VENUS Y EL
DOCTOR VELIKOVSKY
Cuando consideramos el movimiento de los cometas y reflexionamos sobre las leyes gravitatorias, nos percatamos de inmediato de que su aproximación a la Tierra puede desencadenar acontecimientos calamitosos equiparables al diluvio universal, sepultar nuestro planeta en una lluvia de fuego, romperlo en mil pedazos o, como mínimo, alejarlo de su órbita, de su Luna, o, todavía peor, convertirlo en un satélite de Saturno, con lo que se cerniría sobre nosotros un invierno de siglos que haría imposible la vida a hombres y animales. Y tampoco debe pasarse por alto la importancia de las colas de los cometas si en su trayectoria las dejan total o parcialmente en el seno de nuestra atmósfera.
J. H. LAMBERT,
Cosmologische Briefe über die
Einrichtung des Weltbaues (1761)Por peligroso que pueda ser el impacto de un cometa, sería tan ligero e insignificante que sólo provocaría daños en la parte de nuestro planeta en la que cayera. Incluso podría quedar en paz nuestra conciencia si a cambio de la devastación de un reino el resto de la Tierra pudiera disfrutar de las curiosidades que albergase en su seno un cuerpo celeste llegado desde tan lejos. Quizá nos llevásemos la enorme sorpresa de constatar que los restos de estas masas hasta ahora menospreciadas estaban constituidos por oro y diamantes. Aunque, ¿quién quedaría más asombrado, nosotros o los habitantes de los cometas arrojados sobre nuestro planeta? ¡Cuán extraños nos encontraríamos unos a otros!
MAUPERTUIS,
Lettre sur la comete (1752)
LOS CIENTÍFICOS, como cualquier otro ser humano, tienen sus esperanzas, sus pasiones, sus momentos de desánimo, y a veces las emociones sentidas con intensidad pueden dar al traste con la práctica más cabal y el pensamiento más clarividente. Sin embargo, una de las virtudes de la ciencia es su capacidad para autoenmendarse. Sus conclusiones y axiomas más fundamentales pueden ser sometidos a prueba, las hipótesis genéricamente aceptadas deben ser contrastadas con observaciones empíricas, y por ende carecen de todo sentido las apelaciones a cualquier principio de autoridad. En toda argumentación razonada los distintos pasos han de ser comprendidos por todo aquel que se lo proponga y los experimentos deben ser siempre susceptibles de reproducción.
La historia de la ciencia está llena de casos en los que teorías e hipótesis previamente aceptadas han sido objeto de un rechazo generalizado al ver la luz nuevas ideas que conseguían explicar de forma más adecuada los datos experimentales. Aunque existe una inercia psicológica perfectamente comprensible —cuyo lastre se hace sentir por lo general durante el lapso de una generación—, las revoluciones en el terreno del pensamiento científico suelen considerarse y aceptarse como un elemento necesario y deseable para el progreso de la ciencia. En realidad, toda crítica razonada a una determinada creencia no es más que un servicio a sus propios veladores, y si se muestran incapaces de rebatirla harán bien en abandonar sus tesis. Este aspecto del método científico, la capacidad que posee para plantearse interrogantes y corregir sus propios errores, constituye su propiedad más sobresaliente, al tiempo que diferencia a la ciencia de la mayor parte de las demás actividades y empresas humanas, donde la credulidad se erige como norma.
La idea de que la ciencia más que un conjunto de conocimientos es un determinado método no se aprecia en su exacto valor fuera del campo científico, e incluso tampoco entre algunos de sus estamentos. De ahí que yo y algunos de mis colegas de la Asociación Americana para el Progreso Científico (AAAS) hayamos defendido la necesidad de establecer con regularidad una serie de debates en las reuniones anuales que celebra dicha asociación sobre aquellos aspectos pseudocientíficos que hayan gozado de un mayor interés público. El objetivo que se persigue no es zanjar la disputa sobre determinado tema de una vez por todas, sino más bien ilustrar en la práctica el proceso que debe articular toda polémica razonada, mostrar el modo en que los científicos abordan un problema que no se presta a pruebas experimentales bien definidas, presenta caracteres de heterodoxia en razón de su naturaleza interdisciplinaria o suele ser objeto de discusiones apasionadas y emocionales.
La crítica a fondo de las nuevas ideas es una tarea usual de la ciencia. Aunque el estilo de la crítica puede variar en razón del carácter de quien la efectúa, parece indudable que todo análisis crítico excesivamente cortés no reporta el menor beneficio ni a los defensores de nuevas ideas ni a la empresa científica en su conjunto. Debe estimularse toda objeción importante, y los únicos argumentos excluidos de la polémica son los ataques ad hominem sobre la personalidad del oponente o los motivos que impulsan su trabajo. No interesan nada las razones que impulsan a alguien a lanzar sus ideas ni las que abrigan sus detractores para criticarlas; lo único que interesa es determinar si las ideas son ciertas o erróneas, prometedoras o regresivas.
Como ejemplo, he aquí el informe presentado por un dictaminador cualificado sobre un artículo enviado a la revista científica Icarus para su publicación: «En mi opinión el artículo es absolutamente inaceptable para su publicación en Icarus. No se fundamenta en ninguna investigación científica sólida, y en el mejor de los supuestos no se trata más que de especulaciones incompetentes. El autor no enuncia explícitamente sus hipótesis; las conclusiones son ambiguas y sin fundamento; no toma en su cuenta otros trabajos relacionados con el tema; tablas y figuras carecen de la imprescindible claridad; es indudable que el autor del artículo no posee la menor familiaridad con la literatura científica fundamental…». Acto seguido, el crítico procedía a justificar sus observaciones de un modo detallado. Se trata de un tipo de informe poco frecuente, aunque no insólito. Como resultado, el artículo fue rechazado. Por lo general, se considera que estos casos constituyen a un mismo tiempo una bendición para la ciencia y un favor hecho al autor del trabajo. La mayoría de los científicos están acostumbrados a recibir dictámenes críticos, que suelen ser indulgentes, cada vez que presentan un artículo a una publicación especializada. Por lo general, las críticas suelen constituir una franca ayuda, y lo más usual es que una vez tomadas en cuenta las críticas y efectuadas las correspondientes revisiones el trabajo acabe siendo publicado. A modo de nuevo ejemplo sobre una crítica sin ambages en el terreno de la literatura científica, el lector interesado puede consultar el trabajo de J. Meeus «Comments on The Jupiter effect» (1975)[5] y la crítica sobre el mismo aparecida en Icarus.
Las críticas rigurosas son más constructivas en el terreno científico que en ninguna otra área de la actividad humana, pues en el caso de la ciencia existen unos patrones estándar de validación aceptados por los profesionales competentes de todo el mundo. El objetivo de la crítica no es eliminar nuevas ideas, sino antes bien estimular su aparición y consolidación. Quienes superen con éxito una investigación escéptica a fondo tienen enormes probabilidades de estar en lo cierto, o como mínimo de haber planteado propuestas útiles.
La obra de Immanuel Velikovsky ha conseguido desatar una conmoción entre los miembros de la comunidad científica, muy especialmente a raíz de la publicación de su primer libro, Worlds in Collision, aparecido en 1950. No pocos científicos se sintieron molestos ante la comparación que establecieran los escritores neoyorquinos y uno de los editores de la Harper's entre Velikovsky y figuras de la talla de Einstein, Newton, Darwin o Freud, pero su resentimiento se fundamentaba más en la fragilidad de la naturaleza humana que en juicios propiamente científicos. Por lo demás, los científicos no dejan de ser ante todo hombres con las mismas debilidades que todo el mundo. Otros se mostraron consternados por el recurso a textos indios, chinos, aztecas, sirios o bíblicos para fundamentar puntos de vista extremadamente heterodoxos en el terreno de la mecánica celeste. No obstante, sospecho que la razón es que pocos son los físicos y especialistas en mecánica celeste con conocimientos medianamente fluidos en tales lenguas o con cierta familiaridad con tales textos.
Mi opinión es que no puede tomarse como excusa válida para menospreciar ideas nuevas el grado de heterodoxia del proceso de razonamiento o la dificultad de digerir sus conclusiones, y mucho menos entre científicos. En consecuencia, me alegró sobremanera que la AAAS decidiera organizar una discusión sobre Worlds in Collision en la que tomó parte el propio Velikovsky.
Mientras leía las críticas suscitadas por la obra de Velikovsky, me sorprendió constatar su escasez y cuán raramente se enfocaban en ellas los puntos nucleares de las tesis del autor criticado. De hecho, ni críticos ni veladores de Velikovsky parecen haberle leído atentamente, e incluso tengo la impresión de que en ciertos casos el propio Velikovsky no se ha leído a sí mismo con todo detenimiento. Quizá la publicación de la mayor parte de lo discutido en el simposio de la AAAS (Goldsmith, 1977) y estas páginas, cuyas principales conclusiones ya presenté en el mencionado simposio, ayuden a clarificar el estado de la cuestión.
En este escrito mi objetivo es analizar críticamente las tesis expuestas en Worlds in Collision y enfocar el problema tanto desde el punto de vista mantenido por Velikovsky como desde el mío propio, es decir, no perder de vista en ningún momento los escritos antiguos que constituyen el núcleo de su argumentación y, al mismo tiempo, contrastar sus conclusiones con los hechos y la lógica a mi disposición.
La principal tesis sustentada por Velikovsky es que los principales acontecimientos de la historia de la Tierra y la de otros planetas del sistema solar se han producido en un contexto catastrofista. Catastrofismo es un caprichoso término acuñado por los geólogos para designar una de las posturas dentro de una importante disputa mantenida en la infancia de su ciencia y que aparentemente culminaría entre 1785 y 1830 con los trabajos de James Hutton y Charles Lyell, partidarios de una concepción opuesta, la que suele denominarse uniformitarismo. Ambos términos y la práctica misma de sus respectivos veladores evocan familiares antecedentes teológicos. Un uniformitarista sostiene que la conformación material de nuestro planeta deriva de procesos cuya operatividad aún podemos detectar en nuestros días, si bien no debe olvidarse que su acción tiene lugar a través de períodos temporales de inmensa duración. Por su parte, un catastrofista sostendrá que los cambios se han producido a través de un pequeño número de cataclismos de inusitada violencia y de duración temporal comparativamente muy breve. El catastrofismo subyace en el pensamiento de aquellos geólogos que aceptan una interpretación literal del libro del Génesis, y en particular el relato del diluvio universal.
Evidentemente no tiene el menor valor argumentar contra el punto de vista catastrofista alegando que en tiempos históricos no ha sido posible detectar ninguna catástrofe de gran magnitud. La hipótesis catastrofista sólo precisa para sustentarse de unos pocos eventos extraordinarios. No obstante, si podemos demostrar la necesidad de que transcurran determinados períodos de tiempo para que procesos en marcha que todos podemos observar hoy en día culminen en determinadas transformaciones geológicas quedará, como mínimo, obviada la necesidad de postular hipótesis catastrofistas. Es evidente, por lo demás, que en la historia de nuestro planeta pueden haber acaecido tanto procesos uniformitaristas como catastrofistas, y casi parece indudable que así ha sido en realidad.
Velikovsky sostiene que en la historia relativamente reciente de nuestro planeta han tenido lugar una serie de catástrofes celestes en forma de colisiones de cometas y planetas, pequeños y no tan pequeños. La posibilidad de colisiones cósmicas nada tiene de absurda, y en tiempos pasados los astrónomos no tuvieron el menor inconveniente en invocarlas para explicar una serie de fenómenos naturales. Por ejemplo, Spitzer y Baade (1951) lanzaron la hipótesis de que los manantiales extra-galácticos de ondas de radio pueden haber tenido su origen en colisiones entre galaxias que encerrasen centenares de miles de millones de estrellas. Esta tesis ha sido abandonada más tarde, no porque carezca de sentido pensar en colisiones cósmicas, sino porque la frecuencia y características de las mismas no concuerda con nuestros conocimientos actuales sobre las fuentes de ondas de radio. Una teoría sobre el manantial energético de los quasars que aún goza de popularidad es la que lo contempla como resultado de colisiones estelares múltiples producidas en el centro de las galaxias, donde en todo caso los eventos catastróficos deben ser completamente normales.
Colisiones y catastrofismo forman parte de la astronomía moderna, y así ha sido desde hace ya algunos siglos (véanse los epígrafes con que se abre el presente escrito). Por ejemplo, en las primeras fases históricas de nuestro sistema solar, cuando albergaba con toda probabilidad muchos más cuerpos celestes de los que acoge en la actualidad —entre los que se incluían muchos con órbitas sumamente excéntricas—, debieron menudear las colisiones. Lecar y Franklin (1973) han investigado cientos de colisiones acaecidas en un período de unos pocos milenios a comienzos de la creación del cinturón de asteroides con objeto de interpretar la configuración actual de esta región de nuestro sistema solar. Harold Urey (1973), en su artículo «Cometary collisions and geological periods», analiza las consecuencias que traería consigo la colisión de la Tierra con un cometa de una masa de alrededor de 1018 gramos, entre ellas la producción de terremotos y la elevación de la temperatura de los océanos. Los sucesos de Tunguska de 1908, en que quedó como la palma de la mano un bosque siberiano, suelen atribuirse a la caída en dicha zona de un pequeño cometa. Los cráteres que tachonan las superficies de Mercurio, Marte, Fobos, Deimos y la Luna son elocuentes testimonios de la existencia de abundantísimas colisiones a lo largo de la historia del sistema solar. Por tanto, nada hay de heterodoxo en la idea de las catástrofes cósmicas, y se trata de un punto de vista genéricamente aceptado en el ámbito de la física del sistema solar, como mínimo desde finales del siglo pasado, época a la que se remontan los estudios sobre la superficie lunar de G. K. Gilbert, el primer director del Instituto Geológico Norteamericano.
Por tanto, ¿a qué viene tanto revuelo? Pues los puntos en litigio son la escala temporal de tales colisiones y las pruebas experimentales aportadas. En los 4600 millones de años de historia de nuestro sistema solar se han producido con seguridad innumerables colisiones. Pero, ¿ha existido alguna de gran importancia en los últimos 3500 años? ¿Puede demostrarnos su existencia el estudio de escritos antiguos? He aquí el meollo del asunto.
Velikovsky ha prestado atención a una amplísima gama de historias y leyendas atesoradas por distintos pueblos, muy distantes entre sí, historias que muestran notables similitudes y concordancias. No soy ningún experto en cultura o lengua de ninguno de esos pueblos, pero me siento aturdido por la concatenación de leyendas acumulada por Velikovsky. Indudablemente algunos expertos en culturas antiguas se han mostrado mucho menos impresionados. Recuerdo, por ejemplo, una discusión sobre Worlds in Collision mantenida con un distinguido Profesor de semíticas de una afamada universidad. Más o menos vino a señalarme lo siguiente: «desde luego, los aspectos y erudición asiriológica, egiptológica y bíblica, así como los referentes a tradición talmúdica y midrásica, son auténticas necedades, pero me he sentido vivamente impresionado por las cuestiones astronómicas». Pues bien, mi punto de vista es precisamente el opuesto. Sin embargo, no quisiera desviarme de mi propósito a través de influencias ajenas. Mi punto de vista personal es que sólo con que fuesen reales el 20% de las concordancias legendarias que presenta Velikovsky, ya habría algo importante necesitado de una explicación. Además, la historia de la arqueología nos presenta una impresionante colección de casos —desde los trabajos de Heinrich Schliemann en Troya a los de Yigael Yadin en Masada— en que se han visto confirmadas por los hechos diversas descripciones fijadas en textos antiguos.
Pues bien, ¿cómo debe interpretarse el hecho de que una amplia gama de culturas independientes entre sí hayan elaborado lo que indudablemente debe considerarse como una misma leyenda? Las posibilidades parecen ser cuatro, a saber, observación común, difusión, conexión mental o mera coincidencia. Examinemos cada una de ellas.
Observación común: Una posible explicación es que todas las culturas en cuestión presenciaran un mismo acontecimiento y lo interpretaran de modo idéntico. Por descontado, la interpretación de qué fue en realidad este evento común no tiene por qué ser única.
Difusión: Una leyenda creada en el seno de una determinada cultura se difunde gradualmente a otros ámbitos culturales, con algunas modificaciones de poca monta, gracias a frecuentes e importantes migraciones humanas. Un ejemplo trivial de este proceso es la introducción en América de la leyenda de Santa Claus, cuyo origen es la leyenda europea sobre San Nicolás (Claus es un diminutivo alemán de Nicolás), el santo patrón de los niños, y que, en última instancia, deriva de una tradición precristiana.
Conexión mental: A esta hipótesis se la designa a veces como memoria racial o inconsciente colectivo. Según la misma, existen ciertas ideas, arquetipos, figuras legendarias e historias impresas en el ser humano desde el momento mismo de su nacimiento, quizá de modo similar a como un babuino recién nacido ya siente temor ante las serpientes o un pájaro al que se hace crecer aislado de sus congéneres no por eso ignora las técnicas de construcción de nidos. Evidentemente, si una historia legendaria deriva de la observación o la difusión combinadas con la «conexión mental», tiene muchas más probabilidades de pervivir culturalmente.
Coincidencia: Por mero azar dos leyendas elaboradas independientemente pueden encerrar un contenido similar. En la práctica, tal hipótesis se diluye en la de la conexión mental.
Si deseamos examinar críticamente una serie de aparentes concordancias, ante todo debemos tomar una serie de precauciones obvias. ¿Las historias consideradas exponen en realidad lo mismo y, si así es, lo hacen recurriendo a idénticos elementos esenciales? Suponiendo que interpretemos debidamente una serie de observaciones comunes, ¿puede asegurarse que daten de la misma época? ¿Puede excluirse con toda seguridad la posibilidad de contacto físico entre representantes de diferentes culturas, tanto en la época en discusión como en un momento ulterior? Velikovsky se inclina claramente por la hipótesis de la observación común, al tiempo que parece descartar con exagerado simplismo la hipótesis de la difusión. Por ejemplo, dice Velikovsky en la página 303:[6] «¿Cómo es posible que temas folklóricos insólitos lleguen hasta islas lejanas cuyos aborígenes carecen de medios para cruzar los mares?». No sé bien a qué islas y aborígenes se está refiriendo Velikovsky en este párrafo, pero es obvio que los habitantes de cualquier isla deben haber llegado a ella de algún modo. No creo que Velikovsky crea en una creación distinta y diferenciada para, por poner un ejemplo, las islas Gilbert y las islas Ellice. En los casos de Polinesia y Melanesia disponemos actualmente de pruebas irrefutables sobre la realización de abundantes viajes por mar durante el último milenio en los que se atravesaban distancias de incluso varios miles de kilómetros, y muy probablemente tales travesías también hayan tenido lugar en épocas anteriores (Dodd, 1972).
Otro ejemplo. ¿Cómo puede explicar Velikovsky que la palabra tolteca para designar a «dios» haya sido teo, y así nos lo certifica Teotihuacán («Ciudad de los dioses»), cerca de la actual Ciudad de México, donde la ciudad sagrada es conocida por San Juan Teotihuacán? No hay ningún suceso celestial común que pueda explicar de un modo aceptable tal coincidencia. El tolteca y el náhuatl no son lenguas indoeuropeas, y parece altamente improbable que la palabra que designe a «dios» se halle impresa en todo cerebro humano. Y sin embargo teo tiene una indudable raíz común con otros términos indoeuropeos relacionados con el concepto «dios», y conservados en palabras tales como «deidad» o «teología». Las hipótesis preferibles en el presente caso son las de coincidencia o difusión. Parecen existir ciertas pruebas de contactos precolombinos entre el Viejo y el Nuevo Mundos. Con todo, no por ello puede descartarse alegremente la hipótesis de la coincidencia. Si comparamos dos lenguas, cada una de ellas con decenas de miles de palabras, habladas por seres humanos con la lengua, los dientes y la laringe idénticas, nada tiene de sorprendente que unas pocas palabras sean casualmente idénticas. Pues bien, creo que todas las coincidencias que expone Velikovsky pueden ser explicadas de forma similar a las que acabo de reseñar.
Tomemos un ejemplo del método que emplea Velikovsky para enfocar tales problemas. Señala que ciertas historias muy similares, directa o vagamente conectadas con eventos celestiales, encierran referencias a una bruja, un ratón, un escorpión o un dragón (págs. 77, 264, 305, 306, 310). Y he aquí su explicación: en el momento mismo en que algunos cometas pasaron muy cerca de nuestro planeta, se vieron desfigurados por fenómenos gravitatorios o eléctricos hasta el punto de adoptar la forma de una bruja, un ratón, un escorpión o un dragón, formas clara e indudablemente interpretadas como correspondientes a un mismo animal por pueblos culturalmente aislados y de características muy diferentes entre sí. Aun dando por buena la hipótesis de que ciertos cometas se aproximen enormemente a la Tierra, no existe la menor prueba que nos incline a creer que formas tan precisas como, por ejemplo, la de una mujer montada en una escoba voladora y tocada con un sombrero cónico puedan haberse generado de este modo. La experiencia que poseemos del Rorschach y otros tests psicológicos proyectivos de tipo similar nos indica que individuos distintos ven la misma imagen no representativa de modos diferentes. Pero Velikovsky aún va más lejos, y cree que la aproximación a la Tierra de una «estrella» que identifica con Marte produce tal transfiguración en el perfil externo del planeta que acaba adoptando (pág. 264) indiscutible aspecto de leones, chacales, perros, cerdos y peces; en su opinión, así se explica el culto a los animales mantenido por los egipcios. No se trata de un razonamiento que nos capte por su solidez, y poco más o menos nos sería igualmente plausible admitir que dos mil años antes de Cristo toda esta colección zoológica era capaz de volar por su cuenta y de ahí que se la pudiese contemplar en los cielos. Una hipótesis mucho más respetable es la de la difusión. Por lo demás, y dentro de otro contexto, he dedicado buena parte de mi tiempo a estudiar las leyendas sobre dragones elaboradas por distintos pueblos de nuestro planeta, y me impresionó ver cuán diferentes pueden llegar a ser estas bestias míticas a pesar de que a todas las denominen dragones los escritores occidentales.
También a modo de ejemplo, consideremos la argumentación desarrollada en la segunda parte del capítulo 8 de Worlds in Collision. Velikovsky sostiene la existencia de una tendencia generalizada dentro de las culturas antiguas a creer que el año tenía 360 días, el mes 36 días y, por tanto, el año diez meses. Velikovsky no ofrece ninguna justificación física del caso, aunque sí señala que el conocimiento de su oficio que tenían los astrónomos de la antigüedad difícilmente podía conducirles a pasar por alto o equivocarse en cinco días por año o 6 cada lunación. Pronto la noche se mostraría brillante mientras la astronomía oficial consideraba que corría una fase de luna nueva, comenzarían a caer nevadas en el mes de julio y los astrólogos iban a pasar más hambre que un maestro de escuela. Por lo demás, tras la experiencia de un trato frecuente con astrónomos contemporáneos, no comparto con Velikovsky su creencia en la infalible precisión de los cómputos elaborados por sus lejanos antecesores. Velikovsky sugiere que estas aberrantes convenciones acerca del calendario reflejan verdaderos cambios en la duración de los días, meses y/o años, al tiempo que constituyen claras pruebas de la aproximación al sistema Tierra-Luna de cometas, planetas u otros visitantes celestes.
Existe otra explicación mucho más plausible, la que toma en cuenta como punto de partida que no existe un número exacto de lunaciones dentro de un año solar ni un número exacto de días en una lunación. Tales inconmensurabilidades deben haber incomodado a toda cultura con conocimientos aritméticos pero aún no familiarizada con los problemas de los grandes números y los números fraccionarios. Incluso hoy en día siguen considerando como estorbos tales inconmensurabilidades las gentes de religión musulmana y judía cuando constatan que tanto el ramadán como la pascua judía se presentan en fechas del calendario solar que varían de año en año. En los asuntos humanos existe un claro chauvinismo en favor de los números enteros, fácilmente discernible al hablar de aritmética con los niños. Por tanto, suponiendo su existencia, creo que las irregularidades del calendario quedan mucho más plausiblemente explicadas por esta vía.
Trescientos sesenta días por año es una convención (temporal) obvia para civilizaciones con una aritmética de base 60, tal como era el caso de las culturas sumeria, acadia, asiria y babilónica. Por otro lado, treinta días por mes o diez meses al año pueden resultar convenciones muy atractivas para los entusiastas de una aritmética de base decimal. Me pregunto si más que con una colisión entre Marte y la Tierra no estaremos habiéndonoslas con un eco del enfrentamiento entre los defensores de una aritmética de base 60 y los veladores de una aritmética de base 10. Si bien es indudable que durante la antigüedad el gremio de los astrólogos pudo llegar a sentirse dramáticamente agotado al ver la celeridad con que quedaba desacompasado cualquiera de los calendarios que construyeran, pero eran gajes del oficio, y a cambio permitía eliminar la angustia mental derivada del manejo de las fracciones. Así pues, de hecho, la piedra angular sobre la que se apoya todo este asunto parecen ser las deficiencias inherentes a un pensamiento cuantitativo embrionario.
Un experto en cómputo del tiempo durante la antigüedad (Leach, 1957) señala que en las culturas antiguas los ocho o diez meses del año tenían un nombre, pero que los restantes, dada su falta de importancia económica en el marco de una sociedad agrícola, no lo tenían. Diciembre, palabra derivada del latín decem, significa el décimo mes, no el duodécimo. (Septiembre el séptimo, octubre el octavo y noviembre el noveno, por idénticas razones). En los pueblos que se hallan en una fase precientífica de su desarrollo no suelen contarse los días del año por estar muy poco habituados al manejo de grandes cifras, de ahí que el punto de referencia con que se rigen suelan ser los meses. Uno de los más grandes historiadores de la ciencia y la matemática antiguas, Otto Neugebauer (1957), señala que, tanto en Mesopotamia como en Egipto, estuvieron simultáneamente en uso dos calendarios diferenciados y mutuamente excluyentes. Por un lado, un calendario civil cuya función primordial era satisfacer las necesidades de cómputo, por otro, un calendario agrícola, por lo general avanzado con respecto al anterior y de difícil manejo, aunque mucho más ajustado a las realidades estacionales y astronómicas. Muchas culturas de la antigüedad resolvieron el problema de la duplicidad de calendarios limitándose a añadir cinco días festivos al final de cada anualidad. Se me hace difícil admitir que la existencia de años de 360 días entre pueblos en estadio precientífico pueda ser una prueba irrefutable de que por entonces para completar su revolución en torno al Sol la Tierra empleaba 360 días en lugar de los 365 que detectamos actualmente.
En principio, una forma de resolver la discrepancia es examinar el crecimiento de los anillos de coral, pues sabemos actualmente que marcan con notable regularidad el número de días por mes (sólo en los corales intermareales) y por año. En tiempos históricos ya recientes no parecen haber existido disquisiciones de importancia acerca del número de días de una lunación o de una anualidad, y el gradual acortamiento (no prolongación) de días y meses con respecto al año a medida que transcurre el tiempo viene siendo considerado desde tiempo atrás acorde con los postulados de la teoría de las mareas y la conservación de la energía y el momento angular en el sistema físico Tierra-Luna, sin que se apele a comentarios complementarios o a cualquier otra intervención exógena.
Otro problema que plantea el método de Velikovsky es la sospecha de que teorías vagamente similares entre sí pueden estar refiriéndose a períodos completamente diferentes. En su Worlds in Collision ignora casi por completo el tema del sincronismo entre leyendas distintas, aunque Velikovsky lo tratara en alguno de sus trabajos ulteriores. Por ejemplo, Velikovsky señala (p. 31) que los escritos sagrados occidentales y los hindúes comparten la idea de cuatro edades antiguas culminadas en una catástrofe cósmica. Sin embargo, tanto en el Hagavad Gita como en los Vedas encontramos grandes divergencias en cuanto al número de tal tipo de edades acaecidas, llegando incluso a sostenerse que se han sucedido un número infinito de estas. Más aún, en estos textos orientales se especula el tiempo transcurrido entre las más espectaculares catástrofes (por ejemplo, Campbell 1974), cifrándose en miles de millones de años. Tales apreciaciones no casan en lo más mínimo con la cronología de Velikovsky, quien supone períodos intermedios de centenares o miles de años, es decir, que su hipótesis y las fechas que aporta para sustentarla difieren en un factor del orden de millones. Por otra parte, Velikovsky señala (p. 91) que las tradiciones bíblica, mexicana y griega comparten discusiones vagamente similares sobre vulcanismo y las corrientes de lava. No hay el menor intento de demostrar que tales fenómenos geológicos hayan tenido lugar en épocas ni siquiera relativamente próximas entre sí, y aunque en las tres áreas citadas se han producido erupciones de lava en época histórica, no hay la menor necesidad de recurrir a una causa exógena común para darles cumplida explicación.
A pesar del copioso número de fuentes de referencia citadas, creo que la argumentación de Velikovsky encierra un amplio número de presupuestos acríticos y no demostrados. Permítaseme mencionar algunos pocos. En el texto se recoge una idea muy interesante, a saber, que toda referencia mitológica hecha por cualquier pueblo a propósito de cualquier dios vinculado con un cuerpo celeste representa, de hecho, una observación astronómica directa del mismo. Se trata de una hipótesis atrevida, aunque no sé cómo, aceptándola, pueda llegar a explicarse, por ejemplo, que Júpiter se le apareciese en forma de cisne a Leda mientras que ante Danae optara por convertirse en una lluvia de oro. En la página 247 recurre a la hipótesis identificadora entre dioses y planetas para establecer la cronología de Homero. Sea como fuere, Velikovsky toma las palabras de Homero y Hesíodo al pie de la letra cuando relatan el nacimiento de Atenea de la cabeza del padre Júpiter, con lo cual acepta la hipótesis de que el cuerpo celeste asociado a Atenea fue expulsado por el planeta Júpiter. Pero, ¿cuál es el cuerpo celeste asociado a Atenea? Una y otra vez se le identifica con el planeta Venus (Cap. 9 de la Primera parte y otros varios lugares de la obra). Leyendo la obra de Velikovsky es difícil que nadie llegase a la conclusión de que los griegos acostumbraban identificar a Afrodita con Venus, mientras que a Atenea no solía asociársele ningún cuerpo celeste. Más aún, Atenea y Afrodita eran diosas «contemporáneas», nacidas ambas mientras Zeus reinaba sobre todos los dioses. Pues bien, en la página 251, Velikovsky señala que Luciano «no se percató de que Atenea es la diosa del planeta Venus». El pobre Luciano parece mantener la muy errónea opinión de que la diosa del planeta Venus es Afrodita. Sin embargo, en la nota que aparece en la página 361 Velikovsky comete por primera y única vez a lo largo del libro el desliz de utilizar la forma «Venus (Afrodita)». En la página 247 se nos habla de Afrodita como diosa de la Luna. Pero entonces, ¿quién era Artemisa (o Selene, de acuerdo con una denominación aún más antigua), la hermana del Apolo solar? De acuerdo con mis conocimientos sobre el tema, no niego que puedan existir buenas razones que justifiquen la identificación de Atenea con Venus, pero es indudable que la misma no ocupa un lugar de preeminencia en el corpus de conocimiento actual ni en el que imperaba un par de milenios atrás, necesidad por lo demás imprescindible para que se mantenga en pie el hilo argumental sostenido por Velikovsky. Detectar una identificación celestial de Atenea comentada tan a la ligera no contribuye precisamente a incrementar nuestra confianza ante las observaciones que se adjuntan acerca de otros mitos astrales mucho menos familiares en nuestra civilización.
Hay otras varias observaciones de Velikovsky sobre las que nos ofrece justificaciones en extremo inadecuadas a pesar de su primordial importancia para uno o más de los temas en que centra su obra. Por ejemplo, en la página 283 sostiene que «al penetrar en la atmósfera terrestre, los meteoritos producen un tremendo estrépito», cuando todas las observaciones señalan que lo hacen de forma completamente silenciosa; en la página 114 sostiene que «cuando un rayo alcanza a un imán invierte su polaridad»; en la página 51 traduce «Barad» como meteoritos; en la página 85 sostiene que «como es bien sabido, Palas es otro de los nombres asignado a Tifón». En la página 179 Velikovsky señala que cuando los nombres de dos dioses se unifican en uno solo mediante el uso de un guión, se quiere dar a entender la asignación de un atributo preciso del cuerpo celestial involucrado en el binomio. Por ejemplo, Velikovsky interpreta Ashteroth-Karnaim, una Venus astada, como un planeta Venus en fase creciente, prueba de que en tiempos pretéritos Venus se hallaba tan próximo a nuestro globo como para que sus fases fuesen discernibles a simple vista. Pero de ser cierto el principio relacional apuntado, ¿cómo debe interpretarse, por ejemplo, el binomio sagrado Amón-Ra? ¿Acaso debe entenderse que los egipcios veían el sol (Ra) como un carnero (Amón)?
En la página 63 se señala que, cuando en la Biblia se habla de la muerte de los «primogénitos» de Egipto a causa de la décima plaga del Éxodo, debe entenderse en realidad que los condenados a muerte son los «elegidos». Se trata de un punto bastante importante, y nos permite inferir que cuando la Biblia entra en contradicción con las hipótesis de Velikovsky éste adopta la decisión de retraducirla de acuerdo con sus intereses. Todos los interrogantes planteados precedentemente tienen respuestas bastante simples, aunque es inútil buscarlas en Worlds in Collision.
No pretendo sugerir que todas las concordancias legendarias derivadas de tradiciones antiguas que nos plantea Velikovsky presenten fallas similares, aunque sí buen número de ellas, y en todo caso las que se ven libres de ellas muy bien pueden tener otro tipo alternativo de explicación, por ejemplo la difusión de tradiciones de uno a otro pueblo o civilización.
Ante un análisis de leyendas y mitos de perfiles tan borrosos como los apuntados, toda evidencia corroboradora procedente de otros ámbitos sería gozosamente recibida por los defensores de las argumentaciones de Velikovsky. Me sorprende la ausencia de toda prueba confirmadora procedente del mundo del arte. Desde unos 10 000 años antes de nuestra era, como mínimo, la humanidad ha ido produciendo una amplísima gama de pinturas, bajorrelieves, sellos cilíndricos y muchos otros tipos de objetos de arte. En ellos se hallan representados todo tipo de temas importantes dentro de las culturas que los han creado, de modo muy particular los de orden mitológico. En tales obras de arte no es raro que se recojan representaciones diversas de eventos astronómicos. Recientemente (Brandt et al., 1974) se han descubierto representaciones pictóricas primitivas en cavernas situadas en el sudoeste americano que aportan pruebas irrefutables de que quedó registro explícito de la aparición en los cielos de la supernova del Cangrejo en el año 1054, suceso del que también se guarda noticia en los anales chinos, japoneses y árabes de la época. Se ha solicitado el interés de los arqueólogos para que rastreen informaciones pictóricas guardadas en cavernas en las que se recojan representaciones de la aparición de otra supernova en épocas aún más tempranas, la de la Supernova Gum (Brandt et al., 1971). No obstante, la aparición en los cielos de una nueva estrella no es ni de lejos un acontecimiento tan impresionante como para serlo la aproximación a nuestro globo de otro planeta, que se supone iría inevitablemente acompañada de residuos interplanetarios y descargas lumínicas que afectarían a la Tierra. Existe un buen número de cavernas situadas a altitudes tales y a tales distancias del mar como para que jamás haya cabido la posibilidad de que sufrieran inundaciones. Dando por supuesto que acaecieran las catástrofes descritas por Velikovsky, ¿por qué no queda el menor registro gráfico contemporáneo de las mismas?
Por tanto, no me parecen en absoluto convincentes las fundamentaciones legendarias solicitadas en apoyo de las hipótesis de Velikovsky. Si su idea de colisiones planetarias y catastrofismos globales acaecidos en épocas recientes contara con el soporte de pruebas físicas notablemente sólidas, podríamos sentirnos tentados a darle cierta credibilidad. Pero si las pruebas aportadas carecen de solidez, considero que las de orden mitológico no llegan a mantenerse en pie por sí solas.
Quisiera presentar ahora un breve resumen de los rasgos que definen las principales hipótesis defendidas por Velikovsky. Al hacerlo, señalaré su relación con los acontecimientos descritos en el libro del Éxodo, y no debe olvidarse que las tradiciones recogidas por otras culturas parecen concordar con la descripción bíblica de los sucesos.
El planeta Júpiter expulsó de su seno un cometa de grandes dimensiones que hacia el 1500 antes de nuestra era colisionaría levemente con nuestro planeta. Y de tal colisión derivan, directa o indirectamente, todas las plagas y tribulaciones faraónicas descritas en el Éxodo bíblico. La materia responsable de que las aguas del Nilo se convirtieran en sangre procedía del cometa. Las alimañas descritas en el Éxodo provienen del cometa, las moscas y quizá los escarabajos se han visto empujados a la fecundación y a multiplicarse gracias al calor por éste desprendido, como sucediera en el caso de las ranas, originariamente terrestres. Los terremotos provocados por el cometa arrasaron las edificaciones egipcias sin dañar en absoluto las de los hebreos. (A decir verdad, lo único que parece no tener su origen en el cometa es el colesterol responsable del endurecimiento del corazón del faraón egipcio).
Cómo no, todo lo indicado y más se desprendió de la cola del cometa, responsable también de que las aguas del Mar Rojo se abrieran en dos cuando Moisés alzó su vara ante ellas, tal vez a causa de la marea creada por el campo gravitatorio del cometa o a causa de alguna imprecisa interacción eléctrica o magnética desencadenada entre éste y el Mar Rojo. Luego, una vez cruzaron sin el menor percance los hebreos, evidentemente el cometa se alejó lo suficiente como para que las aguas partidas en dos volvieran a su viejo cauce y ahogaran a las huestes del faraón. Durante los cuarenta años subsiguientes, mientras vagaban errantes por el desierto del pecado, los hijos de Israel se alimentaron del maná que les caía de los cielos, que resultó ser un compuesto de hidrocarbonos (o carbohidratos) originados en la cola del cometa.
Otra posible lectura de Worlds in Collision parece dar a entender que entre el desencadenamiento de las plagas y los sucesos del Mar Rojo debió transcurrir un mes o dos y que tuvieron sus orígenes en sendos pasos del cometa por nuestra atmósfera. Tras la muerte de Moisés, una vez el manto del liderazgo ha pasado a hombros de Josué, este mismo cometa volverá a rozar nuestro planeta con chirriante estruendo. Cuando Josué clama «Sol, párate sobre Gibeón; y tú, Luna, sobre el valle de Ajalón», la Tierra —quizás a causa una vez más de interacción gravitatoria, o tal vez en razón de cierta inducción magnética inespecífica generada sobre la corteza terrestre— cesa inmediatamente de girar y le permite a Josué alcanzar la victoria en la batalla. Acto seguido el cometa está a punto de colisionar con Marte, interaccionando con él con tal fuerza que le arranca de su órbita y le pone en peligro por dos veces de chocar con nuestro planeta, cuasi-colisiones que provocan la destrucción de los ejércitos del rey asirio Sanaquerib, responsable de la miserable existencia que venían soportando las últimas generaciones de israelitas. En la fase siguiente Marte se incorpora a su órbita actual y el cometa entra en órbita circular alrededor del sol para convertirse en el planeta Venus, que en opinión de Velikovsky no había existido hasta este preciso instante. Mientras tanto, la Tierra se ponía de nuevo en movimiento, y éste mantenía unas características muy similares a las que tuviera antes de todos estos encuentros celestes.
Hasta alrededor del siglo VII a. C. no debió producirse ningún comportamiento planetario aberrante, y ello a pesar de la abundancia con que parecen haberse producido durante el segundo milenio.
Nadie, ni defensores ni detractores, podrá dejar de admitir que se trata de un relato notable y sorprendente. Pero además, y por fortuna, se trata de un relato susceptible de verse sometido a contrastación científica. Las hipótesis de Velikovsky le llevan a efectuar ciertas predicciones y deducciones. Por ejemplo, que los cometas son grandes masas de materia expulsadas del seno de los planetas; que los cometas son capaces de pasar muy cerca de los planetas, incluso rozarlos, creando perturbaciones; que en los cometas, así como en las atmósferas de Júpiter y Venus, viven alimañas; que en todos estos lugares que acabamos de citar también podemos encontrar carbohidratos; que en la península de Sinaí cayeron de los cielos suficientes carbohidratos como para alimentar durante cuarenta años a las errabundas masas israelitas que cruzaban el desierto; que órbitas excéntricas de planetas y cometas pueden tornarse perfectamente circulares tras el paso de unos cientos de años; que se producían fenómenos volcánicos y tectónicos en nuestro planeta e impactos de diferentes cuerpos celestes sobre la superficie lunar simultáneamente a tales catástrofes; y así sucesivamente. Deseo discutir cada uno de tales puntos así como algunos otros no mencionados hasta aquí, como por ejemplo el supuesto de que la superficie de Venus se halla a elevada temperatura, que aunque sea un aspecto secundario con respecto a la sustentación de sus hipótesis no por ello ha dejado de jugar un papel primordial como prueba a favor post hoc. También deseo someter a examen una «predicción» adicional y fortuita de Velikovsky, a saber, que los casquetes polares de Marte están compuestos por carbono o carbohidratos. La conclusión de mi análisis crítico es que cuando Velikovsky se muestra original en sus planteamientos es más que probable que esté equivocado, mientras que en aquellos puntos en que acierta se sustenta en ideas ya previamente empleadas por otros. No son pocas las veces en las que además de sustentar errores no presenta la menor originalidad, aspecto este último de notable importancia pues se ha mantenido que ciertas circunstancias (por ejemplo, la elevada temperatura de la superficie de Venus) fueron predichas por Velikovsky en momentos en que todo el mundo las imaginaba muy distintas. Pero como tendremos oportunidad de ver, en realidad no ha sido así.
En las discusiones que siguen, intentaré utilizar, siempre que me sea posible, razonamientos simples de orden cuantitativo. Evidentemente, los argumentos cuantitativos constituyen una malla mucho más fina que los cualitativos en cuanto a establecer un cribado de hipótesis. Por ejemplo, si afirmo que tiempo ha una enorme ola sumergió bajo las aguas a nuestro planeta, puedo aportar en favor de mi aserto una amplia gama de catástrofes, desde la inundación de regiones litorales hasta una inundación generalizada. Pero si especifico que la ola generada por la marea tenía una altura de alrededor de unos 200 kilómetros, sin duda alguna estaré hablando de una catástrofe del último de los tipos indicados, aunque quizás entonces existan una serie de evidencias críticas que nos inclinen a descartar la existencia de una ola de tales dimensiones. Para que los argumentos de orden cuantitativo pueda comprenderlos cualquier lector que no esté especialmente familiarizado con la física elemental he intentado, y de forma muy especial en los apéndices (véase páginas 409-414), reflejar todos los pasos esenciales del razonamiento y utilizar los argumentos más sencillos a condición de que no se alteren con ellos las ideas físicas esenciales implicadas. Quizá debo señalar que la verificación de hipótesis cuantitativas es completamente rutinaria y usual en las ciencias físicas y biológicas de hoy en día. Una vez verificadas las hipótesis y dejadas de lado las que no se ajusten a los estándares de análisis indicados, resulta inmediata la necesidad de plantear nuevas hipótesis que presenten una mejor concordancia con los hechos.
Hay otro aspecto vinculado con la metodología científica que creo necesario recalcar. No todas las aserciones científicas tienen idéntico peso específico. Por ejemplo, la dinámica newtoniana y las leyes de conservación de la energía y del momento angular se asientan sobre bases extremadamente sólidas. Son literalmente millones los experimentos independientes entre sí que acuden en apoyo de su plena validez, no sólo sobre nuestro planeta, sino que las modernas técnicas de observación astrofísica nos la testifican para cualquier otro lugar del sistema solar, dentro de otros sistemas solares e incluso en el ámbito de otras galaxias que no sean la nuestra. Por el contrario, extremos tales como la naturaleza de las superficies planetarias, de sus atmósferas o de sus núcleos internos se apoyan en bases muchísimo más débiles, como manifiestan los científicos dedicados al estudio de los planetas durante estos últimos años. Un buen ejemplo de la distinción recién establecida nos lo ofrece la aparición del cometa Kohoutek en 1975. La primera vez que se observó dicho cometa se encontraba a una enorme distancia del Sol. Se establecieron un par de predicciones basadas en las primeras observaciones efectuadas. La primera de ellas, fundamentada en las leyes de la dinámica newtoniana, tenía como objeto la determinación de la órbita del cometa, cuál iba a ser su posición en tiempos futuros, en qué momentos iba a ser posible observarlo desde nuestro planeta antes de la salida del sol, en qué otros tras su ocaso, etc. El ajuste entre predicciones y hechos observados fue milimétrico. El segundo núcleo de predicciones se centraba en el brillo lumínico del cometa, basado en conjeturas sobre el grado de vaporización de los hielos del cometa, responsable de la larga cola que se encarga de reflejar la luz solar. En este segundo punto las predicciones fueron erróneas, y el cometa, lejos de rivalizar con Venus en cuanto a brillo, era imposible de detectar por la inmensa mayoría de los observadores a simple vista. No obstante, la velocidad y grado de vaporización depende directamente de la estructura química y geométrica del cometa, que en el mejor de los casos sólo conocemos muy someramente. Pues bien, en todo análisis de las hipótesis vertidas en Worlds in Collision debe tenerse siempre muy presente esta misma distinción entre argumentos con sólida base científica y aquellos otros que se cimentan en aspectos físicos y químicos conocidos tan sólo de un modo superficial y fragmentario. Debe otorgarse primordial importancia a los argumentos basados en la dinámica newtoniana y en las leyes físicas de conservación. Aquellos otros que se apoyan, por ejemplo, en propiedades características de las superficies planetarias, deben ser considerados como menos determinantes. Tras nuestro análisis se observará que las hipótesis de Velikovsky se encuentran con graves dificultades en ambos campos, aunque, repito una vez más, un grupo de dificultades es mucho menos determinante que el otro en vistas a formar nuestra opinión crítica sobre el asunto.
Las hipótesis de Velikovsky toman como punto de arranque un evento jamás observado por ningún astrónomo y que entra en contradicción con buena parte de nuestros actuales conocimientos sobre la física de planetas y cometas, a saber la expulsión del seno de Júpiter, quizás a causa de un choque con otro planeta gigante, de un objeto de dimensiones planetarias. Los afelios (los puntos de la órbita de un cuerpo celeste situados a la mayor distancia posible del Sol) de los cometas con órbitas de período corto presentan una tendencia estadística a situarse en las proximidades de Júpiter. Laplace y otros astrónomos de su tiempo lanzaron la hipótesis de que Júpiter era la fuente emisora de tal tipo de cometas. Se trata de una hipótesis totalmente innecesaria ya que hoy en día sabemos que cualquier cometa con órbita de período largo puede entrar en trayectorias de período corto a causa de las perturbaciones de campo generadas por Júpiter. Desde hace uno o dos siglos tan sólo se ha mostrado partidario de la vieja hipótesis citada el astrónomo soviético V. S. Vsekhsviatsky, quien parece creer que las lunas de Júpiter arrojan cometas a través de enormes volcanes.
Para alejarse de Júpiter todo cometa debe poseer una energía cinética igual a ½ mve2, donde m es la masa del cometa y ve es su velocidad de escape de Júpiter, calculada en alrededor de 60 km/seg. Sea cual fuere el mecanismo de expulsión, vulcanismo o colisión, una fracción significativa de tal energía cinética, por lo menos un 10% de la misma, se consumirá en calentar el cometa. La energía cinética mínima por unidad de masa expulsada es ½ ve2 = 1,3 X 1013 ergios por gramo, y la cantidad de la misma que se disipa en forma de calor es superior a los 2,5 X 1012 ergios/g. El calor latente de fusión de las rocas es de alrededor de los 4 X 109 ergios por gramo. Se trata del calor que debe aplicarse para convertir roca sólida llevada hasta muy cerca de su punto de fusión en lava líquida; para que una roca situada a bajas temperaturas alcance su punto de fusión es necesaria una energía de alrededor de los 1011 ergios por gramo. En consecuencia, para que Júpiter expulse de su seno un cometa o un planeta deberá haber alcanzado obviamente una temperatura de varios miles de grados, en cuyo caso rocas, hielo y componentes orgánicos se habrán fundido por completo. Cabe incluso la posibilidad de que se hayan visto reducidos a una lluvia de pequeñas partículas de polvo y átomos autogravitantes, situación que por lo demás no describe con excesiva exactitud la naturaleza del planeta Venus. (Incidentalmente, he aquí lo que podría ser un buen argumento velikovskiano para explicar la elevada temperatura de la superficie de Venus, aunque como veremos más adelante no parece concederle importancia).
Otro de los problemas que se plantea es que la velocidad de escape del campo gravitatorio solar de cualquier cuerpo ubicado en Júpiter es de alrededor de 20 km/seg. Por descontado, el mecanismo encargado de expulsar masas materiales de Júpiter debe ajustarse a esta insoslayable realidad. Si el cometa abandona Júpiter a velocidades inferiores a los 60 Km. / seg., volverá a caer sobre el planeta, mientras que si lo hace a velocidad superior a [(20)2 + (60)2]1/2 = 63 km/seg. escapará no sólo de Júpiter sino del propio sistema solar. Así pues, las velocidades compatibles con las hipótesis de Velikovsky se acumulan en un intervalo muy pequeño y, por tanto, altamente improbable.
Otro más de los problemas que se plantean es la enorme masa de Venus, superior a 5 X 1027 gramos, o quizás aún mayor por entonces, ya que según las hipótesis de Velikovsky en una primera fase la trayectoria de dicho planeta transcurría más próxima al Sol que hoy en día. La energía cinética total necesaria para propulsar Venus a la velocidad que le permita abandonar el campo creado por Júpiter será, según un sencillo cálculo, del orden de los 1041 ergios, cantidad equivalente a la energía total irradiada por el Sol durante un año y cien millones de veces superior a la fulguración solar más potente jamás observada. Por tanto, sin mayores pruebas ni discusión, nos vemos solicitados a creer en un fenómeno de eyección en el que entra en juego una energía enormemente superior, a la desplegada en cualquier fenómeno solar, y ello cuando Júpiter es un almacén energético muy inferior al Sol.
Todo proceso que genera objetos de gran tamaño también produce otros más pequeños, especialmente cuando se trata de colisiones como en el caso que nos ocupa. Nuestros conocimientos sobre las leyes físicas que regirán la pulverización ulterior al choque son bastante precisos, y nos permiten afirmar que, por ejemplo, partículas de un tamaño diez veces inferior al de la mayor de las generadas serán cien, o incluso mil veces más numerosas. Por supuesto, Velikovsky sostiene la aparición de una lluvia de piedras como secuela de sus pretendidos encuentros planetarios, e imagina a Venus y Marte arrastrando tras de sí un auténtico enjambre de enormes guijarros; la cohorte de Marte habría sido, por lo demás, la responsable de la destrucción de los ejércitos de Senaquerib. Dando por sentada la veracidad de tales hipótesis, es decir, si tan sólo unos miles de años atrás nuestro planeta tuvo cuasi-colisiones con otros objetos celestes de masa similar a la nuestra, es indudable que hasta hace escasos siglos hemos sido bombardeados con objetos de masa similar a la de nuestra luna y que la caída sobre nuestro planeta de masas susceptibles de abrir cráteres de un diámetro de un par de kilómetros es un fenómeno poco menos que cotidiano. Sin embargo, tanto en la Tierra como en la Luna no detectamos rastros de colisiones recientes y frecuentes con objetos de características como las reseñadas en último lugar. Los escasos objetos celestes que a modo de población prácticamente estable se mueven en órbitas que pudieran llevarles a chocar con la Luna nos permiten explicar a la perfección, siempre que nos remontemos más allá de la cronología geológica, los cráteres que actualmente observamos en la superficie lunar. La ausencia de un populoso enjambre de pequeños objetos celestes que se muevan cruzando la órbita terrestre es otra objeción fundamental a las tesis centrales de Velikovsky.
«Nada hay de absurdo en la idea de que un cometa pueda colisionar con nuestro planeta, aunque es algo ciertamente poco probable» (p. 40). Se trata de una afirmación esencialmente correcta. El problema a resolver es el cálculo preciso de la probabilidad de que se produzcan tales choques, extremo que desgraciadamente Velikovsky deja sin resolver.
No obstante, la física que rige tales fenómenos es por fortuna extremadamente simple, de modo que se puede calcular el orden de magnitud del número de choques prescindiendo incluso de toda consideración de carácter gravitatorio. Los objetos celestes que se mueven según órbitas marcadamente excéntricas y se trasladan desde las proximidades de Júpiter a las de la Tierra lo hacen a velocidad tan extraordinariamente alta que la atracción gravitacional mutua que se ejerce entre ellos y los eventuales objetivos de choque desempeña un papel negligente en la determinación de su trayectoria. En el Apéndice 1 se calcula la probabilidad de que se produzcan el tipo de colisiones que nos ocupa, y puede verse que un «cometa» cuyo afelio (punto más alejado del Sol) se halle cerca de la órbita de Júpiter y cuyo perihelio (punto más cercano al Sol) esté situado dentro de la órbita de Venus no tardará menos de 30 millones de años en colisionar con la Tierra. En este mismo apéndice se deduce que si el objeto celeste en cuestión no es un ente aislado sino que forma parte de la familia de cuerpos celestes que, de acuerdo con nuestras observaciones, se mueven a lo largo de las trayectorias indicadas, el tiempo que tardará en llegar hasta nosotros es superior a la edad misma del sistema solar.
Tomemos como referencia la cifra de 30 millones de años para que las hipótesis de Velikovsky tengan el mayor sesgo cuantitativo posible a su favor. La probabilidad de que la Tierra colisione con algún cuerpo celeste dentro de un determinado año es de 1 sobre 3 X 107; la probabilidad de que lo haga dentro de un milenio concreto, será de 1 sobre 30 000. No obstante, Velikovsky no habla de una, sino de cinco o seis cuasi-colisiones (véase, por ejemplo, p. 388) entre Venus, Marte y la Tierra. Tales colisiones parecen contemplarse como fenómenos estadísticamente independientes, es decir que, de acuerdo con el relato de Velikovsky, no parece existir una serie regular de roces que venga determinada por los períodos orbitales respectivos de los tres planetas. (Si existiese tal intervinculación, cabría la posibilidad de interrogarnos acerca de la probabilidad de que se diera tan notable jugada dentro del billar planetario ateniéndonos a las constricciones temporales postuladas por Velikovsky). Si las probabilidades de choque son independientes entre sí, la probabilidad conjunta de que se produzcan cinco de tales encuentros dentro de un mismo milenio será en el caso más simplificado, de (3 x 107 /103)-5 = (3 X 104)-5 = 4,1 X 10-23, es decir, una probabilidad de 1 sobre alrededor de 100 000 trillones. Para el caso de seis choques dentro de un mismo milenio, la probabilidad será (3 X 107/103)-6 = (3 X 104)-6 = 7,3 X 10-28, es decir, desciende hasta el orden de 1 sobre 70 000 cuatrillones. Desde luego, se trata de los límites inferiores de probabilidad, tanto por la razón apuntada líneas más arriba como por el hecho de que, ante un eventual encuentro con Júpiter, lo más probable es que el cuerpo que chocara con él se viera expulsado irremisiblemente del sistema solar, de modo equivalente a cuanto ha sucedido con el ingenio espacial Pioneer 10. Las probabilidades reseñadas constituyen una calibración adecuada de la validez de las hipótesis de Velikovsky, sin contar, claro está, que se presentan bastantes más problemas que los reseñados hasta ahora. Las hipótesis con tan escasísima probabilidad favorable suelen considerarse insostenibles. Al tomar en cuenta los problemas mencionados en el epígrafe precedente y los que se exponen a continuación, la probabilidad de que la tesis sostenida en Worlds in Collision sea correcta se torna prácticamente nula.
Buena parte de las airadas protestas que levantara Worlds in Collision parece tener su origen en la interpretación que ofrece Velikovsky de la historia de Josué y demás leyendas similares, según las cuales en cierta ocasión la Tierra detuvo su finisecular movimiento de rotación. La imagen del fenómeno que parecen estar pensando los más violentos detractores de Velikovsky sería la que puede contemplarse en la versión cinematográfica del relato de H. G. Wells titulado «El hombre que podía hacer milagros»; La Tierra detiene milagrosamente su rotación pero, a causa de un descuido, no se toman precauciones previsoras sobre los objetos no anclados solidariamente a la superficie del planeta, de manera que siguen moviéndose como de costumbre y, en consecuencia, abandonan la Tierra a una velocidad de alrededor de los 1650 kilómetros por hora. No obstante, es inmediato constatar (Apéndice 2) que una deceleración gradual de un orden aproximado de 10-2 g, puede producirse en un período de tiempo muy inferior a las 24 horas, por tanto, no saldría nada volando por los aires y seguirían conservándose a la perfección incluso las estalactitas y otras delicadas formaciones geomorfológicas similares. Asimismo, en el ya citado Apéndice 2 se demuestra que la energía necesaria para detener la rotación terrestre no sería suficiente como para provocar la fusión del planeta, aunque tal aportación energética sí iba a traducirse en un incremento de la temperatura perfectamente apreciable; el agua de los océanos alcanzaría su punto de ebullición, fenómeno que parecen haber pasado por alto todas las antiguas fuentes citadas por Velikovsky.
Con todo, no son éstas las objeciones más serias que cabe plantear a la exégesis que nos ofrece Velikovsky del relato bíblico de Josué. El problema más serio quizá se ubique en el otro extremo del relato. Más exactamente: ¿cómo pudo la Tierra emprender de nuevo su movimiento de rotación a una velocidad de giro aproximadamente idéntica? Desde luego, no pudo hacerlo por sí sola a causa de la ley de conservación del momento angular. Y sin embargo, Velikovsky ni siquiera parece haberse percatado de que ahí había un problema, y no pequeño, a resolver.
No hay la menor alusión a que el «paro» de la Tierra a causa de una colisión planetaria es muchísimo menos probable que cualquier otra modificación en su movimiento de rotación. De hecho, la posibilidad de que la Tierra anulara su movimiento angular de rotación a causa de una cuasi-colisión con un cometa es mínima. Por lo demás, la de que sucesivas colisiones pusieran nuevamente en movimiento el planeta haciéndole completar una revolución cada veinticuatro horas es enormemente menor.
Velikovsky no es nada preciso al hablarnos del supuesto mecanismo que pudo detener la rotación terrestre. Quizá fuera la acción de las mareas generadas por un campo gravitatorio, quizá la de un campo magnético. Tanto uno como otro tipo de campos generan fuerzas que decrecen de forma tremendamente rápida con la distancia. Mientras la gravitación decrece de forma inversamente proporcional al cuadrado de la distancia, la acción de las mareas lo hace según el inverso del cubo de la misma, y la combinación de uno y otras lo hace de acuerdo con el inverso de su sexta potencia. El campo creado por un dipolo magnético decrece de forma inversamente proporcional al cubo de la distancia y toda marea generada por un campo magnético disminuye mucho más rápidamente que la que tiene su origen en una acción gravitatoria. Sea como fuere, el efecto responsable del frenado actúa casi exclusivamente mientras la distancia entre los cuerpos cuasi-colisionantes es mínima. El tiempo característico o período en que pervive esta máxima proximidad, y por tanto máxima acción mutua, es obviamente 2R/v, donde R es el radio de la Tierra y v la velocidad relativa del cometa con respecto a la Tierra. Suponiendo una v de 25 km/s, el tiempo característico durante el que actúan las fuerzas de frenado de forma eficaz resulta ser de unos diez minutos a lo sumo. La aceleración correspondiente es inferior a 0,1 g, de modo que los ejércitos aún no pueden ser arrojados al espacio sideral. Pero por otro lado, el tiempo característico para la propagación acústica de un fenómeno sobre la Tierra —el tiempo mínimo para que una determinada influencia externa se haga sentir en todo el planeta— es de unos ochenta y cinco minutos. En consecuencia, ni aunque llegara a producirse un roce efectivo entre el cometa y nuestro planeta sería posible en absoluto que el Sol se detuviera sobre Gibeón por mera influencia del paso del cometa.
Se hace realmente difícil seguir el relato de Velikovsky sobre la historia de la rotación de nuestro planeta. En la página 236 se nos habla del movimiento del Sol en los cielos de un modo que, por casualidad, se ajusta tanto en su salida como en su movimiento aparente a como pueda observarse desde la superficie de Mercurio, no desde la de la Tierra. En la página 385 detectamos algo similar a un intento de retirada en toda la línea por parte de Velikovsky, pues nos sugiere que lo sucedido en realidad no fue una modificación en la velocidad angular de la rotación terrestre, sino más bien que durante unas pocas horas el vector que nos representa el momento angular de la Tierra dejó de mantener una inclinación aproximada de 90° con respecto al plano de la eclíptica, como la que tiene en la actualidad, para apuntar directamente al Sol, como sucede en el caso del planeta Urano. Aparte de los graves problemas físicos que plantea admitir tal sugerencia, se trata de un supuesto que entra en flagrante contradicción con las hipótesis precedentes de Velikovsky, ya que, de acuerdo con las mismas, en páginas precedentes ha dado una enorme relevancia al hecho de que en las culturas euroasiáticas y del próximo Oriente quedase registro de una prolongación del día mientras que las culturas norteamericanas hablaban de un alargamiento de la noche. Desde tal perspectiva, no existiría explicación a las informaciones recogidas en México. Creo pues que en este punto deja de lado o en el olvido sus propios argumentos validadores extraídos de los escritos de la antigüedad. En la página 386 nos enfrentamos con un argumento de orden cualitativo, que no vuelve a aparecer por parte alguna, según el cual la Tierra bien pudo haberse detenido por la acción de un campo magnético de gran intensidad. No se menciona en absoluto la intensidad de dicho campo, pero (véanse los cálculos del Apéndice 4) no cabe otra posibilidad que la de que haya sido enorme. No existe el menor indicio en las rocas terrestres de que jamás se hayan visto sometidas a efectos magnetizadores de tan enorme intensidad y, hecho asimismo de fundamental importancia, tenemos pruebas irrefutables, obtenidas por medio de los ingenios espaciales americanos y soviéticos, de que la intensidad del campo magnético de Venus es prácticamente despreciable —muy inferior a los 0,5 gauss que se detectan en la propia superficie terrestre en razón de su propio campo, por lo demás a todas luces insuficiente para dar sostén a las tesis de Velikovsky.
De forma perfectamente razonable, Velikovsky sostiene que una cuasi-colisión de la Tierra con otro planeta debe haber tenido consecuencias dramáticas para nosotros, ya sea a causa de la acción de fuerzas gravitatorias, eléctricas o magnéticas; en este aspecto Velikovsky no acaba de definirse con un mínimo de claridad. Velikovsky sostiene (páginas 96 y 97) «que en tiempos del Éxodo, cuando nuestro mundo se vio violentamente sacudido y bombardeado… todos los volcanes empezaron a vomitar lava y todos los continentes se agitaron por acción de los terremotos». (El subrayado es mío).
Pocas dudas hay de que las cuasi-colisiones postuladas por Velikovsky debieron ir acompañadas de fuertes fenómenos sísmicos. Los sismómetros lunares del Apolo han detectado que, en nuestro satélite, los movimientos sísmicos son más abundantes durante el perigeo lunar, cuando la Tierra y la Luna están más próximos entre sí, y que parecen detectarse indicios de que en tal fase también se producen temblores geológicos sobre nuestro propio planeta. No obstante, la suposición de que en alguna época pretérita «todos los volcanes» terrestres entraran en actividad y se generaran amplias y generalizadas corrientes de lava ya es harina de otro costal. No hay dificultad alguna en establecer una cronología de las lavas volcánicas, y lo que debiera ofrecernos Velikovsky es un histograma del número de corrientes de lava emergidas sobre nuestro planeta en función del tiempo. Creo que dicho histograma pondría de manifiesto que no todos los volcanes terrestres se mantuvieron en actividad entre el 1500 y el 600 antes de nuestra era. Es más, durante dicho período nada hay de especialmente reseñable acerca del vulcanismo terrestre.
Velikovsky cree (página 115) que la aproximación de cometas a nosotros genera una inversión del campo geomagnético. Sin embargo, los datos recogidos en rocas magnetizadas son concluyentes al respecto; las inversiones del campo geomagnético se producen en intervalos de millones de años, no en los últimos milenios, y se presentan con una regularidad que casi cabría calificar de cronométrica. ¿Acaso existe en Júpiter un reloj que proyecta cometas hacia la Tierra cada tantos millones de años? El punto de vista convencional sobre este tema es que la Tierra experimenta una inversión de polaridad de la dinamo que genera el campo magnético terrestre, en cuya génesis no interviene ningún elemento exterior a nuestro planeta. No cabe duda de que se trata de una explicación bastante más verosímil.
La afirmación de Velikovsky de que la génesis de las montañas terrestres se produjo hace tan sólo unos pocos milenios se ve desmentida por todas las pruebas geológicas a nuestra disposición, de acuerdo con las cuales los orígenes de las elevaciones de nuestro planeta se sitúan decenas de millones de años atrás. La idea de que los mamuts quedaran sometidos a una profunda congelación a causa de un rápido movimiento del polo geográfico terrestre acaecido hace unos pocos milenios de años necesita ser verificada (por ejemplo recurriendo al carbono-14 o a la datación de aminoácidos por racemización), y ciertamente me llevaría una gran sorpresa si de tales verificaciones se desprendiera que tuvo lugar en época muy reciente.
Velikovsky cree que la Luna se vio influenciada por las catástrofes que sobrevinieron en nuestro planeta y que unos pocos milenios atrás sufrió eventos tectónicos similares en su superficie responsables de la génesis de buena parte de los cráteres que hoy presenta (véase Parte II, capítulo 9). Esta suposición también presenta algunos problemas en su contra. Las muestras de la superficie lunar recogidas en las distintas misiones Apollo no contenían rocas de fusión formadas en épocas tan recientes, remontándose su antigüedad a unos pocos cientos de millones de años atrás.
Por otro lado, si hace unos 2700 a 3500 años se formaron abundantes cráteres en la Luna debió existir una producción similar de tales cráteres en nuestro planeta en este mismo período con un diámetro no inferior al kilómetro. La erosión existente en la superficie terrestre no explica la desaparición de todo cráter de este tipo en un lapso de veintisiete siglos. Pues bien, no existe un gran número de cráteres terrestres de tales características y edad; para ser más exactos, no existe ni uno solo. Sobre estos puntos Velikovsky parece haber ignorado toda prueba crítica, pues al examinar los datos fehacientes a nuestra disposición sus hipótesis quedan clara y rotundamente invalidadas.
Velikovsky cree que al pasar Venus o Marte muy cerca de la Tierra deben haberse producido olas de varios kilómetros de altura (páginas 70 y 71). De hecho, si jamás, como parece pensar Velikovsky, tales planetas pasaron a unas decenas de miles de kilómetros del nuestro las mareas producidas sobre la Tierra tanto de agua como de material sólido, tuvieron que alcanzar una altura de cientos de kilómetros. Se trata de un dato fácilmente calculable a partir de la elevación que alcanzan las mareas lunares en la actualidad, proporcional a la masa del cuerpo generador de las mismas e inversamente proporcional al cubo de la distancia. Por cuanto me es dado conocer, no existe la menor evidencia geológica de una inundación global de nuestro planeta en ningún momento situada entre quince y seis siglos antes de nuestra era. Si se hubiera producido tan gigantesca inundación, aunque hubiese sido de breve duración, quedaría algún claro registro geológico del singular fenómeno. ¿Qué decir de los restos arqueológicos y paleontológicos? ¿Dónde están las pruebas de una extinción generalizada de la fauna en tal época como resultado de la gigantesca inundación? ¿Dónde las pruebas de fenómenos de fusión en las proximidades de los puntos que sufrieron con mayor intensidad los efectos de las espeluznantes mareas?
Las tesis de Velikovsky tienen algunas consecuencias peculiares de orden químico y biológico, producto de algunas confusiones de bulto en asuntos bastante simples. Por ejemplo, parece ignorar (página 16) que el oxígeno se produce en nuestro planeta como resultado del proceso de fotosíntesis de las plantas verdes. Tampoco se percata de que Júpiter está básicamente compuesto por hidrógeno y helio, mientras que la atmósfera de Venus, que según él no es más que una masa desgajada de Júpiter, está formada en su práctica totalidad por dióxido de carbono. Se trata de puntos básicos para su argumentación, que en consecuencia queda claramente en entredicho. Velikovsky sostiene que el maná caído desde los cielos sobre la península del Sinaí tenía origen cometario, lo que equivale a afirmar que tanto en Júpiter como en Venus existe gran abundancia de hidratos de carbono. Por otro lado, cita numerosas fuentes según las cuales debió caer de los cielos en épocas pretéritas una verdadera lluvia de fuego y nafta, que se interpreta como una suerte de petróleo celestial en ignición desde el momento mismo en que entró en contacto con la oxidante atmósfera terrestre (páginas 53 a 58). Velikovsky cree en la realidad e identidad de ambos grupos de fenómenos, de ahí que en su texto se despliegue y mantenga una extraña confusión entre hidratos de carbono e hidrocarburos. En algunos pasajes de su libro parece lanzar la hipótesis de que durante su errabunda travesía del desierto a lo largo de cuarenta años más que de alimento divino los israelitas se sustentaron con aceite lubricante para motores.
La lectura del texto se complica todavía más cuando parece establecer la conclusión (página 366) de que los casquetes polares de Marte estaban compuestos por maná, ya que de un modo en extremo ambiguo se les describe como «de naturaleza probablemente similar a la del carbono». Los hidratos de carbono presentan una absorción en la banda de los infrarrojos de 3,5 micras muy característica, que tiene como causa la enérgica vibración existente entre los enlaces carbono-hidrógeno. No obstante, en los espectros infrarrojos de los casquetes polares marcianos obtenidos por los ingenios espaciales Mariner 6 y 7 en 1969 no se detecta la menor traza de la reseñada característica. Por otro lado, los ingenios Mariner 6, 7 y 9 y los Viking 1 y 2 han aportado abundantes y concluyentes pruebas sobre la auténtica naturaleza de los casquetes polares marcianos: agua y dióxido de carbono congelados.
Se hace difícil comprender la insistencia de Velikovsky en el origen celestial del petróleo. Algunas de sus fuentes, por ejemplo Herodoto, proporcionan descripciones perfectamente naturales de la combustión de petróleo aflorado hasta la superficie terrestre en zonas de Mesopotamia e Irán. Como señala el propio Velikovsky (páginas 55 y 56), las leyendas sobre lluvias de fuego y nafta tienen como origen aquellas regiones de nuestro planeta en las que existen depósitos naturales de petróleo. Por tanto hay una explicación franca y lisamente terrestre para tal tipo de relatos. La cantidad de petróleo filtrado hacia las entrañas de la Tierra en 2700 años no puede haber sido demasiado grande. Las dificultades que existen hoy en día para extraer petróleo, causa de algunos importantes problemas prácticos de nuestra época, se verían ciertamente paliadas de ser cierta la hipótesis de Velikovsky. Asimismo, partiendo de tales hipótesis es difícilmente explicable que, bajado de los cielos hace unos 3500 años escasos, el petróleo se encuentre en depósitos íntimamente mezclado con fósiles químicos y biológicos cuya existencia se remonta a miles de millones de años atrás. No obstante, este último punto queda fácilmente explicado si, como han concluido la mayoría de geólogos, se postula como origen del petróleo la descomposición de la vegetación del carbonífero y otras eras geológicas anteriores, y no los cometas.
Más extraños aún son los puntos de vista de Velikovsky sobre la vida extraterrestre. Velikovsky cree que buena parte de los «malos bichos» que pueblan nuestro planeta, y en particular las moscas de las que se habla en el Éxodo, cayeron de su cometa. Aunque no se compromete explícitamente a favor de un origen extraterrestre de las ranas, lo hace de modo implícito al citar un texto persa, los Bundahis (página 183), donde parece admitirse una lluvia de ranas cósmicas. Pero limitémonos a considerar la cuestión de las moscas. ¿Debemos esperar en próximas exploraciones de las nubes de Venus y Júpiter el hallazgo de moscas domésticas o de ejemplares de la Drosophila melanogaster? Al respecto Velikovsky es totalmente explícito: «Venus —y probablemente también Júpiter— está poblado de bichos» (página 369). ¿Se derrumbarían las hipótesis de Velikovsky si no encontramos ni una mosca?
La idea de que de entre todos los organismos de nuestro planeta el único que posee un origen extraterrestre es la mosca constituye una curiosa reminiscencia de la encolerizada conclusión de Martín Lutero, para quien, mientras todos los demás seres vivos fueron creados por Dios, las moscas salieron de manos del Diablo ya que no son de la menor utilidad. No obstante, las moscas son insectos tan respetables como cualquier otro, con una anatomía, una fisiología y una bioquímica estrechamente vinculadas a las de todos sus demás congéneres. La posibilidad de que 4600 millones de años de evolución independiente sobre Júpiter —aun cuando se tratara de un planeta de constitución idéntica al nuestro— haya llegado a producir una criatura indiscernible de otros organismos terrestres equivale a interpretar de forma harto errónea el proceso evolutivo. Las moscas poseen los mismos enzimas, los mismos ácidos nucleicos e incluso el mismo código genético (encargado de convertir la información almacenada en los ácidos nucleicos en información proteínica) que todos los demás organismos terrestres. Existen demasiadas vinculaciones e identidades entre las moscas y otros organismos terrestres como para que puedan tener orígenes inconexos, y ello nos lo pone de manifiesto todo análisis mínimamente serio del asunto.
En el capítulo noveno del Éxodo se nos dice que pereció todo el ganado de Egipto mientras que no hubo ni una sola baja entre el de los Hijos de Israel. En este mismo capítulo se nos habla de una plaga que afectó al heno y la cebada, si bien se mantuvieron sanos y salvos trigo y centeno. Esta especificidad y finura selectiva entre las huestes parasitarias es realmente extraña para alimañas cometarias sin ningún contacto biológico previo con la Tierra, mientras que resulta fácilmente explicable en términos de bichos domésticos terrestres.
Una curiosa particularidad de las moscas es su capacidad para metabolizar oxígeno molecular. En Júpiter no hay oxígeno molecular, ni puede haberlo, pues el oxígeno es termodinámicamente inestable en una atmósfera que contenga grandes cantidades de hidrógeno. ¿Acaso hemos de suponer que todo el mecanismo de transferencia de electrones terminales que precisan los seres vivos para asimilar el oxígeno molecular fue desarrollado accidentalmente por los organismos de Júpiter a la espera de que con el tiempo fuesen trasladados hasta la Tierra? Realmente se trataría de un milagro aún mayor que el que presupone el puntual cumplimiento de las tesis fundamentales de Velikovsky acerca de las colisiones entre cuerpos celestes. Velikovsky nos habla de forma colateral y defectuosa (página 187) sobre la «habilidad de muchos pequeños insectos… para vivir en una atmósfera desprovista de oxígeno», lo que nos demuestra que no acaba de comprender con exactitud cuál es el verdadero problema. El interrogante a resolver es cómo un organismo evolucionado en Júpiter puede vivir y desarrollar su metabolismo en una atmósfera rica en oxígeno.
Otro de los problemas que se plantea de forma inmediata es el de la supervivencia de las moscas extraterrestres al incorporarse a nuestro planeta. Las moscas tienen un tamaño y dimensiones muy similares a los pequeños meteoritos. Estos últimos, al penetrar en la atmósfera terrestre siguiendo las trayectorias de los cometas, arden total e irremisiblemente. Lógicamente, al entrar en el seno de la atmósfera de nuestro planeta las alimañas de origen extraterrestre arderán asimismo por entero, y no sólo eso, sino que al igual que sucede actualmente con los meteoritos generados por los cometas, todo bicho exterior se vaporizará de inmediato en átomos. De ahí la imposibilidad práctica de que en tiempos pretéritos Egipto pudiera verse asolado por «enjambres» de alimañas para consternación de su faraón. Por lo demás, las temperaturas desarrolladas en el proceso de eyección por parte de Júpiter de una gran masa cometaria a las que nos hemos referido anteriormente tuvieron forzosamente que achicharrar las moscas de Velikovsky. En consecuencia, las hipotéticas moscas de origen cometario, abrasadas al tiempo que atomizadas, no tuvieron la menor posibilidad de incorporarse a nuestro mundo terrestre.
Por último, el texto de Velikovsky encierra una curiosa referencia a la vida extraterrestre dotada de inteligencia. En la página 364 sostiene que las cuasi-colisiones de Marte con la Tierra y Venus «hicieron altamente improbable la supervivencia de toda forma de vida en una avanzada fase de desarrollo sobre Marte, en el supuesto de que existiera allí algo de tal tipo». Sin embargo, cuando examinamos Marte con cierto detalle, tal como han tenido oportunidad de hacerlo los ingenios espaciales Mariner 9 y los Viking 1 y 2, se observa que aproximadamente una tercera parte del planeta tiene una superficie punteada por cráteres bastante similar a la de la Luna y no presenta otro signo de catástrofes espectaculares que los antiguos impactos que crearon sus cráteres. La mitad de las dos terceras partes restantes del planeta casi no muestra rastro alguno de tal tipo de impactos, aunque sí nos indica que unos mil millones de años atrás debió verse sometida a una tremenda actividad tectónica con abundantes corrientes de lava y fenómenos de vulcanismo. Los pocos pero innegables impactos creadores de cráteres en esta última zona nos muestran fuera de toda duda que se produjeron en época enormemente anterior a unos pocos siglos atrás. No hay forma alguna de reconciliar esta descripción con la idea de un planeta sometido en épocas recientes a catástrofes de tal alcance que eliminaran de su superficie todo vestigio de vida inteligente. Por lo demás, se hace prácticamente imposible encontrar razones que justifiquen una desaparición tan radical de toda brizna de vida en Marte mientras ésta seguía perdurando sobre la Tierra.
Maná, de acuerdo con la etimología que nos ofrece el propio Éxodo, deriva de las palabras hebreas man-hu, expresión que significa: «¿Qué es eso?». ¡He aquí una buena pregunta! La idea de una lluvia de alimentos caída desde cometas no está demasiado bien planteada. La espectroscopia óptica de las colas de los cometas, aun antes de que se publicase Worlds in Collision (1950), puso de manifiesto la presencia en las mismas de hidrocarburos, pero no la de aldehídos, los sillares elementales que conforman los hidratos de carbono. Nada impide, sin embargo, que tales compuestos estuvieran presentes en los cometas. Con todo, el paso del cometa Kohoutek por las proximidades de la Tierra permitió descubrir que los cometas albergan grandes cantidades de nitrilos simples, en particular cianuro de hidrógeno y metilcianuro. Se trata de compuestos venenosos, lo que nos lleva a albergar serias dudas acerca de la comestibilidad de los cometas.
Pero dejemos de lado esta objeción, demos beligerancia a la hipótesis de Velikovsky y calculemos sus consecuencias. ¿Cuánto maná fue necesario para alimentar a los cientos de miles de Hijos de Israel durante cuarenta años? (véase Éxodo, capítulo 16, versículo 35).
En el vigésimo versículo del capítulo 16 del Éxodo leemos que el maná caído durante la noche quedaba completamente infestado de gusanos a la mañana siguiente, suceso perfectamente posible con los hidratos de carbono pero extremadamente improbable en el caso de los hidrocarburos. Siempre cabe la posibilidad de que Moisés fuera mejor químico que Velikovsky. Las anteriores indicaciones ponen de manifiesto la imposibilidad de almacenar el maná, y por tanto debió caer diariamente desde los cielos durante cuarenta años según indica el relato bíblico. Podemos, pues, admitir que la cantidad de alimento caído cada día era la justa para paliar las necesidades de los hebreos errantes, aunque en la página 138 Velikovsky nos asegura que según fuentes midrásicas la cantidad de maná caída desde lo alto hubiera bastado para alimentarlos, no cuarenta, sino dos mil años. Supongamos que cada israelita ingería aproximadamente un tercio de kilogramo de maná diario, cantidad ligeramente inferior a la dieta de estricta subsistencia. En tal caso, cada individuo necesitó 100 kilogramos anuales, es decir unos 4000 a lo largo de los cuarenta años que perduró el éxodo bíblico. Si nos atenemos a la cifra señalada explícitamente en el Éxodo de cientos de miles de israelitas, para culminar su travesía del desierto debieron consumir globalmente alrededor del millón de kilos de maná durante los cuarenta años. Es de todo punto inverosímil que cada día cayeran sobre nuestro planeta desechos de la cola de un determinado cometa[7], y más si se considera que el fenómeno debía producirse preferentemente sobre aquella zona del desierto del pecado por la que erraban en ese justo momento los israelitas. Se trataría de una situación tan milagrosa o más que la literalmente recogida en el relato bíblico. El área ocupada por unos pocos cientos de miles de individuos errantes bajo un único y común liderazgo es, en términos aproximados, unas pocas diezmillonésimas de la superficie total del planeta. Por consiguiente, durante los cuarenta años de peregrinación deben haberse acumulado sobre la Tierra varios miles de billones de kilogramos de maná, cantidad más que suficiente para cubrir por completo el planeta con una capa de maná de un espesor aproximado de 3 centímetros. De haber sucedido, nos encontramos ante un fenómeno indudablemente asombroso, un fenómeno con el que explicar incluso la existencia de la casa de chocolate de Hansel y Gretel.
Por otro lado, no hay razón alguna que nos impulse a suponer que el maná se limitó a caer sobre la Tierra. Sin salir del marco fijado por el sistema solar interior, la cola del cometa debió recorrer en estos cuarenta años no menos de 1010 kilómetros. Aun estableciendo una estimación modesta acerca de la razón existente entre el volumen de la Tierra y el de la cola del cometa, fácil es deducir que la masa de maná distribuida a lo largo y ancho del sistema solar interior a causa del fenómeno que nos ocupa no estaría por debajo de los 1028 gramos. Se trata de una masa superior en varios órdenes de magnitud al mayor de los cometas conocidos; más aún, se trata de una masa superior a la del mismo planeta Venus. Sin embargo, los cometas no pueden estar exclusivamente compuestos por maná. Es más, por cuanto sabemos hasta el momento, jamás ha sido detectado maná en ningún cometa. Sabemos con certeza que los cometas están básicamente compuestos de hielo, y una estimación sin duda prudente de la razón entre la masa total del cometa y la masa de maná es bastante superior a 103. Así pues, la masa del cometa encargado de alimentar a los israelitas debió ser con mucho superior a 1031 gramos. Ésta es la masa de Júpiter. Si aceptáramos la fuente midrásica citada por Velikovsky a que hemos hecho referencia en líneas precedentes, llegaríamos a la conclusión de que el cometa tuvo una masa comparable a la del Sol. De ser así, hoy en día el espacio interestelar perteneciente al sistema solar interior aún estaría lleno de maná. Dejo al arbitrio del lector la extracción de consecuencias acerca de la validez de las hipótesis de Velikovsky a la luz de los cálculos expuestos.
El pronóstico de Velikovsky acerca de la constitución de las nubes de Venus, según el cual estarían formadas por hidrocarburos o hidratos de carbono, ha sido pregonado no pocas veces como un excelente ejemplo de predicción científica acertada. Partiendo de las tesis generales de Velikovsky y de los cálculos que acabamos de establecer, es innegable que Venus debió estar saturado de maná, un determinado hidrato de carbono. Velikovsky afirma (página x) que «la presencia de gases y polvo de hidrocarburos en las nubes que envuelven Venus constituirán un banco de pruebas crucial» para sus tesis. En citas sucesivas no queda demasiado claro si al hablar de «polvo» se refiere a hidratos de carbono o a simples silicatos. En esta misma página Velikovsky se cita a sí mismo afirmando que «en base a tales investigaciones, postula que Venus debe ser un planeta rico en gases de petróleo», palabras que cabe considerar como una referencia muy concreta a los diversos componentes del gas natural, entre ellos metano, etano, etileno y acetileno.
En este punto creo interesante entreverar nuestro relato con una breve historia. En la década de los 30 del presente siglo y a comienzos de los 40 el único astrónomo del mundo que se ocupaba de investigar la química de los planetas era el difunto Rupert Wildt, profesor en Gottingen y posteriormente en Yale. Wildt fue el primer investigador en detectar e identificar metano en las atmósferas de Júpiter y Saturno, y asimismo también fue el primero en postular la presencia de gases de hidrocarburos más complejos en dichas atmósferas. Por tanto, la idea de que puedan existir «gases de petróleo» en Júpiter no es original de Velikovsky. De modo similar, fue también Wildt quien lanzó la hipótesis de que uno de los elementos integrantes de la atmósfera venusiana podía ser el formaldehído, indicando asimismo que las nubes que rodean Venus quizás estuviesen compuestas por un hidrato de carbono creado por polimerización del ya citado formaldehído. Por tanto, tampoco corresponde a Velikovsky la primacía en la hipótesis de que pueden hallarse hidratos de carbono en las nubes que envuelven Venus, y se hace difícil creer que alguien que se ocupó tan a conciencia de la literatura astronómica de las décadas señaladas como Velikovsky desconociera estos trabajos de Wildt, mucho más teniendo en cuenta que los temas abordados desempeñaban un papel tan central en su obra. No obstante, no existe la menor mención al trabajo de Wildt sobre Júpiter y sólo encontramos una simple nota a pie de página sobre el tema del formaldehído (página 368), sin la menor referencia y sin indicar en ningún momento que Wildt había postulado la existencia de hidratos de carbono en Venus. Wildt, a diferencia de Velikovsky, comprendía a la perfección la diferencia entre hidrocarburos e hidratos de carbono. Tras no obtener resultados positivos de una serie de investigaciones espectroscópicas en las proximidades de la banda de radiaciones ultravioleta con objeto de detectar el formaldehído, en el año 1942 decidió abandonar su hipótesis. Por su parte, Velikovsky siguió defendiéndola.
Como señalé hace ya unos años (Sagan, 1961), la presión de vapor de los hidrocarburos simples ubicados en las proximidades de las nubes venusianas debería hacerlos detectables en las nubes mismas. Por entonces no hubo forma de detectarlos, y en los años siguientes, a pesar de la amplísima gama de técnicas analíticas utilizadas, no se consiguió detectar en la envoltura gaseosa de Venus ni hidrocarburos ni hidratos de carbono. Se buscó el tipo de compuestos señalado mediante técnicas de espectroscopia óptica de alta resolución con el instrumental situado en laboratorios terrestres, incluso con ayuda de la técnica matemática conocida como transformadas de Fourier; también se utilizó en tales investigaciones la espectroscopia ultravioleta con el utillaje al efecto instalado en el observatorio astronómico orbital OAO-2; otros medios utilizados fueron las radiaciones infrarrojas emitidas desde la Tierra y sondas soviéticas y norteamericanas enviadas a la propia atmósfera venusiana. Pues bien, con ninguno de tales medios se logró detectar huellas de los compuestos químicos apuntados. Los límites superiores de abundancia de los hidrocarburos más sencillos y de los aldehídos, piezas fundamentales en la composición de los hidratos de carbono, es de unas pocas millonésimas (Connes, et al., 1967; Owen y Sagan, 1972). [Los límites superiores de presencia de los compuestos que nos ocupan para el caso de Marte son, asimismo, de unas pocas millonésimas (Owen y Sagan, 1972)]. Todas las observaciones efectuadas hasta el momento presente coinciden en demostrar que el grueso de la atmósfera de Venus está compuesto por dióxido de carbono. Dado que el carbono se encuentra presente bajo una forma oxidada, en el mejor de los casos puede esperarse la presencia de simples vestigios de carbono en forma reducida, como la de los hidrocarburos. Las observaciones efectuadas en las fronteras de la región crítica del espectro representada por la longitud de onda de 3,5 micras no muestran la menor traza de enlaces carbono-hidrógeno, comunes a hidrocarburos e hidratos de carbono (Pollack, et al., 1974). Hoy en día conocemos a la perfección todas las bandas de absorción del espectro de Venus, desde las ultravioletas a las infrarrojas, y decididamente no hay ninguna que indique presencia de hidrocarburos o hidratos de carbono. Hasta el momento no conocemos ninguna molécula orgánica específica que pueda explicar de forma satisfactoria el espectro infrarrojo de Venus que conocemos.
El problema de la auténtica composición de las nubes de Venus, uno de los más inquietantes enigmas científicos durante siglos, fue resuelto no hace mucho (Young & Young, 1973; Sill, 1972; Young, 1973; Pollack. et al., 1974). Las nubes de Venus están compuestas por una solución, aproximadamente al 75%, de ácido sulfúrico. Esta identificación concuerda razonablemente con la composición química conocida de la atmósfera de Venus, en la que se han detectado los ácidos fluorhídrico y clorhídrico, con la parte real de los índices de refracción deducida a través de la polarimetría, con las características bandas de absorción de las 3 y 11,2 micras (y actualmente las situadas más allá de la banda del infrarrojo), y con la discontinuidad que representa la presencia de vapor de agua por encima y por debajo de las nubes venusianas.
Si tan plenamente desacreditada se halla la tesis de que los constituyentes básicos de las nubes de Venus son de carácter orgánico, ¿por qué suele afirmarse que la investigación basada en el instrumental incorporado a los ingenios espaciales ha corroborado las tesis de Velikovsky? Para explicar este extremo debo recurrir también a un breve relato. El 14 de diciembre de 1962 el primer ingenio espacial interplanetario lanzado con éxito por los Estados Unidos, el Mariner 2, iniciaba su viaje hacia Venus. Construido por el Jet Propulsion Laboratory, llevaba consigo, entre otro instrumental de mucho mayor interés, un radiómetro de infrarrojos cuyo funcionamiento y resultados estaban a cargo de un equipo formado por cuatro experimentadores, yo entre ellos. Por entonces aún no se había efectuado el primer vuelo espacial con éxito por parte de un ingenio lunar de la serie Ranger, y la NASA carecía de la necesaria experiencia que iba a darle el paso de los años en cuanto a la presentación de sus hallazgos científicos. Se convocó en Washington una conferencia de prensa para dar a conocer los resultados del experimento, y el Dr. L. D. Kaplan, uno de los miembros de nuestro equipo, se encargó de exponer ante la prensa los resultados obtenidos. Llegado el momento, Kaplan describió los resultados aproximadamente en los siguientes términos (no se trata de sus palabras exactas); «nuestro instrumental de experimentación era un radiómetro de infrarrojos de dos canales, uno centrado en la banda de 10,4 micras, correspondiente al CO2, el otro, una ventana de 8,4 micras, correspondiente a la fase gaseosa de la atmósfera de Venus. Su objetivo era la medición del brillo en términos absolutos, las temperaturas y la transmisión diferencial entre ambos canales. Descubrimos una ley de oscurecimiento del limbo según la cual la intensidad normalizada variaba como mu elevado a alfa, donde mu es el arco seno del ángulo determinado por la normal local al planeta y la línea del horizonte y…».
Cuando su informe llegó a este punto, u otro de similares características, se vio interrumpido por unos periodistas impacientes, no habituados a los intrincados vericuetos de la ciencia, que le espetaron sin la menor contemplación: «¡No nos hable de temas tan obtusos, por favor, denos resultados más asequibles al hombre de la calle! ¿Qué espesor tienen las nubes de Venus, a qué altura se encuentran situadas, de qué están compuestas?». Kaplan replicó, muy acertadamente, que el radiómetro de infrarrojos no estaba en modo alguno diseñado para responder a tales cuestiones, y que por tanto no había datos al respecto. Pero acto seguido añadió algo parecido a esto: «Les diré lo que yo pienso». Y empezó entonces a exponer que, desde su personal punto de vista, el efecto invernadero, según el cual una determinada atmósfera se muestra transparente ante la luz solar pero opaca a las radiaciones infrarrojas emitidas desde la superficie del planeta, imprescindible para que la superficie de Venus se mantuviera a temperatura elevada, no podía manifestarse en Venus porque los elementos integrantes de su atmósfera parecían mostrarse transparentes a longitudes de onda próximas a las 3,5 micras. Si en la atmósfera de Venus existiese algún elemento absorbente de radiación lumínica en las proximidades de la longitud de onda indicada se lograría una actuación positiva del efecto invernadero y quedaría explicada la elevada temperatura que se registra en la superficie venusiana. A modo de corolario, Kaplan indicaba que los hidrocarburos podían constituir un espléndido medio para garantizar el efecto invernadero.
Las reservas de Kaplan no fueron captadas ni recogidas por la prensa, de modo que al día siguiente diversos periódicos exhibían sus titulares con los siguientes términos: «El Mariner 2 detecta en las nubes de Venus la presencia de hidrocarburos». En el ínterin, y trasladándonos al Jet Propulsion Laboratory, una serie de miembros del laboratorio estaban elaborando un informe de divulgación sobre los resultados de la misión que llevaría por título «Mariner: Misión Venus». Uno les imagina en medio de su tarea hojeando los periódicos de la mañana y diciendo: «¡Pues qué bien! No tenía la menor noticia de que hubiésemos encontrado hidrocarburos en las nubes que rodean Venus». De hecho, esta publicación recogía la presencia de hidrocarburos en las nubes venusianas como uno de los principales descubrimientos del Mariner 2: «La parte inferior de las nubes está alrededor de los 200° F de temperatura y probablemente están compuestas de hidrocarburos condensados en suspensión oleaginosa». (El informe también toma partido a favor del calentamiento de la superficie de Venus gracias al efecto invernadero, aunque Velikovsky escogió creer tan sólo una parte de lo publicado).
No es difícil imaginar al director general de la NASA transmitiendo al Presidente la buena nueva en el informe anual elaborado por la administración del programa espacial, al Presidente de la nación trasladándola a su vez a los miembros del Congreso en su informe anual y a los redactores de textos de astronomía elemental, siempre ansiosos por incluir en sus obras los últimos resultados en su campo, registrando tales «descubrimientos» en sus más recientes trabajos. Con informes tan aparentemente fidedignos, autorizados y coherentes sobre el hallazgo de hidrocarburos en las nubes de Venus por parte del Mariner 2, no es de extrañar que Velikovsky y no pocos científicos nada sospechosos de parcialidad, pero sin la menor experiencia sobre los intrincados y misteriosos caminos de la NASA, llegaran a la conclusión de que estaban ante un innegable y clásico test de validación de una determinada teoría científica. Se partía de una predicción extravagante en apariencia efectuada antes de disponer de datos observacionales, y se acababa con una inesperada verificación experimental de la atrevida hipótesis.
Pero, como hemos tenido oportunidad de ver, la situación real era muy otra. Ni el Mariner 2 ni ninguna otra investigación ulterior sobre la atmósfera de Venus han conseguido pruebas concluyentes sobre la existencia en ella de hidrocarburos o hidratos de carbono en forma sólida, líquida o gaseosa. Nuestros conocimientos actuales sobre el tema (Pollack, 1969) nos indican que el dióxido de carbono y el vapor de agua pueden explicar la absorción en la banda de las 3,5 micras. La misión Pioneer a Venus de finales de 1978 permitió determinar la cantidad de vapor de agua precisa para que, junto a la proporción de dióxido de carbono ya determinada desde tiempo atrás, pueda darse una explicación satisfactoria de la elevada temperatura que existe en la superficie de Venus gracias a la intervención del efecto invernadero. Resulta irónico que el «argumento» en favor de la existencia de hidrocarburos en las nubes de Venus a través de los datos del Mariner 2 derive de hecho del esfuerzo para encontrar una explicación de la elevada temperatura de la superficie venusiana a través del efecto invernadero, puesto que se trata de un punto no postulado ni defendido por Velikovsky. Es asimismo irónico que posteriormente el doctor Kaplan fuese coautor de un artículo en el que se señalaba la existencia de pequeñas cantidades de metano, «gas de petróleo», tras un examen espectroscópico de la atmósfera de Venus (Connes, et al., 1967).
Para resumirlo en pocas palabras, la idea de Velikovsky de que las nubes de Venus están compuestas por hidratos de carbono no es ni original ni correcta. Fracasó el experimentum crucis.
Existe otra curiosa circunstancia en torno a la temperatura superficial del planeta Venus. Mientras suele citarse la elevada temperatura registrada en la superficie de Venus como una predicción acertada y sustentadora de las hipótesis de Velikovsky, lo cierto es que el razonamiento que se esconde implícito tras tal conclusión y las consecuencias que se derivan de sus argumentos no parecen ser amplia y precisamente conocidos y discutidos.
Empezaremos por tomar en consideración los puntos de vista de Velikovsky sobre la temperatura de Marte (páginas 367-368). Velikovsky cree que Marte, por ser un planeta relativamente pequeño, se vio más seriamente afectado que sus oponentes, la Tierra y Venus, en las pretéritas cuasi-colisiones entre los tres cuerpos celestes, y que por tanto debe tener una temperatura bastante elevada. Como mecanismo responsable propone «una conversión de movimiento en calor», supuesto algo vago ya que el calor no es más que movimiento de moléculas, o, y es todavía más fantástico, un conjunto de «descargas eléctricas interplanetarias» capaces de «desencadenar tensiones atómicas que garantizaran radioactividad y emisión de calor».
En el mismo epígrafe afirma erróneamente que «Marte emite más calor que el que recibe del Sol», para conseguir una coherencia aparente con sus hipótesis sobre las colisiones. No obstante, se trata de una afirmación totalmente gratuita. La temperatura de Marte la han medido en repetidas ocasiones ingenios espaciales soviéticos y norteamericanos y observadores situados en nuestro planeta, y las temperaturas en cualquier punto de Marte son justamente las que cabría esperar calculándolas a partir de la luz solar absorbida por su superficie. Más aún, se trata de un punto perfectamente establecido y conocido desde la década de los 40, mucho antes de que se publicase el libro de Velikovsky. Por lo demás, a pesar de que menciona a cuatro prominentes científicos que con anterioridad a 1950 habían trabajado en la medición de la temperatura de Marte, no hace la menor referencia a sus trabajos, sino que explícita y erróneamente sostiene que tales investigadores habían llegado a la conclusión de que Marte desprendía más radiación que la recibida desde el Sol.
Se hace difícil comprender este conjunto de errores, y la hipótesis más generosa que puedo aventurar al respecto es que Velikovsky confundiera la parte visible del espectro electromagnético, la responsable del calentamiento de Marte por parte del Sol, con la zona del espectro correspondiente a las radiaciones infrarrojas, aquélla en la que Marte emite básicamente su calor radiante. No obstante, la conclusión es clara. Para ajustarse a los argumentos de Velikovsky, Marte debe ser un «planeta caliente», incluso más de cuanto lo sea Venus. Si hubiésemos descubierto que Marte era un planeta más caliente de lo esperado, quizás hubiéramos oído afirmar que nos hallábamos ante una nueva confirmación positiva de los puntos de vista de Velikovsky. No obstante, cuando se ha demostrado que Marte tenía precisamente la temperatura que podía esperarse que tuviera, no hemos oído a nadie que dijese que se trataba de una refutación de las tesis de Velikovsky. Parece, pues, que hay un doble rasero para medir las informaciones sobre planetas.
Cuando pasamos al caso de Venus encontramos en juego una serie de argumentaciones bastante similares. Consideré realmente singular que Velikovsky no atribuya la temperatura de Venus a su eyección desde Júpiter (véase Problema I). Hemos señalado que Venus debe haber recibido calor en sus cuasi-colisiones con la Tierra y Marte, pero también (página 77) que «la cabeza del cometa… ha pasado por las proximidades del Sol y estaba en estado de incandescencia». Cuando el cometa se convirtió en el planeta Venus aún debía estar «muy caliente» y debía «desprender calor» (página ix). Nuevamente se hace referencia a observaciones astronómicas anteriores a 1950 (página 370) en las que se indicaba que el lado oscuro de Venus tenía una temperatura similar al lado iluminado. En este punto Velikovsky cita con todo cuidado los trabajos de los investigadores astronómicos, y deduce de sus trabajos (página 371) que «el lado oscuro de Venus irradia calor porque Venus es un planeta caliente». Desde luego, así es.
Creo que lo que intenta decirnos aquí Velikovsky es que su Venus, lo mismo que su Marte, irradia más calor que el que recibe del Sol, y que las temperaturas observadas tanto en su lado oscuro como en el iluminado se deben más a su propia «incandescencia» que a la radiación lumínica que actualmente recibe del Sol. Pero se trata de un serio error. El albedo bolométrico (fracción de luz solar reflejada por un objeto en todas las longitudes de onda) de Venus es de alrededor de 0,73, cifra completamente congruente con la temperatura observada en las nubes de Venus, alrededor de los 240° K. Dicho de otro modo, las nubes de Venus tienen precisamente la temperatura observada sobre la base de la cantidad de luz solar absorbida por ellas.
Velikovsky propone que tanto Venus como Marte irradian más calor del que reciben desde el Sol. Se equivoca tanto en un caso como en otro. En 1949 Kuiper (véanse las referencias bibliográficas) sugirió que Júpiter irradiaba una cantidad de calor superior a la recibida, y observaciones ulteriores han venido a demostrar que estaba en lo cierto. Pero la sugerencia de Kuiper no merece ni una simple mención dentro de Worlds in Collision.
Velikovsky propone que Venus es un planeta caliente a causa de sus cuasi-colisiones con la Tierra y Marte y de su paso por las cercanías del Sol. Puesto que Marte no es un planeta de temperatura especialmente elevada, la alta temperatura superficial de Venus debe atribuirse básicamente a su paso por las inmediaciones del Sol en su encarnación como cometa. No hay grandes dificultades en calcular cuánta energía puede haber llegado a recibir Venus al pasar por los alrededores del Sol y durante cuánto tiempo pudo irradiar al espacio circundante este supuesto superávit de energía. En el Apéndice 3 se verifican estos cálculos, y puede verse allí que toda esta energía suplementaria debió perderla en un lapso de meses, como máximo unos pocos años, tras su paso cerca del Sol; no hay la menor posibilidad racional de que todo este calor suplementario pudiera ser retenido por Venus hasta llegar a la actualidad ni aun ajustándonos a la cronología que ofrece Velikovsky. Por lo demás, Velikovsky no indica a qué distancia se supone que pasó Venus del Sol, y debe tenerse en cuenta que un cruce a poca distancia entre ambos cuerpos presentaría graves problemas desde la perspectiva de la física de las colisiones ya subrayados en el Apéndice 1. Incidentalmente, cabe señalar que Velikovsky parece insinuar vagamente en su texto que el brillo de los planetas se debe, más que a la reflexión de una luz de procedencia externa, a emisión lumínica propia. En el supuesto de que tal fuera su punto de vista, puede muy bien ser la fuente de algunas de sus confusiones sobre Venus. Velikovsky no menciona en parte alguna cuál es, en su opinión, la temperatura del planeta Venus. Como ya he señalado anteriormente, en la página 77 de Worlds in Collision indica de forma muy vaga que el cometa que acabaría convirtiéndose en planeta Venus se hallaba en estado de «incandescencia», pero en el prefacio a la edición de 1965 (página xi) reclama haber predicho «el estado de incandescencia de Venus». Ni que decir tiene que no se trata de afirmaciones equivalentes, pues, como puede verse en el Apéndice 3, después de la hipotética cuasi-colisión con el Sol debió producirse un rápido enfriamiento del cuerpo celeste. Por lo demás, el propio Velikovsky lanza la propuesta de un enfriamiento gradual del planeta Venus en el transcurso del tiempo, con lo que se hace realmente difícil una interpretación precisa de qué pueda querer indicar cuando afirma que Venus es un cuerpo celeste «caliente».
Velikovsky escribe en su prefacio a la edición de 1965 que su postulación de una elevada temperatura superficial en el planeta Venus «estaba en franco desacuerdo con los datos experimentales conocidos en 1946». Tal afirmación no se ajusta por completo a la realidad. Una vez más la eminente figura de Rupert Wildt se alza para ensombrecer las hipótesis astronómicas de Velikovsky. Wildt, que a diferencia de Velikovsky sí comprendía a la perfección la naturaleza del problema, predijo acertadamente que Venus, y no Marte, se mostraría como planeta «caliente». En un artículo publicado en 1940 en el Astrophysical Journal, Wildt sostenía que la superficie de Venus tenía una temperatura mucho más elevada de cuanto solía admitirse hasta entonces en el terreno de la astronomía académica a causa del efecto invernadero generado por el dióxido de carbono. Las investigaciones espectroscópicas han descubierto no hace mucho la presencia de dióxido de carbono en la atmósfera de Venus, y ya por entonces Wildt señalaba con pleno acierto que la notable cantidad de CO2 presente en la atmósfera de Venus era la responsable de la retención de las radiaciones infrarrojas exhaladas por la superficie del planeta hasta el punto de hacer que la misma alcanzase una temperatura considerablemente elevada; la atmósfera venusiana conseguía equilibrar la radiación solar que llega hasta ella con la emisión de infrarrojos procedente de la superficie del planeta. Según los cálculos de Wildt, la temperatura del planeta debía ser de alrededor de 400° K, aproximadamente igual a la temperatura de ebullición del agua (373° K = 212° F - 100° C). Indudablemente, los trabajos de Wildt sobre la temperatura superficial de Venus eran los más completos y precisos antes de alcanzarse la década de los 50. Y una vez más causa verdadero asombro ver cómo Velikovsky, que parece haber leído todos los artículos sobre Venus y Marte publicados en el Astrophysical Journal durante los años que van de 1920 a 1950, haya pasado por alto un trabajo de tal significación histórica. Hoy en día, a través de observaciones radioastronómicas efectuadas con instrumental instalado en laboratorios terrestres y los notabilísimos sondeos soviéticos llevados a cabo directamente en la atmósfera y la superficie venusianas, sabemos que la temperatura superficial de Venus difiere en muy poco de los 750° K (Marov, 1972). La presión atmosférica en la superficie de Venus es alrededor de noventa veces superior a la existente en la de nuestro planeta, y el componente fundamental de la atmósfera venusiana es el dióxido de carbono. La enorme abundancia de dióxido de carbono y las pequeñas cantidades de vapor de agua detectadas en el entorno de Venus permiten mantener la temperatura detectada en su superficie gracias al ya mencionado efecto invernadero. El módulo de descenso del Venera 8 soviético, el primer ingenio espacial que se ha posado sobre el hemisferio iluminado de Venus, demostró que la luz llegaba perfectamente hasta la superficie del planeta, ante lo cual los científicos soviéticos extrajeron la conclusión de que la cantidad de luz solar que llegaba hasta ella, junto con la constitución específica de la atmósfera venusiana, daban las condiciones adecuadas como para hacer posible la existencia del efecto radiante-convectivo de invernadero (Marov, et al, 1973). Los resultados reseñados se vieron confirmados por las misiones Venera 9 y Venera 10, que obtuvieron fotografías de rocas superficiales suficientemente nítidas con el exclusivo concurso de la luz solar que llega hasta Venus. Por consiguiente, Velikovsky yerra de lleno cuando afirma que «la luz solar no penetra a través del envoltorio de nubes circundante» (página ix), y muy probablemente también está en un error cuando señala en esta misma página que «el efecto invernadero no permite explicar la elevada temperatura de la superficie de Venus». Las conclusiones expuestas se vieron consolidadas con los importantes datos experimentales que aportara a finales de 1978 la misión americana Pioneer a Venus.
Velikovsky repite una y otra vez que Venus se va enfriando con el decurso del tiempo. Tal como hemos visto, atribuye su elevada temperatura al calentamiento que debió sufrir por radiación solar al pasar en tiempos pretéritos por las proximidades de nuestra estrella. Velikovsky compara mediciones de temperatura venusiana registradas en diferentes momentos y publicaciones y, a partir de ellas, pretende demostrar su tesis acerca del enfriamiento. En el gráfico adjunto se recoge un conjunto objetivo de mediciones de la temperatura de Venus a través de la determinación del brillo existente en la superficie del planeta, por lo demás la única forma de computarla sin recurrir a vehículos espaciales. Los intervalos dibujados representan el grado de incertidumbre inherente a los procesos de medición según estimación de los radioastrónomos que han efectuado las observaciones. Puede verse que no existe en el gráfico el menor indicio de descenso de la temperatura con el paso del tiempo (si algo hay, es la sugerencia de un incremento de la misma con el tiempo, aunque los márgenes de error son suficientemente amplios como para que tal conclusión no encuentre apoyo sólido en datos experimentales). La medición de las temperaturas de las nubes que circundan Venus, en la banda infrarroja del espectro, nos ofrece resultados muy similares: son algo inferiores en cuanto a magnitud y no decrecen con el transcurso del tiempo. Por otra parte, las más simples consideraciones sobre las soluciones que ofrece la ecuación unidimensional de la conductividad térmica ponen de manifiesto que en un escenario como el velikovskiano todo enfriamiento por radiación hacia el espacio circundante debe haberse producido en épocas realmente pretéritas. Aun en el supuesto de que Velikovsky estuviera en lo cierto en cuanto a las causas de la elevada temperatura que se registra en la superficie de Venus, su predicción de un secular declive de la temperatura en dicho planeta seguiría siendo errónea.
Figura 1. Medición de las temperaturas, en grados Kelvin, de Venus mediante el brillo existente en la superficie del planeta en función del tiempo (según una compilación de D. Morrison). En el gráfico no hay el menor indicio de descenso de la temperatura superficial. La longitud de onda de la observación viene indicada con la letra λ.
La elevada temperatura superficial de Venus pasa por ser otra de las pruebas en favor de las hipótesis de Velikovsky. Pero en realidad observamos que 1) la temperatura en cuestión jamás ha sido concretamente especificada por Velikovsky; 2) el mecanismo que propone para justificar tal temperatura es totalmente inadecuado; 3) la superficie del planeta, contrariamente a sus hipótesis, no se enfría con el paso del tiempo; y 4) la idea de que la temperatura superficial de Venus es elevada había sido prevista diez años antes de la publicación de Worlds in Collision, justificada mediante una argumentación acertada en sus líneas esenciales y divulgada en un artículo que apareció en la publicación astronómica especializada más importante de la época.
En 1973 el doctor Richard Goldstein y sus colaboradores descubrieron una característica importante de la superficie de Venus utilizando los equipos de radar del Observatorio Goldstone del Jet Propulsion Laboratory; mediante posteriores observaciones se ha comprobado dicho descubrimiento. Gracias a ese instrumental de radar, capaz de penetrar en las nubes de Venus y recoger el reflejo sobre la superficie del planeta, encontraron que éste era montañoso en ciertas zonas y presentaba abundantes cráteres, e incluso una saturación de cráteres, como ocurre en algunos lugares de la Luna —hay tantos cráteres que se superponen entre sí—. Como en las sucesivas erupciones volcánicas se utilizan las mismas chimeneas de lava, la saturación de cráteres resulta más propia de cráteres de impacto que de cráteres de origen volcánico. No es ésta una predicción de Velikovsky, pero tampoco es ése el aspecto al que quiero referirme. Estos cráteres de la superficie de Mercurio y en las zonas de cráteres de Marte, como ocurre con los mares lunares, se deben casi exclusivamente al impacto de restos interplanetarios. A pesar de la elevada densidad de la atmósfera de Venus, los grandes objetos susceptibles de formar cráteres no se volatilizan al atravesarla. Ahora bien, los objetos colisionantes no pueden haber alcanzado Venus en los últimos diez mil años; de ser así, la Tierra también estaría cubierta de cráteres. La fuente más probable de dichas colisiones está en los objetos Apollo (asteroides cuyas órbitas cruzan la órbita de la Tierra) y en los pequeños cometas que ya hemos mencionado (Apéndice 1). Pero para que hayan producido tantos cráteres como los que hay en Venus, es necesario que el proceso de formación de éstos haya durado miles de millones de años. Alternativamente, cabe pensar que la formación de cráteres puede haber sido mucho más rápida en la primerísima época de la historia del sistema solar, cuando los restos interplanetarios eran mucho más abundantes. Pero nada induce a creer que se hayan formado recientemente. Por otra parte, si Venus se encontraba, hace varios miles de años, en el interior de Júpiter, no hubiese podido acumular tantos impactos. La conclusión clara que se saca a partir del estudio de los cráteres de Venus es que este planeta ha sido, durante miles de millones de años, un objeto expuesto a las colisiones interplanetarias —en contradicción directa con la premisa fundamental de la hipótesis de Velikovsky.
Los cráteres venusianos están significativamente erosionados. Algunas de las rocas de la superficie del planeta, tal como pusieron de manifiesto las fotografías de los Venera 9 y 10, son bastante jóvenes. En otro lugar he descrito posibles mecanismos de erosión de la superficie de Venus —incluyendo el desgaste por agentes atmosféricos químicos y la lenta deformación a temperaturas elevadas (Sagan, 1976)—. Sin embargo, estos descubrimientos no encuentran ninguna apoyatura en las hipótesis de Velikovsky: la reciente actividad volcánica en Venus no tendría que ser atribuida al paso cerca del Sol o al hecho de que, en algún vago sentido, Venus es un planeta «joven», más de lo que lo requiere la reciente actividad volcánica en la Tierra.
En 1967 Velikovsky escribió: «Evidentemente, si el planeta tiene miles de millones de años, puede no haber mantenido su calor primitivo; por otra parte, cualquier proceso radioactivo capaz de producir ese calor debe tener un ritmo de desintegración muy rápido (sic) y tampoco eso cuadra con una edad del planeta medida en miles de millones de años». Desgraciadamente, Velikovsky no ha conseguido comprender dos resultados clásicos y básicos de la geofísica. La conducción térmica es un proceso mucho más lento que la radiación o la convección y, en el caso de la Tierra, el calor primigenio contribuye de forma apreciable al gradiente de temperatura geotérmica y al flujo de calor desde el interior de la Tierra. Lo mismo ocurre en el caso de Venus. Por otra parte, los núcleos radioactivos que provocan el calentamiento radiactivo de la corteza terrestre son isótopos de vida larga del uranio, el torio y el potasio —isótopos cuyas vidas medias son del orden de la edad del planeta. También aquí ocurre lo mismo en el caso de Venus.
Si fuese el caso, como cree Velikovsky, de que Venus se hubiese fundido totalmente hace unos miles de años —debido a colisiones planetarias o a cualquier otra causa— el enfriamiento por conducción no podría haber producido desde entonces más que una corteza exterior muy delgada, de unos 100 metros de espesor aproximadamente. Pero las observaciones efectuadas con radar indican la presencia de enormes cordilleras montañosas lineales, cuencas circulares y un gran desfiladero, de dimensiones comprendidas entre los centenares y los miles de kilómetros. Es muy poco probable que esas impresionantes características tectónicas o de impacto se sustenten de forma estable sobre un interior líquido con una corteza tan delgada y frágil como ésa.
La idea de que Venus puede haberse convertido, en unos pocos miles de años, de un objeto con una órbita muy excéntrica en uno con su órbita actual, que es —exceptuando el caso de Neptuno—, la órbita circular casi más perfecta de todos los planetas, no concuerda en absoluto con lo que sabemos sobre el problema de los tres cuerpos[8] de la mecánica celeste. Sin embargo, hay que admitir que ése no es un problema completamente resuelto y que, aunque lo más probable es que las hipótesis de Velikovsky tienen las de perder, no existe todavía una evidencia total en contra. Es más, cuando Velikovsky hace referencia a las fuerzas eléctricas o magnéticas, sin calcular por ello su magnitud ni describir sus efectos con detalle, nos sentimos tentados a abrazar sus puntos de vista. Sin embargo, unos sencillos razonamientos acerca de la densidad de energía magnética necesaria para circularizar un cometa ponen de manifiesto que las intensidades de campo que intervienen son desmesuradamente elevadas (Apéndice 4) —están desautorizadas por los estudios de magnetización de rocas.
También podemos abordar el problema desde un punto de vista empírico. La lógica de la mecánica newtoniana nos permite predecir con notable precisión las trayectorias de los vehículos espaciales —de tal forma que, por ejemplo, los satélites orbitales Viking se situaron en una órbita a menos de 100 kilómetros de la preestablecida; el Venera 8 se situó precisamente en el lado iluminado del terminador de Venus y el Voyager 1 se situó con exactitud en el corredor de entrada correcto, en las cercanías de Júpiter, para que pudiese viajar hasta Saturno. No se encontró ninguna misteriosa influencia eléctrica o magnética. La mecánica newtoniana resulta adecuada para predecir, con gran precisión, por ejemplo, el momento exacto en que se eclipsarán entre sí los satélites galileanos de Júpiter.
Es cierto que los cometas tienen órbitas menos predecibles, pero ello se debe, con casi total seguridad, a que se produce una ebullición de sus hielos a medida que se acercan del Sol y a un pequeño efecto cohete. La encarnación cometaria de Venus, caso de haber existido, también puede haber experimentado esa evaporación de sus hielos, pero no existe modo alguno mediante el cual el efecto cohete haya llevado preferentemente a ese cometa hacia las proximidades de la Tierra o de Marte. El cometa Halley, que ha sido observado posiblemente durante dos mil años, sigue recorriendo una órbita muy excéntrica y no se ha advertido en él la más mínima tendencia a la circularización; y sin embargo es casi tan viejo como el «cometa» de Velikovsky. Es extraordinariamente improbable que el cometa de Velikovsky, caso de haber existido, se haya convertido en el planeta Venus.
Los diez puntos anteriores constituyen los principales defectos científicos de la argumentación de Velikovsky, tal y como yo la entiendo. Anteriormente ya hice algunos comentarios acerca de las dificultades que presentaba su enfoque de los textos antiguos. A continuación enumeraré algunos de los diversos problemas que he ido encontrando al leer Worlds in Collision.
En la página 280 se sostiene que las lunas marcianas Fobos y Deimos han «arrebatado parte de la atmósfera de Marte» y que, por tanto, aparecen muy brillantes. Pero enseguida nos damos cuenta de que la velocidad de escape en dichos objetos —posiblemente unos 35 kilómetros por hora— es tan pequeña que les hace incapaces de retener, aun temporalmente, cualquier atmósfera; las fotografías de proximidad proporcionadas por los Viking no ponen de manifiesto ni atmósfera ni regiones heladas; de hecho, se cuentan entre los objetos más oscuros del sistema solar.
Al principio de la página 281, se hace una comparación entre el libro bíblico de Joel y una serie de himnos Vedas que describen «maruts». Para Velikovsky los «maruts» eran un enjambre de meteoritos que acompañaban a Marte en su mayor aproximación a la Tierra, que también considera descrita en Joel. Velikovsky afirma (pág. 286): «Joel no copió a los Vedas ni los Vedas a Joel». Sin embargo, en la página 288, Velikovsky encuentra «satisfactorio» descubrir que las palabras «Marte» y «marut» son afines. Pero, si las historias de Joel y de los Vedas son independientes, ¿cómo es posible que las dos palabras sean afines?
En la página 307 encontramos a Isaías prediciendo con exactitud el tiempo que tardará Marte en colisionar nuevamente con la Tierra, «basándose en la experiencia de perturbaciones previas». De ser así, Isaías debía ser capaz de resolver la totalidad del problema de los tres cuerpos con fuerzas eléctricas y magnéticas incorporadas y es una lástima que ese conocimiento no nos haya sido transmitido a través del Viejo Testamento.
En las páginas 366 y 367 encontramos el argumento de que Venus, Marte y la Tierra, en sus interacciones, deben tener intercambiadas sus atmósferas. Si hace unos 3500 años pasaron cantidades masivas de oxígeno molecular terrestre (20 por ciento de nuestra atmósfera) a Marte y Venus, todavía deberían existir cantidades apreciables. La escala de tiempo para la reposición del O2 en la atmósfera terrestre es de 2000 años, y eso por un proceso biológico. En ausencia de una respiración biológica abundante, el O2 de Marte y Venus de hace 3500 años debería estar todavía allí. Sin embargo, la espectroscopia nos enseña que, como mucho, el O2 es un elemento de muy poca entidad en la ya extremadamente rara atmósfera marciana (y es igualmente escaso en Venus). El Mariner 10 encontró trazas de oxígeno en la atmósfera de Venus; eran pequeñísimas cantidades de oxígeno atómico en la atmósfera alta y no masivas cantidades de oxígeno molecular en la atmósfera baja.
La escasez de O2 en Venus también hace insostenible la creencia de Velikovsky en fuegos de petróleo en la atmósfera baja venusiana —ni el combustible ni el oxidante existen en cantidades apreciables—. En opinión de Velikovsky, estos fuegos producirían agua, que se fotodisociaría, dando O. Así, Velikovsky necesita abundante O2 en la atmósfera profunda para explicar el O de la atmósfera superior. De hecho, el O encontrado se explica muy bien mediante la disociación fotoquímica del componente atmosférico principal, CO2, en CO y O. Estas distinciones parecen haberlas olvidado algunos de los defensores de Velikovsky, que han hecho de los descubrimientos del Mariner 10 una vindicación de Worlds in Collision.
Velikovsky argumenta que, al no haber prácticamente oxígeno ni vapor de agua en la atmósfera marciana, debe ser algún otro componente de la atmósfera de Marte el que se derive de la Tierra. Desgraciadamente, el argumento es un non sequitur. Velikovsky opta por el argón y el neón, a pesar del hecho de que son componentes bastante raros de la atmósfera terrestre. Harrison Brown fue el primero, en los años 1940, en escribir el argón y el neón como componentes básicos de la atmósfera marciana. En la actualidad se descarta la existencia de algo más que trazas de neón; el Viking detectó un uno por ciento de argón. Pero aun cuando se hubiesen encontrado grandes cantidades de argón en Marte, ese hecho no hubiese supuesto una prueba del intercambio atmosférico defendido por Velikovsky —porque la forma más abundante del argón, 40Ar, se produce por desintegración radiactiva del potasio 40, cuya existencia se supone en la corteza de Marte.
Un problema mucho más serio para Velikovsky es la ausencia relativa de N2 (nitrógeno molecular) en la atmósfera marciana. El gas es prácticamente inerte, no congela a las temperaturas de Marte y no puede escapar rápidamente de la exosfera marciana. Es componente principal de la atmósfera terrestre, pero sólo está presente en un uno por ciento en la atmósfera de Marte. Si se produjo ese intercambio, ¿dónde está todo el N2 en Marte? Estas pruebas acerca de un presunto intercambio de gases entre Marte y la Tierra, en el que cree Velikovsky, casi no están desarrolladas en sus escritos; y las pruebas contradicen su tesis.
Worlds in Collision es un intento de dar validez a la Biblia y a otras manifestaciones populares como la historia, cuando no la teología. He intentado leer el libro sin prejuicios. Encuentro que las concordancias mitológicas son fascinantes y que vale la pena investigarlas más a fondo, pero posiblemente puedan explicarse a través de su difusión o por otras razones. La parte científica del texto, a pesar de toda su pretensión de «demostración», topa con por lo menos diez dificultades graves.
De las diez pruebas del trabajo de Velikovsky que hemos descrito más arriba, en ninguno de los casos sus ideas son simultáneamente originales y consistentes con la simple observación y las teorías físicas. Es más, muchas de las objeciones que se le plantean —especialmente en los Problemas I, II, III y X— son objeciones de mucho peso, basadas en las leyes del movimiento y de conservación de la física. En ciencia, un argumento aceptable debe presentar una concatenación de pruebas bien fundamentada. Si se rompe un solo eslabón de esa cadena, el argumento deja de servir. En el caso de Worlds in Collision, se presenta justamente la situación opuesta: prácticamente todos los eslabones de la cadena están rotos. Para sacar a flote la hipótesis se necesita un esfuerzo muy especial, el difuso invento de una nueva física y una despreocupación selectiva por una plétora de pruebas adversas. Por consiguiente, la tesis básica de Velikovsky me parece claramente insostenible desde una óptica científica.
Más todavía, con el material mitológico se presenta un problema potencialmente peligroso. Los supuestos acontecimientos se reconstruyen a partir de leyendas y cuentos populares. Pero estas catástrofes globales no figuran en la recopilación histórica o en el folklore de muchas culturas. Estas extrañas omisiones se explican, cuando llegan a detectarse, por una «amnesia colectiva». Velikovsky apuesta por las dos formas. Cuando existen concordancias, está dispuesto a sacar de ellas las conclusiones más llamativas. Cuando no se dan concordancias, la dificultad se evita mediante la «amnesia colectiva». Con un nivel de exigencias tan relativo puede demostrarse «cualquier cosa».
Debo indicar también que existe una explicación de la mayoría de los acontecimientos expuesto en el Éxodo que es mucho más plausible que la que acepta Velikovsky, una explicación que está mucho más de acuerdo con la física. El Éxodo aparece fechado en El Libro de los Reyes unos 480 años antes de la construcción del Templo de Salomón. Gracias a otros cálculos adicionales, se ha determinado que el éxodo Bíblico se produjo alrededor de 1447 a. C. (Covey, 1975). No todos los estudiosos de la Biblia están de acuerdo con esa fecha, que concuerda con la cronología de Velikovsky y, además, es sorprendentemente parecida a las fechas obtenidas, por diversos métodos científicos, correspondientes a la última y colosal explosión de la isla de Thera (o Santorini) que habría destruido la civilización Minoica en Creta y habría tenido profundas consecuencias en Egipto, situado a menos de trescientas millas al sur. La mejor datación de que disponemos de ese acontecimiento, obtenido mediante la técnica del carbono radioactivo en un árbol calcinado por las cenizas volcánicas de Thera, arroja la cifra de 1456 a. C., con un error máximo de más o menos cuarenta y tres años. La cantidad de polvo volcánico producido es más que suficiente como para poder explicar la persistencia de la oscuridad durante tres días seguidos, mientras que los acontecimientos que conllevan pueden explicar los terremotos, el hambre, las plagas y demás catástrofes manejadas por Velikovsky. También puede haber producido un inmenso tsunami (maremoto) mediterráneo, del que Angelos Galanopoulos (1964) —el responsable de gran parte del interés geológico y arqueológico por Thera— cree que también puede explicar la bifurcación del Mar Rojo.[9] En cierto sentido, la explicación de Galanopoulos acerca de los acontecimientos que se relatan en el Éxodo resulta todavía más provocadora que la explicación de Velikovsky, puesto que Galanopoulos ha presentado pruebas moderadamente convincentes de que Thera corresponde, en la mayoría de detalles esenciales, a la civilización legendaria de la Atlántida. De estar en lo cierto, fue la destrucción de la Atlántida y no la aparición de un cometa lo que impulsó a los israelitas a abandonar Egipto.
Se dan muchas extrañas inconsistencias en Worlds in Collision, pero en una de las últimas páginas del libro se introduce de pasada una desviación asombrosa de la tesis fundamental. Nos enteramos de una venerable y enorme analogía entre las estructuras del sistema solar y las de los átomos. De repente, se nos presenta la hipótesis de que los movimientos errantes conocidos de los planetas, en lugar de deberse a las colisiones, son el resultado de los cambios en los niveles cuánticos de energía de los planetas, cambios provocados por la absorción de un fotón —o tal vez de varios—. Los sistemas solares están ligados por fuerzas gravitacionales; los átomos por fuerzas eléctricas. Aun cuando ambas fuerzas dependen del inverso del cuadrado de la distancia, presentan características y magnitudes totalmente distintas: una de las muchas diferencias es la de que existen cargas eléctricas negativas y positivas, mientras que la masa gravitatoria sólo tiene un signo. Conocemos lo bastante de los sistemas solares y de los átomos como para darnos cuenta de que los «saltos cuánticos» propuestos por Velikovsky para los planetas se basan en su incomprensión, tanto de las teorías como de las pruebas de que disponemos.
Por lo que yo he podido apreciar, en Worlds in Collision no hay ni una sola predicción matemática correcta hecha con la precisión suficiente como para que sea algo más que una vaga intuición afortunada —existe además, como he intentado poner de manifiesto, una legión de pretensiones falsas—. En ocasiones se hace observar que la existencia de una fuerte emisión de radio procedente de Júpiter es el ejemplo más notable de predicción acertada por parte de Velikovsky, pero también es cierto que todos los objetos emiten ondas de radio al estar a temperaturas superiores al cero absoluto. Las características esenciales de la emisión de radio de Júpiter —es decir, una radiación intermitente, polarizada y no térmica, así como los enormes cinturones de partículas cargadas que rodean a Júpiter, atrapadas por su intenso campo magnético— no han sido predichas por Velikovsky en ningún momento. Es más, su «predicción» no tiene nada que ver en lo esencial con las tesis fundamentales de Velikovsky.
No basta con intuir algo correcto para demostrar necesariamente un conocimiento previo o una teoría correcta. Por ejemplo, en una obra de ciencia ficción de la primera época, fechada en 1949, Max Ehrlich concebía la situación del paso de un objeto cósmico muy cerca de la Tierra; objeto que llenaba por completo el firmamento y aterrorizaba a los habitantes de la Tierra. Pero lo que más pavor producía era el hecho de que en ese planeta que se aproximaba había una característica natural que parecía un enorme ojo. Se trata de uno de los muchos antecedentes, tanto ficticios como serios, de la idea de Velikovsky según la cual estas colisiones son frecuentes. Pero no quería referirme a eso. En una discusión acerca de las causas por las que la cara visible de la Luna presenta mares de gran tamaño y de formas suaves, mientras que en la cara oculta prácticamente no se dan, John Wood, del Smithsonian Astrophysical Observatory, propuso que la cara lunar que hoy mira hacia nosotros estuvo hace tiempo en el borde, el limbo, de la Luna, en el primer hemisferio del movimiento de la Luna alrededor de la Tierra. En esa posición barrió, hace miles de millones de años, un anillo de restos interplanetarios que rodeaban a la Tierra y que habían intervenido en la formación del sistema Tierra-Luna. Según las leyes de Euler, la Luna debería haber modificado entonces su eje de rotación haciéndolo corresponder a su nuevo momento de inercia principal, de forma que su primer hemisferio debía por aquel entonces estar orientado hacia la Tierra. La conclusión más destacada es la de que hubo un tiempo, siempre según Wood, en el que lo que hoy es el limbo oriental lunar debía estar en la cara visible. Pero el limbo oriental lunar presenta un enorme elemento provocado por una colisión, hace miles de millones de años, llamado Mare Orientale, que se parece mucho a un ojo gigante. Nadie sugirió que Ehrlich acudía a la memoria de la raza sobre un fenómeno ocurrido hace tres mil millones de años cuando escribió The Big Eye. Se trata simplemente de una coincidencia. A medida que se vaya escribiendo más ciencia ficción y se vayan proponiendo más y más hipótesis científicas, tarde o temprano acabarán por darse coincidencias fortuitas.
¿Cómo es posible que con todos sus desaciertos, Worlds in Collision se haya popularizado tanto? En cuanto a esto, sólo puedo hacer suposiciones. Por una parte, se trata de un intento de dar validez científica a la religión. Las viejas historias bíblicas son ciertas al pie de la letra, nos dice Velikovsky, sólo si las interpretamos en la forma adecuada. Los judíos, por ejemplo, consiguieron sobrevivir a los faraones egipcios, a los reyes asirios y a muchos otros desastres siguiendo los dictados de las intervenciones de los cometas y debían tener, según parece indicarnos, todo el derecho de considerarse un pueblo escogido. Velikovsky pretende rescatar no sólo la religión sino también la astrología: los resultados de las guerras, los destinos de pueblos enteros, quedan determinados por las posiciones de los planetas. En cierto sentido, su trabajo se manifiesta partidario de una cierta conexión cósmica de la humanidad —un sentimiento del que yo mismo participo, aunque en un contexto algo distinto (The Cosmic Conection)— y afirma en repetidas ocasiones que los pueblos y culturas de la antigüedad no eran tan ignorantes en definitiva.
El ultraje sufrido por muchos científicos normalmente apacibles al colisionar con Worlds in Collision ha provocado toda una secuela de consecuencias. Algunas personas se muestran justamente molestas con la pomposidad de que en ocasiones hacen gala los científicos, o se sienten muy preocupados por lo que interpretan como peligros de la ciencia y la tecnología, o tal vez tienen dificultades para entender la ciencia. Pueden encontrar algún tipo de satisfacción cuando a los científicos les ponen las peras a cuarto.
En todo el asunto de Velikovsky hay un aspecto peor que el vulgar, ignorante y sectario enfoque de Velikovsky y muchos de sus seguidores, y ha sido el desafortunado intento, llevado a cabo por algunos que se llamaban científicos, de suprimir sus escritos. Todo el armazón científico se ha visto afectado a causa de ello. En el trabajo de Velikovsky no se encuentra ninguna pretensión seria de objetividad ni de falsificación. En su rígido rechazo del inmenso cuerpo de datos que contradicen sus argumentos tampoco puede encontrarse ningún rasgo de hipocresía. Pero se supone que los científicos han de hacerlo mejor, han de darse cuenta de que las ideas se juzgarán sobre la base de sus méritos siempre que se potencie la investigación y el debate libres.
En la medida en que los científicos no hemos dado a Velikovsky la respuesta razonada que requiere su trabajo, nos hemos hecho responsables de la propagación de la confusión en torno a Velikovsky. Pero los científicos no podemos preocuparnos de todo aquello que raya en lo no científico. Así por ejemplo, la reflexión, los cálculos y la preparación de este capítulo me han restado un tiempo precioso a lo que constituye mi propia investigación. Pero también tengo que decir que no me ha resultado aburrido y, en última instancia, he entrado en contacto con lo que considero una leyenda muy interesante.
La pretensión de recuperar las religiones antiguas, en una época en que parece estarse buscando desesperadamente la raíz de la religión, algún tipo de significado cósmico de la humanidad, puede considerarse o no como una contribución válida. Creo que en las religiones antiguas hay mucho de bueno y de malo. Pero no comparto la necesidad de las medias tintas. Si nos vemos obligados a elegir —y taxativamente no lo estamos— ¿no es acaso mejor la evidencia del Dios de Moisés, Jesús o Mahoma que la del cometa de Velikovsky?