En 1972, una organización conocida como Club de Roma hizo pública una fúnebre predicción sobre el futuro de la humanidad bajo el título Los límites del crecimiento. Entre sus muchas advertencias de desastre inminente estaba la predicción de que las reservas de combustibles fósiles del mundo se acabarían dentro de muy pocas décadas. Hubo alarma general, subieron los precios del crudo y se puso de moda la investigación sobre energías alternativas. Ya estamos en la frontera del siglo XXI y todavía no hay señal de que los combustibles fósiles estén a punto de agotarse. Como resultado, la complacencia ha ocupado el lugar de la alarma. Desgraciadamente, la simple aritmética determina que un recurso finito no puede explotarse para siempre a una tasa finita que no disminuya. Antes o después el problema energético se echará encima. Conclusión parecida puede obtenerse en relación con la población de la Tierra: no puede seguir creciendo indefinidamente.
Algunos Jeremías creen que las crisis subsiguientes de energía y de superpoblación acabarán con la humanidad de una vez por todas. Con todo, tampoco hay necesidad de establecer un paralelismo entre la desaparición de los combustibles fósiles y la desaparición del Homo sapiens. A nuestro alrededor hay enormes fuentes de energía y nos basta tener la voluntad y el ingenio para someterlas. Lo más llamativo es que la luz solar tiene energía más que suficiente para nuestros propósitos. Problema mayor es controlar el crecimiento de la población antes de que una hambruna generalizada lo haga por nosotros. Para ello se requieren capacidades sociales, económicas y políticas más que científicas. Sin embargo, si queremos superar el cuello de botella energético originado por el agotamiento de los combustibles fósiles, si podemos estabilizar la población humana sin conflictos desastrosos y si puede limitarse el daño ecológico y de impactos de asteroides sobre el planeta, creo que la humanidad florecerá. No hay ninguna aparten ley de la naturaleza que limite la longevidad de nuestra especie.
En capítulos anteriores he descrito cómo a lo largo de duraciones temporales mareantes cambiará la estructura del universo (generalmente en el sentido de la degradación) como resultado de lentos procesos físicos. Los humanos llevamos en la Tierra como mucho unos cinco millones de años (dependiendo de qué definición de «humano» empleemos) y la civilización (según un cierto tipo) unos pocos miles de años. La Tierra podría seguir siendo habitable unos dos mil o tres mil millones de años. La Tierra podría seguir siendo habitable unos dos mil o tres mil millones de años a partir de ahora, por supuesto con una población limitada. Es un lapso de tiempo tan enorme que supera a la imaginación. Puede parecer tan largo que parezca infinito. Sin embargo, ya hemos visto cómo incluso mil millones de años son un mero abrir y cerrar de ojos comparado con la escala temporal de los cambios astronómicos y cosmológicos grandes. Al cabo de un trillón de años pueden seguir existiendo en otros lugares de nuestra galaxia hábitats parecidos a los de la Tierra.
Ciertamente podemos imaginar a nuestros descendientes, con semejante cantidad de tiempo a su disposición, desarrollando la exploración del espacio y todo tipo de maravillosas tecnologías. Tendrán tiempo de sobra para abandonar la Tierra antes de que el Sol la achicharre. Podrán buscar otro planeta adecuado y luego otro, y otro, y así sucesivamente. Expandiéndose en el espacio, la población podrá expandirse también. ¿Nos proporciona esto un alivio… saber que nuestra lucha por la supervivencia en el siglo XXI no sea definitivamente en vano?
En el capítulo 2, señalé que Bertrand Russell, en un ataque de depresión por las consecuencias de la segunda ley de la termodinámica, escribió en términos angustiosos sobre la futilidad de la existencia humana debido al hecho de que el sistema solar está condenado. Russell sintió con claridad que la defunción aparentemente inevitable de nuestro hábitat dejaba en cierto modo sin sentido la vida humana o la convertía en una farsa. Esta creencia contribuyó sin duda a su ateísmo. ¿Se habría sentido mejor Russell de haber sabido que la energía gravitatoria de un agujero negro podía superar con mucho a la del Sol y durar billones de años después de haberse desintegrado el sistema solar? Seguramente no. Lo que cuenta no es la duración real del tiempo, sino la idea de que, antes o después, el universo será inhabitable; esta idea hace que algunos sientan que nuestra existencia no tenga sentido.
De la descripción dada al final del capítulo 7 sobre el futuro lejanísimo del universo, podría inferirse que apenas puede imaginarse un entorno menos hospitalario ni más hostil. Sin embargo, no debemos ser ni chovinistas ni pesimistas. Sin duda que los seres humanos lo pasarían mal intentando vivir en un universo consistente en una sopa diluida de electrones y positrones, pero lo importante no es si nuestra especie como tal es inmortal, sino si nuestros descendientes pueden sobrevivir. Y no es probable que nuestros descendientes sean seres humanos.
La especie Homo sapiens surgió en la Tierra como producto de la evolución biológica. Pero los procesos de la evolución se modifican rápidamente con nuestras propias actividades. Ya hemos interferido el funcionamiento de la selección natural. También se va haciendo cada vez más posible controlar las mutaciones. Pronto podremos diseñar seres humanos con atributos y características físicas deseados mediante manipulación genética directa. Estas posibilidades biotecnológicas han surgido en unas pocas décadas de sociedad tecnológica. Imaginemos lo que puede conseguirse con miles o incluso millones de años de ciencia y tecnología.
En cuestión de unas pocas décadas, la humanidad ha sido capaz de abandonar el planeta y aventurarse en el espacio próximo. A lo largo de los eones, nuestros descendientes podrían dispersarse más allá de la Tierra, en el sistema solar y luego en otros sistemas estelares dentro de la galaxia. La gente suele tener la errónea idea de que tal empresa tardaría casi una eternidad. No es así. La colonización seguramente avanzaría saltando de planeta en planeta. Los colonos abandonarían la Tierra buscando un planeta adecuado a unos pocos años luz de distancia y, si pudieran viajar a casi la velocidad de la luz, el viaje sólo duraría esos pocos años. Incluso si nuestros descendientes no llegaran a pasar del 1% de la velocidad de la luz (objetivo más bien modesto), entonces el viaje duraría sólo unos pocos siglos. El establecimiento real de una colonia puede necesitar de unos siglos más para completarse, momento en que los descendientes de los colonos originarios podrían pensar en organizar su propia expedición colonizadora hacia otro planeta adecuado aún más lejos. Al cabo de otros pocos cientos de años, ese planeta estaría colonizado y así sucesivamente. Así colonizaron los polinesios las islas del Pacífico central.
La luz tarda sólo unos cien mil años en atravesar la galaxia, de modo que al 1% de esa velocidad el tiempo total de viaje es de diez millones de años. Si a lo largo de la ruta se colonizan cien mil planetas y hacen falta dos siglos para establecerse en cada uno de ellos, la escala de tiempo de colonización galáctica no hace más que triplicarse. Pero treinta millones de años es un tiempo cortísimo en términos astronómicos e incluso geológicos. El Sol tarda doscientos millones de años en orbitar una vez en torno a la galaxia; la vida en la Tierra lleva existiendo por lo menos diecisiete veces más que ese tiempo. El envejecimiento del Sol amenazará seriamente a la Tierra dentro de dos mil o tres mil millones de años, de modo que dentro de treinta millones de años los cambios acontecidos serán bien pocos. La conclusión es que nuestros descendientes podrían colonizar la galaxia en una pequeña fracción del tiempo en que la vida tardó en evolucionar sobre la Tierra hasta una sociedad tecnológica.
¿Cómo serían estos colonizadores descendientes nuestros? Si damos rienda suelta a nuestra imaginación, podemos conjeturar que los colonos podrían estar manipulados genéticamente para adaptarse con facilidad al planeta de destino. Por dar un ejemplo sencillo, si un planeta parecido a la Tierra se descubriera en torno a la estrella Epsilon Eridani y tuviera sólo un 10% de oxígeno en su atmósfera, los colonos podrían estar manipulados para generar más glóbulos rojos. Si la superficie del nuevo planeta fuera mayor, podrían estar dotados de huesos y estructura ósea más fuertes. Y así sucesivamente.
Tampoco el viaje habría de presentar problemas, incluso si se tardara varios siglos en hacerlo. La nave espacial podría estar hecha a la manera de un arca: un ecosistema completamente autosuficiente capaz de sustentar a los viajeros durante muchas generaciones. O se podría en cambio ultracongelar a los colonos para el viaje. De hecho, tendría más sentido enviar sólo una nave pequeña y una tripulación junto con millones de óvulos fertilizados y congelados además de la carga. Podrían incubarse a la llegada proporcionando al instante una población sin necesidad de los problemas logísticos y sociológicos del transporte de un gran número de adultos durante mucho tiempo.
También y por especular con lo que podría ser posible al disponer de enormes cantidades de tiempo, no hay motivo por el cual estos colonos tuvieran que ser de apariencia humana, ni siquiera de mentalidad humana. Si se puede manipular a los seres para afrontar distintas necesidades, entonces cada expedición podría incluir entes diseñados a propósito con la anatomía y la psicología adecuadas a su trabajo.
Ni siquiera haría falta que los colonos fueran organismos vivos según la definición habitual. Ya es posible implantar microprocesadores con chips de silicona en los seres humanos. Un mayor desarrollo de esta tecnología podría suponer una mezcla de partes orgánicas y electrónicas artificiales que realizaran funciones fisiológicas y cerebrales. Puede ser posible, por ejemplo, diseñar una memoria «incorporada» para los cerebros humanos, parecida a la de las memorias auxiliares que existen para los ordenadores. A la inversa, puede resultar más eficiente adaptar memoria orgánica para realizar los procesos que fabricar dispositivos de estado sólido para ciertas tareas. En efecto, será posible «cultivar» componentes informáticos biológicamente. Lo más probable es que en muchas tareas los ordenadores digitales se vean reemplazados por redes neurales; ya incluso se están usando redes neurales en lugar de ordenadores digitales para simular la inteligencia humana y predecir el comportamiento económico. Y podría ser mejor cultivar redes neurales orgánicas a partir de trocitos de tejido cerebral que manufacturarlas ab initio. Puede que también sea factible construir una mezcla simbiótica de redes orgánicas y artificiales. Con el desarrollo de la nanotecnología, la distinción entre lo vivo y lo no vivo, lo natural y lo artificial, el cerebro y el ordenador, se irá borrando cada vez más.
De momento esas especulaciones pertenecen al reino de la ciencia ficción. ¿Pueden convertirse en hechos científicos? Después de todo, por imaginar una cosa no va a suceder necesariamente. Sin embargo, podemos aplicar a los procesos tecnológicos el mismo principio que aplicamos a los procesos naturales: con tiempo suficiente por delante, todo lo que pueda suceder, sucederá. Si los humanos y sus descendientes continúan estando suficientemente motivados (cosa que plantea un gran condicionante), entonces la tecnología sólo estará limitada por las leyes de la física. Un reto como el proyecto del genoma humano, que puede ser una tarea ingente para una única generación de científicos, sería cosa sencilla si hubiera cien, mil o un millón de generaciones que se dedicaran a llevar a cabo el trabajo.
Adoptemos la posición optimista de que sobreviviremos y de que seguiremos desarrollando nuestra tecnología hacia sus límites. ¿Qué significa eso en relación con la exploración del universo? La construcción de seres semientes diseñados a propósito abriría la posibilidad de enviar agentes a los hábitats hasta ese momento inhóspitos para realizar tareas que hoy parecen impensables. Aunque estos seres puedan ser el resultado de la tecnología basada en los humanos no tendrían por qué ser humanos en sí mismos.
¿Deberíamos sentirnos preocupados por el destino de estos extraños entes? Muchas personas pueden sentir cierta repulsión por la perspectiva de que la humanidad se vea reemplazada por tales monstruos. Si la supervivencia exige que los seres humanos dejen paso a los robots orgánicos genéticamente manipulados puede que debiéramos optar por la extinción. Con todo, si la probabilidad de la defunción de la humanidad nos deprime, tenemos que preguntarnos qué es exactamente lo que queremos conservar de los seres humanos. Seguro que no se trata de nuestra forma externa. ¿De verdad que nos preocuparía que, por ejemplo, dentro de un millón de años, nuestros descendientes hubieran perdido los dedos de los pies? ¿O que tuvieran las piernas más cortas o cabeza y cerebros mayores? Después de todo nuestra forma ha cambiado mucho a lo largo de los últimos siglos y hay amplias variaciones actualmente entre los distintos grupos étnicos.
Si se nos presiona, sospecho que la mayoría de nosotros apuntaría más a lo que podríamos llamar espíritu humano… nuestra cultura, nuestro conjunto de valores, nuestra distintiva configuración mental tal y como quedan ejemplificados en nuestros logros artísticos, científicos e intelectuales. Desde luego que estas cosas merecen perseverarse y perpetuarse. Si pudiéramos traspasar nuestra humanidad esencial a nuestros descendientes, fuera cual fuera su forma, entonces se obtendría la supervivencia de lo que más importa.
Que sea posible crear seres parecidos a los humanos que se dispersen por todo el cosmos es, no cabe duda, altamente especulativo. Dejando aparte cualquier otra consideración, puede ocurrir que la humanidad pierda la motivación para tan grande empeño o que los desastre económicos, ecológicos o de otro tipo traigan nuestra muerte antes de que abandonemos el planeta. Puede incluso ocurrir que los seres extraterrestres estén por delante de nosotros y hayan ya colonizado la mayor parte de los planetas adecuados (aunque evidente no la Tierra… todavía). Pero caiga la tarea sobre nuestros descendientes o sobre los de alguna especie ajena a nosotros, la posibilidad de esparcirse por el universo y controlarlo por medio de la tecnología es una posibilidad fascinante, y es tentador preguntarse cómo afrontaría una superraza esa lenta degeneración del universo.
Las duraciones de tiempo para la descomposición física examinadas en el capítulo 7 son tan enormes que cualquier intento de adivinar cómo pueda ser la tecnología en un futuro lejanísimo basándose en la extrapolación de las tendencias actuales de la Tierra son inútiles. ¿Quién puede imaginar una sociedad tecnológica de un billón de años de edad? Podría parecer que fuera capaz de alcanzarlo todo. Sin embargo, cualquier tecnología, por avanzada que fuera, seguramente seguiría estando sometida a las leyes de la física. Si, por ejemplo, la teoría de la relatividad es correcta en su conclusión de que cualquier cuerpo material no puede exceder la velocidad de la luz, entonces ni siquiera el esfuerzo tecnológico de un billón de años sería capaz de romper la barrera de la luz. O lo que es más serio, si toda actividad de interés supone gastar por lo menos algo de energía, entonces el agotamiento continuo de las fuentes libres de energía del universo terminará por presentar una seria amenaza para una comunidad tecnológica por avanzada que sea.
Aplicando los principios básicos de la física a la definición más amplia de seres sentientes, podemos investigar si la degeneración del universo en un futuro lejanísimo presenta algunos obstáculos fundamentales a su supervivencia. Para que a un ser se le pueda calificar de «sentiente» debe ser capaz, por lo menos, de procesar información. Pensar y experimentar son dos ejemplos de actividad que suponen procesado de la información. Así que, ¿qué exigencias podría suponer esto sobre el estado físico del universo?
Un rasgo característico del procesado de la información es que disipa energía. Ése es el motivo por el que el procesador de texto con el que mecanografío este libro tiene que estar conectado a la red eléctrica. La cantidad de energía gastada por unidad de información depende de consideraciones termodinámicas. La disipación es mínima cuando el procesador funciona a una temperatura parecida a la de su entorno. El cerebro humano y la mayoría de los ordenadores funciona de modo muy ineficiente y disipan copiosas cantidades de energía sobrante en forma de calor. El cerebro, por ejemplo, produce una fracción significativa del calor corporal y muchos ordenadores necesitan un sistema especial de refrigeración para evitar que se fundan. El origen de este calor residual puede remontarse a la mismísima lógica sobre la cual funciona el procesado de la información y que exige descartar información. Por ejemplo, si un ordenador lleva a cabo el cálculo 1 + 2 = 3, reemplaza dos unidades de información de entrada (1 y 2) por una unidad de información de salida (3). Una vez efectuada la operación, el ordenador puede descartar la información de entrada, reemplazando dos unidades por una sola. Lo cierto es que para evitar que sus bancos de memoria se colapsen, la máquina tiene que descartar continuamente toda esa información improcedente. El proceso de borrado es, por definición, irreversible, y por lo tanto produce un incremento de la entropía. De modo que, aparentemente en sus mismísimos fundamentos, la reunión de información y su procesado terminará por agotar irreversiblemente la energía disponible e incrementará la entropía del universo.
Freeman Dyson ha contemplado las limitaciones afrontadas con una colectividad de seres sintientes (restringidos por la necesidad de disipar energía a un cierto ritmo aunque sólo fuera para pensar) conforme el universo se va enfriando y avanza hacia su muerte térmica. La primera restricción es la de que los seres han de tener una temperatura mayor que la de su entorno porque de lo contrario el calor residual no saldría de ellos. En segundo lugar, las leyes de la física limitan el ritmo al cual un sistema físico puede irradiar energía a su entorno. Evidentemente, los seres no pueden funcionar largo tiempo si producen calor residual a mayor velocidad de la que emplean en deshacerse de él. Estas exigencias ponen un mínimo a la tasa mediante la cual los seres disipan energía inevitablemente. Una exigencia esencial es que exista una fuente de energía libre para alimentar ese desprendimiento de energía calorífica vital. Dyson llega a la conclusión de que todas esas fuentes están condenadas a desvanecerse en un futuro cósmico lejanísimo, de modo que todos los seres sintientes afrontarán antes o después una crisis de energía.
Ahora bien, hay dos modos de prolongar la longevidad de la sentencia. Uno es sobrevivir lo más posible; el otro es acelerar la tasa del pensar y el experimentar. Dyson hace la razonable suposición de que la experiencia subjetiva de un ser acerca del paso del tiempo depende de la tasa a la cual procesa la información: cuanto más rápido sea el mecanismo de procesado que se use, más pensamientos y percepciones tendrá el ser por unidad de tiempo y más deprisa parecerá pasar el tiempo. Esta suposición se utiliza de manera divertida en la novela de ciencia ficción Dragon’s Egg [El huevo del dragón] de Robert Forward, que cuenta la historia de una sociedad de seres conscientes que viven en la superficie de una estrella de neutrones. Estos seres utilizan la radiación nuclear en lugar de procesos químicos para mantener su existencia. Como las reacciones nucleares son miles de veces más rápidas que las reacciones químicas, los seres neutrónicos procesan la información mucho más deprisa. Un segundo de la escala de tiempo humana representa para ellos el equivalente de muchos años. Esa sociedad de la estrella representa para ellos el equivalente de muchos años. Esa sociedad de la estrella de neutrones es bastante primitiva cuando los humanos entran en contacto con ella por vez primera, pero se desarrolla a ojos vistas y pronto supera a la humanidad.
Desgraciadamente, adoptar esta estrategia como medio de supervivencia en un futuro lejano tiene su lado malo: cuanto más deprisa se procese la información, mayor será la tasa de disipación de la energía y más deprisa se agotarán los recursos disponibles de energía. Podríamos creer que eso supondría la muerte inevitable para nuestros descendientes independientemente de la forma física que adoptaran. Pero no necesariamente. Dyson ha mostrado que podría alcanzarse un término medio inteligente en el que la sociedad disminuyera poco a poco su tasa de actividad con el fin de equipararse a la decadencia del universo, por ejemplo, hibernando temporadas cada vez más largas. Durante cada fase de somnolencia, se permitiría que se disparara el calor de los esfuerzos de la fase activa anterior y que se acumulara energía útil para utilizarla en la siguiente fase activa.
El tiempo subjetivo experimentado por los seres que adopten esta estrategia representará una fracción cada vez más pequeña del tiempo real transcurrido, porque el reposo de la sociedad siempre se va haciendo más largo. Pero, como no dejo de recalcar, la eternidad es muy larga y tenemos que luchar entre límites opuestos: los recursos que tienden a cero y el tiempo que tiende a infinito. Dyson ha mostrado a partir de un sencillo examen de tales límites que el tiempo subjetivo total puede ser infinito incluso con unos recursos finitos. Y cita una estadística asombrosa: una sociedad de seres con el mismo nivel demográfico que tiene actualmente la humanidad podría perdurar literalmente una eternidad gastando una energía total de 6 × 1030 julios, siendo ésta la energía desprendida por el Sol ¡en un periodo de sólo ocho horas!
Sin embargo, la auténtica inmortalidad exige algo más que la capacidad de procesar una cantidad de información infinita. Si un ser tiene un número finito de estados cerebrales, sólo puede pensar un número finito de pensamientos distintos. De perdurar para siempre, significaría que tendría los mismos pensamientos una y otra vez. Y una existencia así parece tan absurda como la de una especie condenada a desaparecer. Para escapar a este callejón sin salida, es necesario que la sociedad (o el superser único) siga creciendo sin límites. Lo cual plantea un reto serio para un futuro lejanísimo, ya que la materia se irá evaporando a mayor velocidad de la que hace falta para convertirla en materia cerebral. Puede que un individuo desesperado e ingenioso intente dominar a los escurridizos pero siempre presentes neutrinos cósmicos a fin de expandir el panorama de su actividad intelectual.
Buena parte del examen que hace Dyson (y, sin duda, la mayor parte de las conjeturas sobre el destino de los seres conscientes en un futuro lejano) da por supuesto que los procesos mentales de estos seres siempre se reducen a una suerte de proceso computativo digital. Un ordenador digital es ciertamente una máquina de estado finito y por ello se enfrenta a un estricto límite acerca de lo que puede conseguir. Sin embargo, existen otros sistemas de otros tipos, conocidos como ordenadores analógicos. Un ejemplo sencillo es el de una regla de cálculo. Pueden hacerse operaciones continuamente ajustando la regla y en un caso ideal pueden darse un número infinito de estados. De este modo los ordenadores analógicos eluden ciertas limitaciones de los ordenadores digitales, que sólo pueden almacenar y procesar una cantidad finita de información. Si la información se codifica según la idea de un ordenador analógico (digamos, por medio de las posiciones o de los ángulos de objetos materiales) la capacidad del ordenador parece ilimitada. Así que si un superser puede funcionar como un ordenador analógico, a lo mejor puede pensar no sólo un número infinito de pensamientos, sino un número infinito de pensamientos distintos.
Desgraciadamente, no sabemos si el universo en su conjunto es parecido a un ordenador analógico o digital. La física cuántica parece indicar que el universo entero debe estar «cuantizado», es decir, que en todas sus propiedades registra saltos discretos en lugar de variaciones continuas. Pero esto es una pura conjetura. Ni tampoco comprendemos realmente la relación entre la actividad mental y la cerebral; puede que sencillamente no sea posible correlacionar nuestros pensamientos y experiencias con las ideas de la física cuántica que aquí se consideran.
Sea cual sea la naturaleza de la mente, no hay duda de que los seres de un futuro lejano afrontan la crisis ecológica definitiva: la disipación cósmica de todas las fuentes de energía. Sin embargo, parece que «viviendo a medio gas» podrían alcanzar una especie de inmortalidad. En el panorama previsto por Dyson sus actividades irían haciendo cada vez menos impacto en un universo fríamente indiferente a sus exigencias y durante eones sin cuento estarían inactivos, conservando sus recuerdos pero sin aumentarlos, perturbando apenas la negrura inmóvil de un cosmos moribundo. Gracias a una organización inteligente, podrían seguir pensando un número infinito de pensamientos y experimentando un número infinito de experiencias. ¿Qué cosa mejor podríamos esperar?
La muerte térmica del cosmos ha sido uno de los mitos duraderos de nuestra época. Vimos cómo Russell y otros se basaban en la aparentemente inevitable degeneración que predice la segunda ley de la termodinámica para sostener una filosofía de ateísmo, nihilismo y desesperación. Mediante nuestra comprensión mejorada de la cosmología podemos hoy pintar un cuadro diferente. Puede que el universo se vaya parando, pero no se extingue. Desde luego que vale la segunda ley de la termodinámica, pero no necesariamente impide la inmortalidad cultural.
De hecho, puede que las cosas no sean tan crudas como las pinta el panorama de Dyson. Hasta ahora he dado por hecho que el universo permanece más o menos uniforme mientras se expande y se enfría, pero tal cosa puede no ser acertada. La gravitación es fuente de muchas inestabilidades y la uniformidad a gran escala del cosmos que vemos hoy podría dar paso a una organización más complicada en un futuro lejano. Por ejemplo, podrían amplificarse ligeras variaciones de la tasa de expansión en diferentes direcciones. Podrían acumularse inmensos agujeros negros una vez que su mutua atracción venciera el efecto dispersante de la expansión cosmológica. Y esta circunstancia daría lugar a una curiosa competencia: recuérdese que cuanto más pequeño es un agujero negro, más caliente está y más rápidamente se evapora. Si se funden dos agujeros negros, el agujero final será mayor y por ende más frío, de tal modo que el proceso de evaporación recibirá un parón. La cuestión clave en relación con el futuro lejano del universo es si la tasa de fusión de los agujeros negros será suficiente para ir a la par con la tasa de evaporación. Si es así, entonces siempre existirán algunos agujeros negros que puedan proporcionar, gracias a la radiación de Hawking, una fuente de energía útil para una sociedad adepta a la tecnología, evitando seguramente la necesidad de hibernación. Los cálculos de los físicos Don Page y Randall McKee parecen indicar que esa competencia está en el filo de la navaja y depende sustancialmente de la tasa exacta en la que vaya decreciendo la expansión del universo; en algunos modelos, sí se produce la victoria de la fusión de los agujeros negros.
Descuidada también en la exposición de Dyson se encuentra la posibilidad de que nuestros descendientes puedan intentar modificar la organización a gran escala del cosmos con el fin de preservar su propia longevidad. Los astrofísicos John Barrow y Frank Tipler han pensado distintas maneras según las cuales una sociedad tecnológicamente avanzada podría hacer ligeros ajustes en el movimiento de las estrellas para poder montar una disposición gravitatoria favorable a sus intereses. Por ejemplo, podrían utilizarse armas nucleares para alterar la órbita de un asteroide, lo suficiente por ejemplo como para que recibiera un impulso orbital desde un planeta y fuera a estrellarse en el Sol. El momento de tal impacto alteraría ligerísimamente la órbita del Sol en la galaxia. Aunque el efecto es pequeño, es acumulativo: cuanto más lejos se mueva el Sol, más grande es el desplazamiento conseguido. A una distancia de muchos años luz, la deriva podría suponer una diferencia crucial si el Sol se acercara a otra estrella, pasando de ser un mero encuentro con un ligero cabeceo a un encuentro que modificara violentamente la trayectoria del Sol por la galaxia. Manipulando muchas estrellas, se podrían crear cúmulos de cuerpos astronómicos que luego se explotarían en beneficio de la sociedad. Y como los efectos se amplifican y se acumulan, no hay límite al tamaño de los sistemas que se pueden controlar de tal modo: tirando un poquito de allí y otro poquito de allá. Con tiempo suficiente (y nuestros descendientes tendrán desde luego tiempo de sobra a su disposición) se podría llegar incluso a manejar las galaxias.
Esta grandiosa ingeniería cósmica tendría que competir con los sucesos naturales y aleatorios en los cuales las estrellas y las galaxias salen despedidas de los cúmulos ligados gravitatoriamente, tal y como se describe en el capítulo 7. Barrow y Tipler creen que se tardarían 1022 años en reorganizar una galaxia por medio de la manipulación de los asteroides. Por desgracia, la interrupción natural se da más o menos cada 1019 años, de modo que la batalla parece inclinada a favor de la naturaleza. Por otro lado, nuestros descendientes podría aprender a controlar objetos mucho mayores que los asteroides. Asimismo, la tasa de dispersión natural depende de las velocidades orbitales de los objetos. Cuando se trata de galaxias enteras, esas velocidades decrecen conforme se expande el universo. Las velocidades menores hacen también que la manipulación artificial sea más lenta, pero los dos efectos no disminuyen al mismo ritmo. Parece que, con el tiempo, la tasa de interrupción natural disminuyen al mismo ritmo. Parece que, con el tiempo, la tasa de interrupción natural podría descender por debajo de la tasa con la que una sociedad de ingenieros pudiera reordenar el universo. Y ello plantea la interesante posibilidad de que mientras pasara el tiempo los seres inteligentes pudieran controlar cada vez más un universo con recursos decrecientes, hasta que la naturaleza estuviera fundamentalmente «tecnologizada» y desapareciera la distinción entre lo que es natural y lo que es artificial.
Una suposición clave del análisis de Dyson es que los procesos de pensamiento disipan energía sin remedio. Desde luego es así en el caso de los procesos de pensamientos, humanos, y hasta hace bien poco se daba por hecho que cualquier forma de procesado de la información tendía que pagar aunque fuera un mínimo precio termodinámico. Lo sorprendente es que, esto no es estrictamente correcto. Los científicos informáticos Charles Bennett y Rolf Landauer, de IBM, han demostrado que en principio es posible la computación reversible. Lo cual significa que determinados sistemas físicos (en este momento completamente hipotéticos) podrían procesar información sin disipación de energía. Resulta posible concebir un sistema que piense un número infinito de pensamientos ¡sin necesitar ningún tipo de suministro de potencia! No está claro que tal sistema pudiera asimismo reunir la información además de procesarla, porque la adquisición de cualquier información no trivial procedente del entorno debería suponer disipación de energía de una u otra forma, aunque sólo consistiera en discriminar la señal del ruido circundante. Por lo tanto, este ser tan poco exigente no tendría percepciones del mundo que le rodeara. Sin embargo, podría recordar el universo que fue. Puede que incluso pudiera soñar.
La imagen de un universo moribundo ha obsesionado a los científicos durante más de un siglo. La suposición de que vivimos en un cosmos que va degenerándose sin parar por medio de la prodigalidad de la entropía forma parte del folclore de la cultura científica. Pero ¿hasta qué punto está bien fundamentada? ¿Podemos estar seguros de que todos los procesos físicos llevan inevitablemente hacia el caos y la degeneración?
¿Qué hay de la biología? Nos da una pista la defensa tan cerrada que de la evolución darwiniana hacen algunos biólogos. Yo creo que su reacción surge de la incómoda contradicción de un proceso que con claridad se ve constructivamente dirigido por las fuerzas físicas de las que se supone que son, en el fondo, destructivas. La vida en la Tierra comenzó con seguridad como una especie de fango primordial. La biosfera de hoy es un ecosistema rico y complejo, una red de organismos variadísimos y de enorme complicación. Aunque los biólogos, puede que temerosos de mostrar trazas de propósito divino, niegan cualquier evidencia de un progreso sistemático en la evolución, tanto para el científico como el no científico está claro que algo ha avanzado, aun yendo más o menos sin dirección, desde que la vida se originara sobre la Tierra. El problema es caracterizar con mayor precisión ese avance. ¿En qué es en lo que se ha avanzado?
Las disquisiciones anteriores en relación con la supervivencia se han centrado en la lucha entre la información (orden) y la entropía… terminando siempre con el triunfo final de la entropía. Pero ¿es que acaso debemos preocuparnos precisamente por la información per se? Después de todo, llegar a una conclusión repasando uno a uno todos los pensamientos posibles es tan emocionante como leer la guía de teléfonos. Lo que con seguridad importa es la calidad de la experiencia o, más en general, la calidad de la información que se reúne y se utiliza.
Por lo que a mí respecta, el universo comenzó en un estado más o menos informe. Con el tiempo ha ido emergiendo la riqueza y la variedad de los sistemas físicos que hoy vemos. Por lo tanto, la historia del universo es la historia del crecimiento de la complejidad organizada. Esto parece una paradoja. Comencé mi relato describiendo cómo la segunda ley de la termodinámica nos dice que el universo se muere, pasando inexorablemente de un estado inicial de baja entropía hasta un estado final de máxima entropía y de cero perspectivas. De modo que las cosas ¿van a mejor o a peor?
No hay paradoja en realidad, porque la complejidad organizada es diferente de la entropía. La entropía, o desorden, es el negativo de la información o del orden: cuanta más información procesamos (es decir, cuanto más orden generamos) mayor es el precio entrópico pagado: el orden de aquí genera desorden en algún otro sitio. Ésa es la segunda ley: siempre gana la entropía. Pero la organización y la complejidad no son simplemente orden e información. Se refieren a determinados tipos de orden e información. Reconocemos, por ejemplo, una importante distinción entre una bacteria y un cristal. Los dos están ordenados pero de distinta manera. Un retículo cristalino representa una uniformidad regimentada: de una belleza pura pero aburrida. Por contra, la organización compleja de la bacteria es sumamente interesante.
Pueden parecer argumentos subjetivos pero pueden sustentarse con las matemáticas. En los últimos años, se ha abierto todo un nuevo campo de investigación que tiene como objetivo la cuantificación de conceptos tales como la complejidad organizada, y que busca establecer principios generales de organización que vayan codo a codo con las leyes de la física existentes. El tema está aún en pañales, pero ya amenaza muchas de las suposiciones tradicionales sobre el orden y el caos.
En mi libro The Cosmic Blueprint [Proyecto cósmico], propuse la idea de que en el universo funciona una «ley de la complejidad creciente» junto con la segunda ley de la termodinámica. Entre estas dos leyes no hay incompatibilidad. En la práctica, un incremento de la complejidad organizativa de un sistema físico incrementa la entropía. Por ejemplo, en la evolución biológica sólo emerge un organismo nuevo y más complejo después de que se hayan dado muchos procesos físicos y biológicos destructivos (la muerte prematura de mutantes mal adaptados, por ejemplo). Hasta la información de un copo de nieve crea un gasto de calor que contribuye a aumentar la entropía del universo. Pero, como se ha explicado, no se trata de un intercambio directo porque la información no es el negativo de la entropía.
Me reconforta grandemente saber que otros muchos investigadores han llegado a conclusiones parecidas y que se han hecho intentos de formular una «segunda ley» de la complejidad. Aunque compatible con la segunda ley de la termodinámica, la ley de la complejidad proporciona una imagen muy distinta del cambio cósmico al describir un universo en progreso (que en cierto sentido debe sustentarse rigurosamente mediante las investigaciones a las que he aludido) partiendo de unos inicios prácticamente sin rasgos para llegar a estados cada vez más complejos.
En el contexto del fin del universo, la existencia de una ley de la complejidad creciente tiene un profundo significado. Si la complejidad organizada no es el opuesto de la entropía, entonces la limitada capacidad de entropía negativa del universo no tiene por qué poner límites al grado de complejidad. El precio entrópico pagado por el avance de la complejidad puede ser puramente casual, y no fundamental, como es el caso de la mera ordenación o procesado de la información. De ser así, entonces nuestros descendientes pueden ser capaces de alcanzar estados de complejidad organizativa cada vez mayor sin esquilmar recursos cada vez menores. Aunque puedan estar limitados en la cantidad de información que procesen, puede que no tengan límite en la riqueza y en la calidad de sus actividades físicas y mentales.
En este capítulo y en el último he intentado proporcionar un atisbo de un universo que se va deteniendo pero que quizá nunca pierda todo el vapor, de criaturas extravagantes de ciencia ficción ganándose la vida a duras penas con unos elementos que cada vez se les ponen más en contra y poniendo a prueba su ingenio contra la lógica inexorable de la segunda ley de la termodinámica. La imagen de su lucha por la supervivencia, desesperada pero no necesariamente fútil, puede animar a unos lectores y deprimir a otros. Yo tengo al respecto sentimientos encontrados.
Sin embargo, toda esta especulación se hace sobre la suposición de que el universo seguirá expandiéndose siempre. Hemos visto cómo es éste el único destino posible para el cosmos. Si la expansión se desacelera con la suficiente rapidez, el universo puede dejar de expandirse un día y empezar a contraerse hacia un gran crujido. Y entonces ¿qué esperanza hay de sobrevivir?