centro de masas de un cuerpo en órbita en el sistema solar en instantes discretos) se debe a la repetida interacción del objeto con cosas que son integradas, como los fotones de la radiación de fondo.
Este proceso da respuesta a una pregunta que solía hacerme Enrico Fermi a principios de los años cincuenta, cuando éramos colegas en la Universidad de Chicago: si la mecánica cuántica es correcta, ¿por qué el planeta Marte no tiene una órbita difusa? La vieja respuesta de que Marte ocupa una posición definida en cada instante de tiempo porque hay personas que lo observan nos era familiar a ambos, y a los dos nos parecía estúpida. La explicación real llegó mucho después de su muerte, gracias a los trabajos de físicos teóricos como Dieter Zeh, Erich Joos y Wojtek Zurek sobre los mecanismos de decoherencia, en particular el que implica los fotones de la radiación de fondo.
Fotones procedentes del Sol son dispersados por Marte e integrados, contribuyendo a la decoherencia de las diferentes posiciones del planeta; son justamente estos fotones los que nos permiten ver Marte. La observación de Marte por parte de personas no pinta nada, mientras que el proceso físico que hace posible esta observación lo pinta todo, y podemos considerarlo como parcialmente responsable de la decoherencia de las diferentes historias no detalladas del movimiento del planeta en torno al Sol.
Los mecanismos de decoherencia hacen posible la existencia del dominio cuasiclásico en el que se desarrolla nuestra experiencia cotidiana. Este dominio está compuesto de historias no detalladas decoherentes, que se pueden imaginar formando una estructura ramificada. En uno de los brillantes cuentos de Borges, se representa esta estructura como un «jardín de senderos que se bifurcan». En cada ramificación nos encontramos con alternativas mutuamente excluyentes. A menudo, estas ramificaciones han sido comparadas con bifurcaciones en una carretera, como en el poema de Robert Frost «The Road not Taken» [El camino no tomado].
La estructura comienza a ramificarse en posibilidades alternativas en el mismo momento, o justo después, del inicio de la expansión del universo. Cada rama se divide de nuevo al poco tiempo en más posibilidades, y así sucesivamente en todo momento. En cada ramificación hay probabilidades bien definidas para las diferentes alternativas. No hay interferencias cuánticas entre ellas.
Una buena ilustración la encontramos de nuevo en el hipódromo. Cada carrera implica una ramificación entre diez posibles alternativas para los diferentes ganadores, y a partir de cada ganador hay otra ramificación en diez alternativas posibles para el ganador de la carrera siguiente.
En el hipódromo, el resultado de una carrera no suele ejercer una gran influencia sobre las probabilidades en la siguiente (por ejemplo, un jinete deprimido por haber perdido la carrera anterior). Sin embargo, en el árbol ramificado de las historias alternativas del universo, el resultado de una bifurcación puede afectar profundamente las probabilidades en las bifurcaciones subsiguientes, e incluso la naturaleza de las posibles alternativas. Por ejemplo, la condensación de materia que formó el planeta Marte podría depender de un accidente cuántico ocurrido hace miles de millones de años; en aquellas bifurcaciones en las que dicho planeta no apareció, no se darían las ramificaciones posteriores relacionadas con los destinos alternativos de Marte.
La estructura ramificada de las historias no detalladas decoherentes alternativas del universo es diferente de los árboles evolutivos propios de los lenguajes humanos o las especies biológicas. En el caso de los árboles evolutivos, todas las ramas se encuentran presentes en el mismo registro histórico. Por ejemplo, todas las lenguas romances surgen de una versión tardía del latín, pero no son en absoluto alternativas. Francés, español, portugués, italiano, catalán y otras lenguas que se hablan en la actualidad, y las actualmente extintas, como el dálmata, se hablaron en algún momento. Por contra, las ramas del árbol de las historias decoherentes alternativas son mutuamente excluyentes, y sólo una de ellas es accesible a un observador. Ni siquiera los divulgadores de los trabajos de Hugh Everett que hablan de múltiples mundos ramificados igualmente reales afirman haber observado más de uno de ellos.
La decoherencia por sí sola (que da lugar a una ramificación de historias alternativas dotadas de probabilidades bien definidas) no es la única propiedad importante del dominio cuasiclásico que incluye la experiencia cotidiana. Este dominio exhibe también un comportamiento en gran medida clásico —de ahí la denominación «cuasiclásico»—. No sólo las posiciones sucesivas del planeta Marte en una secuencia discreta de instantes tienen unas probabilidades bien definidas. Las posiciones en cada instante están también altamente correlacionadas entre sí (probabilidades extremadamente próximas a uno) y se corresponden, con una enorme aproximación, con la órbita bien definida en torno al Sol predicha por la física clásica. Esta órbita obedece las ecuaciones de Newton para el movimiento en el campo gravitatorio creado por el Sol y los otros planetas, con pequeñas correcciones dadas por la teoría clásica mejorada de Einstein (la relatividad general) y una pequeña fuerza de fricción causada por colisiones con objetos ligeros, como los fotones de la radiación de fondo. Recordemos que estos objetos son integrados e ignorados en las historias no detalladas que siguen el movimiento de Marte, y que esto es la causa de su decoherencia.
¿Cómo puede un planeta seguir una órbita clásica determinista cuando se ve constantemente azotado en su camino por rachas aleatorias de fotones? Es posible porque el objeto en órbita es muy grande; cuando más masivo sea, con menor probabilidad exhibirá un comportamiento errático y seguirá más plácidamente su trayectoria. La masa M del planeta, su inercia, resiste este constante abofeteo y le permite comportarse clásicamente con una buena aproximación. Un átomo o una molécula son demasiado ligeros para seguir una trayectoria consistente en presencia de todos los objetos del sistema solar con los que colisionarían. Un grano de arena grande es lo suficientemente masivo como para seguir una órbita bastante bien definida, y una pequeña nave espacial lo hace aún mejor. Pero hasta una astronave resulta afectada por el viento solar, compuesto de electrones emitidos por el Sol. Las colisiones de esos electrones con la nave podrían bastar para perturbar ciertos experimentos delicados destinados a probar la teoría einsteniana de la gravitación; por esta razón, sería deseable realizar estos experimentos valiéndose de un radar emplazado en Marte y no sobre una sonda espacial.
Aunque hemos asociado el comportamiento cuasiclásico con la masa de los objetos, sería más exacto adscribirlo a los movimientos cuya inercia es lo suficientemente grande. Un baño de helio líquido ultrafrío puede ser grande y pesado y en cambio exhibir extraños efectos cuánticos, como derramarse por encima del borde de un recipiente abierto, debido a que sus movimientos internos tienen poca inercia.
Los físicos distinguen entre fluctuaciones cuánticas y clásicas; un ejemplo de estas últimas serían las fluctuaciones térmicas asociadas con el movimiento de las moléculas en un gas caliente. La baja resolución necesaria para lograr la decoherencia en mecánica estadística implica la integración sobre muchas variables, entre las que fácilmente pueden figurar algunas de las que describen tales movimientos moleculares. Las fluctuaciones clásicas tienden así a confundirse con las cuánticas. Un objeto masivo que siga una órbita clásica definida resiste los efectos de ambos tipos de fluctuaciones a la vez. Análogamente, un objeto más ligero puede resultar significativamente afectado por ambos.
El movimiento errático causado por reiteradas colisiones con cosas muy pequeñas fue descubierto a principios del siglo XIX por el botánico Robert Brown, en cuyo honor este fenómeno recibe el nombre de movimiento browniano. Se puede observar fácilmente dejando caer una gota de tinta en un recipiente con agua y mirando con un microscopio el comportamiento de los gránulos de pigmento. Einstein explicó estos movimientos bruscos por las fluctuaciones en las colisiones de las partículas con las moléculas de agua, una interpretación que por primera vez hacía a las moléculas susceptibles de observación experimental.
En el dominio cuasiclásico, los objetos obedecen aproximadamente las leyes de la mecánica clásica. Se encuentran sujetos a fluctuaciones, pero éstas son sucesos individuales superpuestos a un patrón de comportamiento clásico. Sin embargo, una vez se produce una fluctuación en la historia de un objeto por lo demás clásico ésta puede verse arbitrariamente amplificada. Un microscopio puede aumentar la imagen de una partícula de tinta golpeada por una molécula y una fotografía puede preservar la imagen ampliada indefinidamente.
Esto nos trae a la memoria el famoso experimento mental del gato de Schrödinger, en el cual un suceso cuántico es amplificado de manera que decide si un gato resulta envenenado o no. Tal amplificación, aunque poco agradable, es perfectamente posible. Puede diseñarse un mecanismo de forma que la vida del gato dependa, por ejemplo, de la dirección que tome una partícula emitida por la desintegración de un núcleo atómico. (Empleando un arma termonuclear, podría decidirse de igual manera el destino de una ciudad.)
La discusión clásica sobre el gato de Schrödinger se basa en la interferencia cuántica entre los escenarios del gato vivo y del gato muerto. Sin embargo, el gato vivo interacciona de modo considerable con el resto del universo —a través de su respiración, por ejemplo— e incluso el gato muerto interactúa hasta cierto punto con el aire. No sirve de nada encerrar al felino en una caja, porque la caja interactúa con el resto del universo, así como con el gato. De modo que hay abundantes oportunidades para la decoherencia entre las historias no detalladas en las que el gato vive y en las que muere. Los escenarios en los que el gato vive y aquellos en los que muere son decoherentes: no hay interferencia entre ellos.
Es tal vez este aspecto de la interferencia en la historia del gato lo que hace exclamar a Stephen Hawking: «Cuando oigo hablar del gato de Schrödinger, echo mano a mi pistola». Esta frase es en cualquier caso una parodia de otra que suele atribuirse a algún líder nazi, pero que de hecho aparece en la obra de teatro Schlageter, de Hanns Johst: «Cuando oigo la palabra Kultur, le quito el seguro a mi Browning».
Supongamos que el suceso cuántico que determina el destino del gato ha ocurrido ya; no sabremos lo que ha pasado hasta que destapemos la caja que encierra al animal. Dado que los dos resultados posibles son decoherentes, la situación no difiere del caso clásico en el que abrimos la caja que contiene a un pobre animal después de un largo viaje, tras el que no sabemos si está vivo o muerto. Se han gastados resmas de papel acerca del supuestamente misterioso estado cuántico del gato, vivo y muerto al mismo tiempo. Ningún objeto cuasiclásico real puede mostrar tal comportamiento, porque su interacción con el resto del universo conducirá a la decoherencia de las posibles alternativas.
Un dominio cuasiclásico requiere, de manera natural, historias lo suficientemente poco detalladas para ser decoherentes con una muy buena aproximaxión; también requiere que sean aún menos detalladas, de modo que lo que se sigue en las historias tenga inercia suficiente como para resistir las inevitables fluctuaciones asociadas con lo que se integra. Aquí persisten continuas excursiones pequeñas fuera del comportamiento clásico y, ocasionalmente, grandes.
La razón por la que la alta inercia requiere un descenso de resolución adicional es que los fragmentos apreciables de materia pueden entonces ser seguidos y tener grandes masas. (Si existiesen algunas partículas elementales de gran masa que fuesen estables o cuasiestables, representarían una fuente distinta de alta inercia. Todavía no se ha encontrado ninguna partícula semejante, aunque podrían existir y, si así fuese, podrían haber jugado un importante papel en los instantes iniciales de la expansión del universo.)
Un suceso cuántico puede correlacionarse totalmente con algo perteneciente al dominio cuasiclásico. Esto es lo que sucede en la parte sensata de la historia del gato, en la que un suceso de este tipo se correlaciona con el destino del animal. Un ejemplo más simple y menos caprichoso sería un núcleo radiactivo, presente como impureza en un cristal de mica, que se desintegra, pongamos por caso, en dos fragmentos eléctricamente cargados que se mueven en direcciones opuestas. La dirección del movimiento de uno de los fragmentos está por completo indeterminada hasta que se produce la desintegración, pero a partir de entonces se correlaciona perfectamente con el rastro que deja en la mica. Las historias cuasiclásicas, que integran cosas como la radiación blanda emitida al formarse el rastro en el cristal, producen la decoherencia de las diferentes direcciones, con una pequeña dispersión. Estos rastros, a temperaturas ordinarias, pueden durar decenas de miles de años y, por supuesto, la mera persistencia es un ejemplo (aunque trivial) de historia clásica. La desintegración radiactiva ha contactado así con el dominio cuasiclásico.
La acumulación de rastros dejados por los productos de la desintegración espontánea de núcleos fisibles se emplea en ocasiones para datar minerales. Este método se conoce como datación radiactiva, y puede aplicarse a rocas de cientos de miles de años de antigüedad. Imaginemos que un científico que realiza una medición de este tipo estudia un rastro en particular. Mientras procede a la datación, puede decirse que también está midiendo la dirección de la desintegración de un núcleo radiactivo. Sin embargo, el rastro ha estado allí desde que se formó; no comenzó a existir cuando el físico le echó una mirada (como sugeriría alguna descripción torpe de la mecánica cuántica). Ha existido una situación susceptible de medida desde que el núcleo se desintegró y se formó el rastro, esto es, desde que se estableció una fuerte correlación con el dominio cuasiclásico. La medición podría llevarla a cabo una cucaracha u otro sistema complejo adaptativo cualquiera. Consiste en «percatarse» de que se ha producido una alternativa particular de entre un conjunto de alternativas decoherentes, dotadas de diferentes probabilidades. Ocurre exactamente lo mismo en el hipódromo cuando se «observa» que un caballo en particular ha ganado la carrera. Un registro de la victoria, ya presente en algún lugar del dominio cuasiclásico, es registrado además en la memoria del observador, sea éste de inteligencia elevada o pequeña. No obstante, muchos autores sensatos, incluso brillantes, han apelado a la importancia de la conciencia humana en el proceso de medida. ¿Es realmente tan importante? ¿Qué significa realmente notar y observar?
En este contexto, una observación es como una poda del árbol de historias ramificadas. En una bifurcación concreta, sólo se preserva una de las ramas (más precisamente, sobre cada rama, sólo se preserva ¡esa misma rama!). Las ramas podadas se eliminan, junto con las partes del árbol que crecen a partir de las ramas podadas.
En cierto sentido, el cristal de mica con trazas de desintegración radiactiva ha realizado ya una operación de poda, registrando la dirección real del movimiento del fragmento de núcleo y descartando todas las otras direcciones posibles. Pero un sistema complejo adaptativo que observe el rastro realiza la poda de una forma más explícita, incorporando la observación en el flujo de datos que da lugar a la evolución de sus esquemas. El consiguiente comportamiento del sistema puede entonces reflejar su observación de la dirección particular del rastro.
Un sistema complejo adaptativo que actúa como un observador merece probablemente un buen nombre. Jim Hartle y yo lo llamamos IGUS (Information Gathering and Utilizing System), es decir, sistema acumulador y utilizador de información. Si el IGUS tiene un grado significativo de conciencia o conocimiento de sí mismo (de modo que se percibe a sí mismo percibiendo la dirección del rastro radiactivo) tanto mejor, pero ¿es esto necesario? ¿Tiene realmente una medida hecha por un ser humano cualquiera, aunque sea uno muy estúpido, mayor significado que la hecha por un gorila o un chimpancé? Y si no es así, ¿por qué no sustituir al simio por una chinchilla o una cucaracha?
Al comenzar a podar el árbol de historias ramificadas, tal vez habría que distinguir entre un observador humano que sabe algo sobre mecánica cuántica (y así conoce el origen del árbol) y cualquier otro que no sabe nada. En cierto sentido, la diferencia entre ellos es mayor que entre un humano ignorante de la mecánica cuántica y una chinchilla.
Un IGUS puede hacer algo más que eliminar ramas alternativas cuando ya es conocido el resultado de un suceso determinado: puede apostar de antemano sobre dicho resultado, utilizando alguna versión aproximada de las probabilidades que proporciona la mecánica cuántica. Sólo un sistema complejo adaptativo puede hacer eso. A diferencia de un cristal de mica, un IGUS puede incorporar sus propias probabilidades estimadas de sucesos futuros en un esquema, y basar su comportamiento futuro en dicho esquema. Por ejemplo, un mamífero que habite en el desierto puede emprender un largo camino hacia un pozo profundo algunos días después de que haya llovido, pero no se dirigirá hacia uno poco profundo, porque es más probable que haya agua en el primero que en el segundo.
La poda de ramas sustituye a lo que se denomina «colapso de la función de onda» en la interpretación tradicional de la mecánica cuántica. Ambas descripciones pueden relacionarse matemáticamente, pero el colapso se presenta a menudo como un fenómeno misterioso propio de la mecánica cuántica. Dado que la poda representa simplemente el reconocimiento de la ocurrencia de una de entre un conjunto de alternativas decoherentes, nos resulta más familiar. Un ejemplo es la constatación de que, después de todo, no me fui a París, sino que me quedé en casa. Todas las ramas de la historia que dependían de mi partida a París han sido descartadas; sus probabilidades son ahora nulas, fuera cual fuese antes su valor.
El punto confuso que resta en las discusiones sobre el llamado colapso es que aunque la poda implique la medida de un suceso cuántico, continúa siendo una simple discriminación entre alternativas decoherentes. Los sucesos cuánticos sólo pueden detectarse al nivel del dominio cuasiclásico. Ahí la situación es la de unas probabilidades clásicas, como en el lanzamiento de un dado o una moneda, que se hacen cero o uno cuando se conoce el resultado. El dominio cuasiclásico admite la posibilidad de un registro razonablemente persistente del resultado, registro que puede ampliarse o copiarse una y otra vez en una cadena cuasiclásica de concordancia casi exacta entre un registro y el precedente. Una vez que un suceso cuántico queda correlacionado con el dominio cuasiclásico (creando una situación susceptible de medida), el resultado particular del suceso en una rama histórica dada se convierte en un hecho.
Ya que hemos mencionado el tema de la conciencia, vamos a explorarlo brevemente un poco más. El cerebro humano tiene unos lóbulos frontales muy grandes comparados con los de nuestros parientes cercanos los grandes simios. Los neurobiólogos han identificado en ellos áreas que parecen estar relacionadas con la conciencia y la voluntad, y se piensa que están especialmente bien desarrolladas en los seres humanos.
Junto a los muchos procesos que operan en paralelo en la mente humana, la conciencia parece referirse a un proceso secuencial, una especie de foco que puede pasar de una idea o impresión sensorial a otra, en rápida sucesión. Cuando pensamos que prestamos atención a muchas cosas a la vez, en realidad estamos empleando este foco a tiempo compartido, desplazándolo entre los diferentes objetos de nuestra atención. Las diferentes líneas de proceso en paralelo difieren en su accesibilidad al pensamiento consciente, y algunas de las fuentes del comportamiento humano yacen enterradas en niveles profundos del pensamiento desde donde es difícil que accedan a la conciencia.
A pesar de ello, afirmamos que la expresión oral y otros actos están, en considerable grado, bajo un control consciente, y esto refleja no sólo el reconocimiento del faro de la conciencia, sino nuestra profunda creencia en que poseemos libre albedrío, que podemos escoger entre distintas alternativas de comportamiento.
¿Qué tipo de fenómenos objetivos producen esa impresión tan subjetiva que es el libre albedrío? Decir que una decisión se toma libremente significa que no está estrictamente determinada por todo lo que ha sucedido anteriormente. ¿De dónde surge esta aparente indeterminación?
Una explicación posible es que está conectada con indeterminaciones fundamentales, probablemente la propia de la mecánica cuántica realzada por fenómenos clásicos como el caos. Una decisión humana tendría así un carácter impredictible, y podría decirse retrospectivamente que ha sido tomada libremente. No obstante, uno podría preguntarse cuáles son los rasgos distintivos del córtex cerebral humano que hacen que las contribuciones de las fluctuaciones cuánticas y el caos sean tan preponderantes.
En lugar de invocar sólo estos factores puramente físicos, podríamos considerar también procesos más directamente asociados con el cerebro y la mente. Recordemos que, para una resolución dada, todos los fenómenos accesorios pueden contribuir con indeterminaciones aparentes (por ejemplo fluctuaciones térmicas) que se suman a las fluctuaciones cuánticas. Dado que hay siempre muchos procesos mentales no iluminados por el faro de la conciencia, estos procesos se integran en las historias extremadamente poco detalladas que recordamos conscientemente. Las indeterminaciones resultantes contribuirían más verosímilmente a la impresión subjetiva de libre albedrío que las indeterminaciones más estrechamente asociadas con la física. En otras palabras, los seres humanos probablemente actúan impulsados por motivaciones ocultas con mayor frecuencia que por un generador interno de números aleatorios o pseudoaleatorios. Pero todas estas cuestiones están muy mal comprendidas y, por ahora, lo único que podemos hacer es especular. (Las especulaciones sobre esta materia no son ni mucho menos recientes. Con todo, no veo ninguna razón por la cual estas cuestiones no debieran tratarse en el marco de una investigación científica sobre el posible papel de las indeterminaciones en el funcionamiento del córtex cerebral humano y los correspondientes procesos mentales.)
En las historias no detalladas que incorporan las experiencias cotidianas dentro del dominio cuasiclásico, se siguen ciertas clases de variables, mientras que el resto se integra, es decir, se ignora. En pocas palabras, el dominio cuasiclásico usual obedece las leyes de la gravedad y el electromagnetismo, y las leyes de conservación de magnitudes como la energía, el momento o la carga eléctrica, junto con otras que se conservan aproximadamente, como el número de dislocaciones (irregularidades) producidas en un cristal por el paso de una partícula cargada. Se dice que una magnitud se conserva cuando la cantidad total de ésta presente en un sistema cerrado permanece invariable con el tiempo; se conserva aproximadamente cuando la cantidad total apenas varía con el tiempo. Una magnitud conservada como la energía no puede crearse ni destruirse, sólo transformarse. Las dislocaciones en un cristal pueden obviamente crearse, por ejemplo por el paso de una partícula cargada; sin embargo, pueden durar cientos de miles de años una vez creadas, y en este sentido son cuasiconservadas.
El dominio cuasiclásico familiar implica la integración de todo menos ciertos rangos de valores de los campos electromagnético y gravitatorio y de las magnitudes conservadas y cuasiconservadas, dentro de volúmenes de espacio pequeños pero lo bastante grandes como para tener la inercia necesaria para resistir las fluctuaciones asociadas con los efectos de las variables integradas. Es decir, la resistencia a las fluctuaciones es suficiente para que las magnitudes que se siguen manifiesten un comportamiento cuasiclásico.
Estas magnitudes deben seguirse a intervalos de tiempo no demasiado estrechos, para que las historias no detalladas puedan ser decoherentes. En general, si la resolución es demasiado alta (debido a intervalos de tiempo demasiado cortos, volúmenes demasiado pequeños o rangos de magnitudes demasiado estrechos), el peligro de interferencia entre historias se hace mayor.
Consideremos un conjunto de historias no detalladas alternativas refinadas al máximo, de manera que cualquier aumento de resolución arruinaría la decoherencia, el carácter cuasiclásico de las historias o ambas cosas a la vez. Los pequeños volúmenes de espacio en los cuales se siguen, a intervalos de tiempo apropiados, las magnitudes conservadas y cuasiconservadas pueden cubrir entonces todo el universo, pero con una resolución espaciotemporal (y de los rangos de las magnitudes) adecuada para producir la decoherencia y dar como resultado historias alternativas cuasiclásicas.
La experiencia humana y de los sistemas con los que estamos en contacto es la de un dominio de mucha menor resolución que este dominio cuasiclásico maximal que acabamos de describir. Se requiere una gran pérdida de detalle para pasar del dominio cuasiclásico maximal al dominio accesible a nuestra experiencia cotidiana. Nuestro dominio accesible cubre únicamente regiones muy limitadas del espacio-tiempo, y el alcance de sus variables es muy corto. (El interior de las estrellas y de otros planetas, por ejemplo, resulta prácticamente inaccesible, y lo que ocurre en la superficie sólo puede detectarse de una manera no detallada.)
Por contra, las historias no detalladas del dominio cuasiclásico maximal no tienen por qué integrar, y por tanto ignorar, todas las variables inaccesibles a la observación humana. En su lugar, esas historias pueden incluir descripciones de resultados alternativos de procesos arbitrariamente remotos en el espacio y en el tiempo. Pueden incluso abarcar sucesos cerca del inicio de la expansión del universo, cuando presumiblemente no existían sistemas complejos adaptativos que pudiesen actuar como observadores.
En suma, un dominio cuasiclásico maximal es un conjunto exhaustivo de historias no detalladas del universo mutuamente excluyentes que cubren todo el espacio-tiempo, que son mutuamente decoherentes y cuasiclásicas la mayor parte del tiempo, y que poseen la máxima resolución compatible con las otras condiciones. En este tipo particular de dominio cuasiclásico maximal, las magnitudes que se siguen son rangos de valores de magnitudes conservadas y cuasiconservadas integradas sobre pequeños volúmenes. El dominio de la experiencia humana cotidiana se obtiene a partir de estos dominios maximales reduciendo de modo extremo la resolución, en correspondencia con las posibilidades de nuestros sentidos e instrumentos.
Es importante hacer hincapié en que las magnitudes específicas que se siguen en un instante dado pueden depender del resultado de las ramificaciones previas de las historias. Por ejemplo, la distribución de masa de la Tierra, representada por la cantidad de energía contenida en cada uno de un gran número de pequeños volúmenes que componen el planeta, podría seguirse en una historia no detallada siempre y cuando la Tierra exista. ¿Pero qué ocurriría si la Tierra explotase algún día en pedacitos, a causa de alguna catástrofe imprevista? ¿Qué pasaría si esta catástrofe volatilizase el planeta, como en algunas películas de serie B? Presumiblemente, en las historias en las que esto ocurra las magnitudes que se siguen serán muy diferentes antes y después de la catástrofe. En otras palabras, las magnitudes que se siguen en historias de una resolución dada pueden depender de las ramificaciones de las mismas.
Hemos discutido el dominio cuasiclásico que incluye la experiencia cotidiana en términos de rangos de valores de campos y de magnitudes conservadas o cuasiconservadas en pequeños volúmenes de espacio. Pero ¿qué ocurre cuando entran en escena objetos individuales como un planeta?
Al principio de la historia del universo, las masas de materia comenzaron a condensarse bajo la influencia de la atracción gravitatoria. El contenido de las diversas historias no detalladas alternativas posteriores es mucho más conciso cuando se describe en términos de los objetos de nueva formación. Es mucho más simple registrar el movimiento de una galaxia que listar por separado todos los cambios en la densidad de materia de un billón de billones de pequeños volúmenes de espacio a medida que la galaxia se mueve.
Cuando las galaxias dieron origen a estrellas, planetas, rocas y, en algunos lugares, a sistemas complejos adaptativos como los seres vivos de la Tierra, la existencia de objetos individuales se convirtió en una característica cada vez más marcada del dominio cuasiclásico. Muchas de las regularidades del universo pueden describirse con mucha más concisión en términos de estos objetos; las propiedades de las cosas individuales representan una gran proporción de la complejidad efectiva del universo.
En la mayor parte de casos, la descripción de objetos individuales es más simple cuando su definición permite el aumento o la pérdida de cantidades de materia comparativamente pequeñas. Cuando un planeta absorbe un meteorito o un gato respira, la identidad del planeta o el gato no se alteran.
¿Cómo puede medirse la individualidad? Una forma consiste en observar un conjunto de objetos comparables y, para una cierta resolución, describir de la manera más breve posible las propiedades que los distinguen (tales como las plumas perdidas de los once cóndores de California que contemplé encima del ternero). El número de bits en la descripción de un individuo típico puede entonces compararse con la cantidad necesaria para enumerar a los individuos del conjunto. Si, para una resolución particular, la descripción contiene muchos más bits que la enumeración, entonces los objetos del conjunto muestran individualidad.
Consideremos el conjunto de todos los seres humanos, en la actualidad cerca de 5 500 millones. Asignar un número diferente a cada persona requiere unos 32 bits, porque 2 multiplicado 32 veces por sí mismo es igual a 4 294 967 296. Pero incluso un simple vistazo, acompañado de una breve entrevista, revelerá fácilmente muchísimo más de 32 bits de información sobre una persona. Cuando la estudiemos más de cerca revelerá una individualidad aún mayor. E imaginemos de cuánta información adicional dispondremos cuando pueda leerse su genoma individual.
El número de estrellas en nuestra galaxia, sin contar posibles astros oscuros que los astrónomos puedan descubrir algún día, se eleva a unos cien mil millones. Asignar a cada una un número consecutivo requería unos 37 bits. Los astrónomos han obtenido del Sol, la estrella más cercana, una cantidad de información muy superior a ésta, pero la resolución es muy inferior para las otras estrellas. La posición en el cielo, la luminosidad, el espectro de emisión y el movimiento pueden medirse de alguna forma, con mayor o menor precisión según la distancia. El número total de bits de información no suele ser muy superior a 37, y en algunos casos es inferior. Tal como las ven los astrónomos en la actualidad, las estrellas, exceptuando el Sol, tienen alguna individualidad, pero no mucha.
La baja resolución característica de las observaciones actuales puede evitarse pasando a un dominio cuasiclásico maximal, consistente en historias alternativas que cubren todo el espacio-tiempo, y que no sólo son decoherentes y casi clásicas, sino también, en algún sentido, de máxima resolución, dada su decoherencia y carácter cuasiclásico. Cuando resulta apropiado, estas historias pueden expresarse en términos de objetos individuales, que pueden seguirse con extraordinario detalle y exhiben, en correspondencia, un alto grado de individualidad.
En el dominio cuasiclásico maximal ordinario, la información disponible sobre cualquier estrella es enormemente mayor que la que poseemos sobre el Sol. Análogamente, la información sobre cualquier ser humano es mucho más rica que la disponible en la actualidad. De hecho, ningún sistema complejo adaptativo que observase una estrella o un hombre en este dominio podría hacer uso de tan gigantesca cantidad de información. Por otra parte, la mayor parte de los datos se referiría a fluctuaciones aleatorias o pseudoaleatorias de la densidad de materia en el núcleo de la estrella o en el interior de algún hueso o músculo. Resulta difícil imaginar qué uso podría hacer un sistema complejo adaptativo de esta masa de información. A pesar de ello, las regularidades en los datos podrían ser muy útiles; de hecho, los médicos se sirven de tales regularidades cuando emplean la resonancia magnética nuclear (RMN) o la tomografía axial computerizada (TAC) para diagnosticar una enfermedad. Como siempre, un esquema descriptivo formulado por un sistema complejo adaptativo observador es una lista concisa de regularidades, y la longitud de dicha lista es una medida de la complejidad efectiva del objeto observado.
Al igual que las probabilidades clásicas que surgen en una serie de carreras de caballos, las historias alternativas no detalladas del universo que constituyen el dominio cuasiclásico maximal forman una estructura ramificada, con probabilidades bien definidas para las diferentes posibilidades en cada bifurcación. Entonces, ¿en qué difiere la mecánica cuántica de la mecánica clásica? Una diferencia obvia es que, en mecánica cuántica, la baja resolución es necesaria para que la teoría produzca resultados útiles, mientras que en mecánica clásica obedece a la imprecisión en las medidas u otras limitaciones de orden práctico. Pero existe otra diferencia, de mayor entidad, responsable de la naturaleza no intuitiva de la mecánica cuántica: su carácter proteico. Recordemos que Proteo, en la mitología clásica, era un adivino reticente que tenía el don de transformarse en diferentes criaturas. Para obtener predicciones de él, era necesario sujetarlo firmemente mientras cambiaba de forma sin cesar.
Retomemos a nuestras historias detalladas de un universo simplificado, que especifican la posición de cada partícula del mismo en todo momento. En mecánica cuántica, la posición es una elección arbitraria. Mientras que el principio de incertidumbre de Heisenberg imposibilita especificar simultáneamente la posición y el momento de una partícula dada con precisión arbitraria, no impide especificar el momento en lugar de la posición. En consecuencia, las historias detalladas pueden escogerse de muchas formas distintas, cada partícula caracterizada en ciertos instantes por su momento, y el resto del tiempo por su posición. Por otra parte, existe una infinita variedad de formas, más sutiles, de construir historias detalladas del universo.
Para cada uno de estos conjuntos de historias detalladas es posible considerar muchas formas de eliminar información y preguntar cuáles, si es que las hay, conducen a un dominio cuasiclásico maximal caracterizado por historias no detalladas decoherentes que exhiban un comportamiento casi clásico, con continuas excursiones pequeñas y, ocasionalmente, alguna notable. Además, podemos preguntamos si existen distinciones realmente significativas entre estos dominios o si todos son más o menos equivalentes.
Jim Hartle y yo, entre otros, estamos intentando dar respuesta a esta cuestión. A menos que se demuestre lo contrario, siempre será concebible que haya un gran conjunto de dominios cuasiclásicos no equivalentes, de los cuales el que nos es familiar no es más que un ejemplo. Si ello es cierto, ¿qué distingue el dominio cuasiclásico familiar de todos los demás?
Quienes se adhieran a la visión temprana de la mecánica cuántica podrían pensar que los seres humanos hemos decidido medir ciertas magnitudes y que nuestra elección determina el dominio cuasiclásico con que nos enfrentamos. O, con un poco más de generalidad, podrían decir que los seres humanos sólo son capaces de medir ciertos tipos de magnitudes, y que el dominio cuasiclásico debe basarse, al menos en parte, en ellas.
El carácter cuasiclásico garantiza a todos los seres humanos, y a todos los sistemas en contacto con nosotros, la posibilidad de comparar registros, de forma que todos nos referimos siempre al mismo dominio. Pero ¿hemos seleccionado colectivamente este dominio? Tal punto de vista puede resultar innecesariamente antropocéntrico, como otros aspectos de la interpretación anticuada de la mecánica cuántica.
Otra aproximación menos subjetiva consiste en partir de un dominio cuasiclásico maximal y reparar en que a lo largo de determinadas ramas, en ciertas épocas y lugares, puede mostrar la característica mezcla de regularidad y azar que favorece la evolución de los sistemas complejos adaptativos. El comportamiento casi clásico proporciona la regularidad, mientras que las excursiones fuera del determinismo —las fluctuaciones— proporcionan el elemento aleatorio. Los mecanismos de amplificación, entre ellos el caos, permiten que algunas de estas fluctuaciones aleatorias lleguen a correlacionarse con el dominio cuasiclásico y den lugar a ramificaciones. Por ello, cuando los sistemas complejos adaptativos evolucionan, lo hacen en conexión con un dominio cuasiclásico particular, que no ha de considerarse como algo elegido por los sistemas de acuerdo a sus capacidades. En vez de eso, la localización y las capacidades de los sistemas determinan el descenso de resolución adicional (en nuestro caso, muy grande) que se aplica a un dominio cuasiclásico maximal particular para llegar al dominio percibido por los sistemas.
Supongamos que la mecánica cuántica del universo permitiese matemáticamente la existencia de varios dominios cuasiclásicos maximales posibles, genuinamente no equivalentes. Supongamos, también, que los sistemas complejos adaptativos evolucionasen realmente para explotar cierta disminución de resolución en cada uno de estos dominios. Cada dominio proporcionaría entonces un conjunto de historias no detalladas alternativas del universo, y los sistemas acumuladores y procesadores de información (IGUS) registrarían en cada caso los resultados de varias ramificaciones probabilísticas dentro del árbol de historias posibles, ¡un árbol que sería bien diferente en cada caso!
Si existiese algún grado de concordancia en los fenómenos que se siguen en cada dominio cuasiclásico distinto, los diferentes IGUS podrían percibirse mutuamente, e incluso comunicarse de alguna forma. Pero una gran parte de lo que es seguido por un IGUS no puede ser aprehendido de forma directa por los otros. Sólo por medio de mediciones o cálculos mecanocuánticos podría un IGUS hacerse alguna idea de todo el dominio de fenómenos que percibe otro distinto (esto podría recordar a alguien la relación entre hombres y mujeres).
¿Podría un observador dentro de cierto dominio llegar a ser realmente consciente de que hay otros dominios, con sus propios conjuntos de historias ramificadas y observadores, disponibles como descripciones alternativas de las posibles historias del universo? Este fascinante tema ha sido tratado por los escritores de ciencia ficción (que a veces emplean la expresión «mundos de duendes», de acuerdo con el teórico ruso Starobinsky), pero sólo ahora está mereciendo la atención de los teóricos de la mecánica cuántica.
Los que trabajamos en la construcción de una interpretación moderna de la mecánica cuántica tenemos como objetivo poder dar por finalizada la era regida por el dicho de Niels Bohr: «Si alguien dice que puede pensar en la mecánica cuántica sin sentir vértigo, entonces es que no ha entendido nada de nada».