Lo importante de lo infinito es que no se trata simplemente de un número muy grande. Lo infinito es cualitativamente diferente de otra cosa que sea fantástica e inimaginablemente grande. Supongamos que el universo siguiera expandiéndose toda la eternidad de manera que no tuviera fin. Que durara toda la eternidad significa que tendría una vida infinita. Si éste fuera el caso, cualquier proceso físico, por lento o improbable que fuera, tendría que darse alguna vez, del mismo modo que el mono que trasteara eternamente con una máquina de escribir terminaría por escribir las obras de William Shakespeare.
Un buen ejemplo lo proporciona el fenómeno de la emisión de ondas gravitatorias que examiné en el capítulo 5. Sólo en el caso de los procesos astronómicos más violentos la pérdida de energía en forma de radiación gravitatoria producirá cambios conspicuos. La emisión de aproximadamente un milivatio generado por el orbitar de la Tierra en torno al Sol tiene un efecto infinitesimal sobre el movimiento de la Tierra. Sin embargo, una pérdida continuada de un milivatio a lo largo de billones y billones de años terminaría por hacer que la Tierra se acercara al Sol describiendo una espiral. Por supuesto que lo más probable es que el Sol la engulla antes de que tal cosa ocurra, pero la cuestión es que los procesos que son despreciables a la escala temporal humana, pero que aun así son persistentes, pueden terminar por predominar y servir de tal manera para determinar el destino definitivo de los sistemas físicos.
Imaginemos el estado del universo dentro de muchísimo, muchísimo tiempo, por ejemplo, dentro de un cuatrillón de años. Las estrellas ya se han apagado hace mucho tiempo; el universo es oscuro. Pero no vacío. Por la negra vastedad del espacio rondan agujeros negros que rotan, estrellas de neutrones a la deriva y enanas negras, incluso algunos pocos cuerpos planetarios. En esa época, la densidad de tales objetos es extremadamente baja: el universo se ha expandido diez mil billones de veces más que su actual tamaño.
La gravedad libraría siempre una extraña batalla. El universo en expansión intenta apartar uno de otros a todos los objetos pero las atracciones gravitatorias mutuas se oponen a ello e intentan acercar los cuerpos. Como resultado, ciertos conjuntos de cuerpos (por ejemplo, los cúmulos de galaxias o lo que lleguen a ser las galaxias después de eones de degradación estructural) siguen gravitatoriamente unidos, pero estos conjuntos siguen apartándose de los demás conjuntos vecinos. El resultado definitivo de esta tirasoga depende de la rapidez con que se desacelere la tasa de expansión. Cuanto más baja sea la densidad de la materia en el universo, más «impulso» recibirán estos conjuntos de cuerpos para que se desentiendan de sus vecinos y se muevan libre e independientemente.
Dentro de un sistema gravitatorio de unión los lentos pero inexorables procesos de la gravedad ejercen su dominio. La emisión de ondas gravitatorias, por débil que sea, va drenando poco a poco la energía del sistema originando una lenta espiral de muerte. Aun de forma tan gradual, las estrellas muertas se van acercando a otras estrellas muertas o agujeros negros y se funden en una orgía de canibalismo generalizada. Hace falta un cuatrillón de años para que las ondas gravitatorias degraden por completo la órbita del Sol, una ceniza enana negra que se desliza hacia el centro galáctico en donde un gigantesco agujero negro lo espera para engullirlo.
Sin embargo, no deja de ser cierto que el Sol muerto encontrará su defunción definitiva de esta guisa, porque conforme vaya dirigiéndose lentamente hacia el centro se irá encontrando ocasionalmente con otras estrellas. A veces pasará cerca de un sistema binario, de un par de estrellas ligadas por su estrecho abrazo gravitatorio. Estará dispuesto entonces el escenario para un curioso fenómeno llamado honda gravitatoria. El movimiento de dos cuerpos en órbita uno en torno al otro exhibe una simplicidad clásica. Éste fue el problema (bajo el disfraz del planeta que gira en torno al Sol) que ocupó a Kepler y Newton y condujo al nacimiento de la ciencia moderna. En una situación idea, y sin considerar la radiación gravitatoria, el movimiento del planeta es regular y periódico. No importa lo que se espere, el planeta sigue orbitando igual. Sin embargo, la situación es drásticamente diferente si se halla presente un tercer cuerpo, por ejemplo una estrella y dos planetas o tres estrellas. El movimiento deja de ser sencillo y periódico. La pauta de las fuerzas mutuas entre los tres cuerpos cambia continuamente de manera muy complicada. El resultado es que la energía del sistema no la comparten por igual todos los participantes, incluso siendo cuerpos idénticos. En vez de eso, se da un complejo baile en el que la parte del león de la energía se la lleva primero un cuerpo, y luego otro. A lo largo de periodos largos de tiempo, el comportamiento del sistema puede ser fundamentalmente aleatorio: de hecho, el problema de dinámica gravitatoria de los tres cuerpos es un buen ejemplo de lo que se llama sistema caótico. Puede ocurrir que dos de los cuerpos «se compinchen» transmitiendo tanta energía del total disponible al tercer cuerpo que lo expulsen por completo del sistema, como sale disparado el proyectil de una honda. De ahí el término «honda gravitatoria».
El mecanismo de la honda puede expulsar estrellas de cúmulos estelares o incluso de la propia galaxia. En un futuro lejano, la gran mayoría de las estrellas muertas, de los planetas y de los agujeros negros saldrán disparados al espacio intergaláctico de esta manera, puede que para toparse con otra galaxia en desintegración o para vagar para siempre en el vasto vacío que se expande. Sin embargo, es un proceso lento: hará falta un tiempo mil millones de veces mayor que la edad actual del universo para que se complete tal disolución. El escaso porcentaje de objetos restantes emigrará, por el contrario, a los centros de las galaxias para fundirse unos con otros y formar agujeros negros gigantescos.
Como expliqué en el capítulo 5, los astrónomos tienen buenas pruebas de que existen ya monstruosos agujeros negros en el centro de algunas galaxias, aspirando glotonamente torbellinos de gases y liberando como resultado inmensas cantidades de energía. Con el tiempo, a la mayoría de las galaxias les esperará tal frenesí alimenticio, que proseguirá hasta que la materia que rodee al agujero negro haya sido absorbida o dispersada, puede que para volver a caer o para unirse a los menguantes gases intergalácticos. El hinchado agujero negro permanecerá tranquilo, con sólo alguna estrella de neutrones despistada o un pequeño agujero negro cayendo en su interior. Con todo, tampoco será éste el final de la historia del agujero negro. En 1974, Stephen Hawking descubrió que, después de todo, los agujeros negros tampoco son tan negros. Porque, a su vez, emiten un débil resplandor de radiación de calor.
El efecto Hawking puede entenderse apropiadamente sólo con la ayuda de la teoría cuántica de campos, una difícil rama de la física a la que ya he aludido en relación con la teoría del universo inflacionario. Recuérdese que un principio esencial de la teoría cuántica es el principio de incertidumbre de Heisenberg, según el cual las partículas cuánticas no poseen valores netamente definidos para todos sus atributos. Por ejemplo, un fotón o electrón no pueden tener un valor definido para su energía en un momento determinado del tiempo. En efecto, una partícula subatómica puede «tomar prestada» energía siempre que la devuelva enseguida.
Como señalé en el capítulo 3, la incertidumbre de energía lleva a varios efectos curiosos, como la presencia fugaz de partículas de vida corta, o partículas virtuales, en el espacio aparentemente vacío. Ello nos lleva al extraño concepto de «vacío cuántico», vacío que lejos de ser vacío e inerte, bulle con la actividad de las inquietas partículas virtuales. Aunque esta actividad suele pasar desapercibida, sí puede producir efectos físicos. Uno de esos efectos se produce cuando la actividad del vacío se ve perturbada por la presencia de un campo gravitatorio.
Un caso extremo se refiere a las partículas virtuales que aparecen cerca del horizonte de sucesos de un agujero negro. Recuérdese que las partículas virtuales viven de energía prestada durante un brevísimo tiempo, tras el cual debe «devolverse» la energía con lo que las partículas virtuales reciben un impulso energético lo suficientemente grande proveniente de una fuente externa durante su breve tiempo asignado, el préstamo se puede resolver a su favor. Entonces las partículas ya no tienen ninguna obligación de desaparecer para devolverlo. El efecto de esta beneficencia es por lo tanto el de que las partículas virtuales se ven ascendidas a partículas reales, las cuales pueden disfrutar de una existencia más o menos permanente.
Según Hawking, esa beneficencia para liquidar el préstamo es exactamente la que se da cerca de un agujero negro. En ese caso, el «benefactor» que proporciona la energía requerida es el campo gravitatorio del agujero negro. Y así se desarrolla el trato. Las partículas virtuales suelen crearse en pares que se mueven en direcciones opuestas. Imaginemos uno de esos pares de partículas recién aparecidas justamente en la parte externa del horizonte de sucesos. Supongamos que el movimiento de las partículas sea de tal manera que una de ellas caiga en el agujero atravesando el horizonte. A su paso captará una enorme cantidad de energía de la intensa gravedad del agujero. Este impulso de energía, según descubrió Hawking, es suficiente para «liquidar el préstamo» por entero y ascender tanto a la partícula que cae como a su pareja (que sigue fuera del horizonte de sucesos) al estatuto de partículas reales. El destino de la partícula abandonada fuera del horizonte es azaroso. Podría también terminar por verse engullida por el agujero o podría salir disparada a gran velocidad y escapar por completo del agujero negro. Hawking predice así que debe haber un flujo constante de estas partículas huidas que salen al espacio desde las proximidades del agujero, constituyendo lo que se conoce como radiación de Hawking.
El efecto Hawking alcanzaría su mayor fuerza en los agujeros negros microscópicos. Como un electrón virtual, por ejemplo, puede recorrer como mucho 10–11 centímetros en condiciones normales antes de que se le reclame el préstamo, sólo los agujeros negros de menor tamaño que ése (lo que es decir, aproximadamente, de dimensiones nucleares) serán efectivamente capaces de crear una corriente de electrones. Si el agujero es mayor, la mayoría de los electrones virtuales no tendrá tiempo suficiente para cruzar el horizonte antes de devolver su préstamo.
La distancia que puede atravesar una partícula virtual depende de lo que viva, lo que a su vez viene dado (vía el principio de incertidumbre de Heisenberg) por el tamaño del préstamo de energía. A mayor préstamo, más corta la vida de la partícula. Un componente importante del préstamo de energía es la energía de la masa en reposo de la partícula. En el caso de un electrón, el préstamo tiene que ser por lo menos igual a la energía de masa en reposo del electrón. Para una partícula de mayor masa en reposo, por ejemplo un protón, el préstamo sería mayor y por lo mismo más breve, de modo que la distancia recorrida sería menor. Por lo tanto, la producción de protones mediante el efecto Hawking exige un agujero negro todavía más pequeño que el de dimensión nuclear. A la inversa, las partículas con masa en reposo menor que la de los electrones, por ejemplo los neutrinos, se crearían en un agujero negro de dimensión mayor que un núcleo. Los fotones, que tienen masa en reposo nula se crearán en un agujero negro de cualquier dimensión. Hasta un agujero negro de una masa solar tendrá un flujo Hawking de fotones y posiblemente también de neutrinos; sin embargo, en esos casos, la intensidad del flujo es muy débil.
Utilizar aquí la palabra «débil» no es ninguna exageración. Hawking descubrió que el espectro de energía producido por un agujero negro es el mismo que el que irradia un cuerpo caliente, de modo que una manera de expresar la fuerza del efecto Hawking es hacerlo en función de la temperatura. Para un agujero de tamaño nuclear (10–13 centímetros de diámetro), la temperatura es muy alta, unos diez mil millones de grados. Por contra, un agujero negro que pese una masa solar y tenga algo más de un kilómetro de diámetro, tiene una temperatura de menos de una diez millonésima de grado por encima del cero absoluto. Todo el objeto en su conjunto no emitiría más que la milésima parte de una cuatrillonésima de vatio en forma de radiación de Hawking.
Una de las rarezas del efecto Hawking es que la temperatura de la radiación aumenta cuando la masa del agujero negro desciende. Lo cual significa que los agujeros pequeños son más calientes que los grandes. Conforme va irradiando un agujero negro, va perdiendo energía y por lo tanto masa, así que se encoge. En consecuencia se calienta más e irradia con más fuerza, y por lo tanto se encoge con más rapidez aún. El proceso es inestable en sí mismo y termina por desbocarse, con el agujero negro emitiendo energía y encogiéndose a un ritmo cada vez más rápido.
El efecto Hawking predice que todos los agujeros negros terminarán por desaparecer sin más en una bocanada de radiación. Los momentos últimos serán espectaculares, con la apariencia de una gran bomba nuclear, un breve relámpago de intenso calor seguido de… nada. Por lo menos eso es lo que la teoría parece indicar. Pero a algunos físicos no les gusta que un objeto material pueda contraerse para formar un agujero negro que a su vez se desvanezca dejando sólo radiación calorífica. Les preocupa que dos objetos tan distintos puedan terminar produciendo idéntica radiación calorífica sin que sobreviva información del cuerpo originario. Un acto de desaparición de este tipo viola todo tipo de las tan queridas leyes de conservación. Una propuesta alternativa es la de que el agujero que desaparezca deje tras de sí un minúsculo residuo que acaso contenga enormes cantidades de información. Sea como sea, una parte abrumadora de la masa del agujero se irradia en forma de calor y de luz.
El proceso de Hawking es casi inconcebiblemente lento. Un agujero de una masa solar tardaría 1066 años en desaparecer, mientras que un agujero supermasivo tadaría más de 1093 años. Y el proceso ni siquiera empezaría a darse hasta que la temperatura de fondo del universo no hubiera descendido por debajo de la del agujero negro, porque de lo contrario el calor que fluyera hacia el agujero desde el universo circundante superaría al calor que saliera del agujero gracias al efecto Hawking. La radiación cósmica calorífica de fondo dejada por el gran pum está en este momento a una temperatura en torno a los tres grados por encima del cero absoluto y harían falta 1022 años antes de que se enfriara a un nivel que diera pérdidas netas de calor en los agujeros negros de una masa solar. El proceso de Hawking no es precisamente nada atractivo para sentarse a mirar.
Pero la eternidad es larga, y supuesta la eternidad, todos los agujeros negros, hasta los supermasivos, terminarán seguramente por desaparecer, siendo sus estertores de muerte relámpagos momentáneos de luz en el cielo tenebroso de la eterna noche cósmica, epitafios fugaces de la otra existencia de mil millones de soles deslumbrantes.
¿Qué queda?
No toda la materia cae en agujeros negros. Tenemos que pensar en las estrellas de neutrones, enanas negras y planetas solitarios que vagabundean solos por los vastos espacios intergalácticos, por no mencionar el gas y el polvo tenues que nunca se han condensado en estrellas, así como los asteroides, cometas, meteoritos y trozos de rocas que atestan los sistemas estelares. ¿Sobreviven por siempre?
Aquí nos metemos en dificultades teóricas. Necesitamos saber si la materia ordinaria, la materia que nos forma a usted y a mí y al planeta Tierra, es absolutamente estable. La clave definitiva del futuro radica en la mecánica cuántica. Aunque los procesos cuánticos se asocian normalmente a los sistemas atómicos y subatómicos, las leyes de la física cuántica deberían ser aplicables a todo, incluso a los cuerpos macroscópicos. Los efectos cuánticos sobre objetos grandes son extremadamente minúsculos, pero a lo largo de periodos muy prolongados de tiempo deberían ser capaces de producir cambios apreciables.
Los sellos de la física cuántica son la incertidumbre y la probabilidad. En el reino de lo cuántico no hay nada seguro salvo lo improbable. Lo que significa que, si un proceso es posible, dado un tiempo suficiente terminará por ocurrir por improbable que sea. Podemos observar cómo funciona esta regla en el caso de la radiactividad. Un núcleo de uranio 238 es casi completamente estable. Sin embargo, hay una probabilidad minúscula de que desprenda una partícula alfa y se transmute en torio. Para ser exactos, hay una probabilidad cierta pequeñísima por unidad de tiempo de que un núcleo de uranio dado se descomponga. Por término medio, hacen falta unos cuatro mil quinientos millones de años para que se produzca, pero como las leyes de la física exigen una probabilidad fija por unidad de tiempo cualquier núcleo de uranio dado terminará ciertamente por descomponerse.
La descomposición radiactiva alfa se da porque hay una pequeña incertidumbre en la disposición de los protones y los neutrones que componen el núcleo del átomo de uranio, de modo que siempre hay una diminuta probabilidad de que haya un cúmulo de estas partículas momentáneamente situadas fuera del núcleo de donde se ven expulsadas de inmediato. Del mismo modo, hay una incertidumbre todavía menor, pero aun así no nula de la posición exacta de un átomo en un sólido. Por ejemplo, un átomo de carbono en un diamante estará ubicado en una posición muy bien definida en la estructura del cristal y a las temperaturas cercanas al cero que se esperan para ese futuro lejanísimo esa posición será muy estable. Pero no del todo. Siempre hay una diminuta incertidumbre en la posición del átomo, lo que implica una diminuta probabilidad de que el átomo salte espontáneamente de su sitio en la estructura y aparezca en otra parte. Debido a estos procesos de migración, nada, ni siquiera una sustancia tan dura como el diamante, es verdaderamente sólido. Por el contrario, la materia aparentemente sólida es como un líquido muy viscoso y a lo largo de muchísimo tiempo puede fluir debido a los efectos mecánico-cuánticos. El físico teórico Freeman Dyson ha estimado que después de transcurridos unos 1065 años no sólo todos los diamantes cuidadosamente tallados se habrán reducido a cuentas esféricas, sino que cualquier pedazo de roca se habrá convertido en consecuencia en una blanda pelota.
La incertidumbre sobre la posición podría incluso llevar a transmutaciones nucleares. Consideremos, por ejemplo, dos átomos de carbono adyacentes en un cristal de diamante. Muy rara vez, la recolocación espontánea de uno de esos átomos hará que su núcleo aparezca momentáneamente pegado al núcleo del átomo adyacente. Las fuerzas nucleares de atracción pueden entonces hacer que los dos núcleos se fundan para formar un núcleo de magnesio. Esta fusión nuclear no requiere temperaturas altísimas: la fusión fría es posible pero exige una fantástica duración de tiempo. Dyson ha estimado que al cabo de 101500 años (es decir, ¡un 1 seguido de mil quinientos ceros!) toda la materia se transmutará de este modo a la forma nuclear más estable, que es la del elemento hierro.
Sin embargo, puede que la materia nuclear no sobreviva tanto tiempo debido a procesos de transmutación más rápidos, aunque aun así increíblemente lentos. La estimación de Dyson supone que los protones (y los neutrones ligados en núcleos) son absolutamente estables. En otras palabras, si un protón no cae en un agujero negro y no se le perturba de ninguna otra manera, durará toda la eternidad. Pero ¿podemos estar seguros de que es así? En mi época de estudiante nadie lo dudaba. Pero siempre hay una duda que nos ronda. El problema se refiere a la existencia de la partícula llamada positrón, idéntica al electrón salvo en que, como el protón, tiene carga positiva. Los positrones son mucho más ligeros que los protones de modo que, a igualdad que las restantes condiciones, los protones prefieren transmutarse en positrones: es un profundo principio de la física que los sistemas físicos buscan su estado energético más bajo y una masa menor significa menor energía. Ahora bien, nadie sabría decir por qué los protones no se limitan a hacer tal cosa, de modo que los físicos han dado por supuesto que existe una ley de la naturaleza que lo prohibía. Hasta hace poco, este asunto no se comprendía nada bien, pero a finales de los años 70 surgió una imagen algo más clara en relación a cómo las fuerzas nucleares impulsan a las partículas a transmutarse unas en otras por medio de la mecánica cuántica. Las últimas teorías tienen un lugar natural para la ley que prohíbe la descomposición de los protones, pero la mayoría de estas leyes predice también que la ley no es efectiva al ciento por ciento. Podría haber una pequeñísima probabilidad de que un protón dado se transmutara en positrón. Se predice que la masa restante aparezca parte en forma de una partícula eléctricamente neutra, como la llamada pión, y parte en forma de energía de movimiento (los productos de la descomposición se crearían a alta velocidad).
En uno de los modelos teóricos más sencillos, el tiempo medio exigido para que un protón se descomponga es de 1028 años, tiempo que es un trillón de veces más largo que la edad actual del universo. Podríamos creer entonces que este asunto de la descomposición del protón sigue siendo una curiosidad puramente académica. Sin embargo, debe recordarse que el proceso pertenece a la mecánica cuántica y de ahí su naturaleza inherentemente probabilística: 1028 es la vida media promedio que se predice, no la vida media real de cada protón. Dado un número suficiente de protones, hay una buena probabilidad de que se descomponga alguno delante de nuestros propios ojos. De hecho, dados 1028 protones podríamos esperar aproximadamente una descomposición por año, y esos 1028 protones se encuentran contenidos en nada más que 10 kilogramos de materia.
Da la casualidad de que la vida de un protón de esta duración se había descartado experimentalmente antes de que se popularizara la teoría. Sin embargo, hay diferentes versiones de la teoría que dan vidas más largas: 1030 o 1032 años o incluso más (algunas teorías predicen vidas de hasta 1080 años). Los valores inferiores se encuentran dentro del margen de la comprobación experimental. Un tiempo de descomposición de 1032 años, por ejemplo, significaría que por este sistema perderíamos uno o dos protones de nuestro cuerpo durante nuestra vida. Pero ¿cómo detectar acontecimientos tan raros?
La técnica adoptada ha sido la de reunir miles de toneladas de materia y controlarla durante muchos meses con detectores sensibles ajustados para dispararse ante los productos de la descomposición de un protón. Desgraciadamente, la búsqueda de la descomposición de un protón es como la de buscar una aguja en un pajar porque esas descomposiciones aparecen enmascaradas por un número mucho mayor de sucesos parecidos ocasionados por los productos de la radiación cósmica. La Tierra se ve continuamente bombardeada por partículas de alta energía provenientes del espacio que producen un residuo subatómico de fondo siempre presente. Para reducir esta interferencia, hay que hacer los experimentos a una buena profundidad o bajo tierra.
Uno de tales experimentos se organizó a más de medio kilómetro de profundidad en una mina de sal cerca de Cleveland (Ohio). El tinglado consistió en 10 000 toneladas de agua ultrapura metida en un tanque cúbico rodeado de detectores. Se eligió el agua por su transparencia, para que permitiera a los detectores «ver» tantos protones a la vez como fuera posible. La idea era la siguiente: si un protón se descompone tal y como predicen las teorías al uso, entonces produce, como se ha explicado, un pión eléctricamente neutro además de un positrón. A su vez el pión se descompone enseguida, por lo general en dos fotones muy energéticos o rayos gamma. Por último, estos rayos gamma topan con los núcleos del agua y cada uno de ellos engendra un par electrón-positrón, también muy energéticos. De hecho, estos electrones y positrones secundarios serían tan energéticos que viajarían a una velocidad cercana a la de la luz, incluso en el agua.
La luz viaja a 300 000 kilómetros por segundo en el vacío y ésa es la velocidad límita a la que puede viajar cualquier partícula. Ahora bien, el agua tiene el efecto de rebajar un tanto la velocidad de la luz, aproximadamente hasta unos 230 000 kilómetros por segundo. Por lo tanto, una partícula subatómica de alta velocidad que se moviera a casi 300 000 kilómetros por segundo en el agua viajaría a mayor velocidad que la luz en el agua. Cuando los aviones viajan a mayor velocidad que el sonido, crean una onda sonora. De manera parecida, una partícula cargada que viajara por un medio a mayor velocidad que la de la luz en ese medio crearía una onda de choque electromagnética distintiva, llamada radiación Cerenkov por su descubridor ruso. De manera que los experimentadores de Ohio montaron una serie de detectores sensibles a la luz para identificar los relámpagos de Cerenkov. Para poder distinguir los sucesos de descomposición de protones de los neutrinos cósmicos y de otra basura cósmica espuria, los experimentadores buscaban una firma característica: pares simultáneos y opuestos de pulsos de luz de Cerenkov, que habrían sido emitidos por cada par electrón-positrón moviéndose en direcciones opuestas.
Desgraciadamente, después de varios años de funcionamiento, el experimento de Ohio fracasó en descubrir pruebas convincentes de la descomposición del protón, aunque, como se indicó en el capítulo 4, sí detectó los neutrinos de la Supernova 1987A. (Como ocurre tantas veces en la ciencia, buscar una cosa lleva al descubrimiento inesperado de otra). Otros experimentos, con montajes diferentes, han llevado también a resultados nulos hasta el momento en que escribo. Esto puede querer decir que los protones no se descomponen. Por otro lado, puede querer decir que sí se descomponen pero que su vida supera con mucho los 1032 años. Medir una tasa de descomposición menor que ésta queda fuera de la posibilidad experimental actual, así que seguramente nuestro juicio sobre la descomposición del protón quedará en suspenso durante el futuro previsible.
La búsqueda de la descomposición del protón se vio estimulada por el trabajo teórico sobre las grandes teorías de unificación que ponen su objetivo en la unificación de la fuerza nuclear fuerte (la fuerza que une a los protones y a los neutrones en el núcleo) con la fuerza nuclear débil (responsable de la radiactividad beta) y la fuerza electromagnética. La descomposición del protón sería resultado de la íntima mezcla de estas tres fuerzas. Pero incluso si esta idea de gran unificación resulta estar equivocada, queda la posibilidad de que los protones se descompongan de algún otro modo: un modo que suponga la acción de la cuarta fuerza fundamental de la naturaleza, la gravedad.
Para ver cómo la gravedad puede originar la descomposición del protón, es necesario tener en cuenta el hecho de que el protón no es de verdad una partícula elemental con forma definida. En realidad es un cuerpo compuesto de tres partículas menores llamadas quarks. La mayor parte del tiempo el protón tiene un diámetro de aproximadamente una diez billonésima de centímetro, que es la distancia media entre quarks. Sin embargo, los quarks no están en reposo, sino que sin parar intercambian sus posiciones en el interior del protón debido a la incertidumbre de la mecánica cuántica. De vez en cuando, dos quarks se aproximan mucho. Y todavía con menos frecuencia, los tres quarks se encuentran en una estrechísima proximidad. Y es posible que los quarks se aproximen tanto que la fuerza gravitatoria que existe entre ellos, y que normalmente es despreciable, supere a todo lo demás. De ser así, los quarks se unirán para formar un minúsculo agujero negro. En efecto, el protón se contrae bajo su propia gravedad mediante una perforación mecánica cuántica. El miniagujero resultante es muy inestable (recuérdese el proceso de Hawking) y se desvanece más o menos instantáneamente creando un positrón. Las estimaciones de la vida media del protón con este tipo de decadencia son muy inciertas y varían desde los 1045 años a unos increíbles 10220 años.
Si los protones se descomponen tras una duración inmensa, las consecuencias para el futuro lejano del universo son importantes. Toda la materia sería inestable y terminaría por desaparecer. Los objetos sólidos, como los planetas, que hayan eludido caer en un agujero negro no durarían por siempre. En lugar de eso, se irían evaporando muy gradualmente. Una vida media del protón de, digamos, 1032 años supondría que la Tierra perdería un billón de protones por segundo. A ese ritmo, nuestro planeta se habría desvanecido efectivamente al cabo de unos 1033 años, suponiendo que antes no lo hubiera destruido ninguna otra cosa.
Las estrellas de neutrones no son inmunes a este proceso. Los neutrones también están hechos de tres quarks y pueden transmutarse en partículas más ligeras mediante mecanismos parecidos a los que suponen la defunción de los protones. (En cualquier caso, los neutrones aislados son inestables y se descomponen al cabo de unos quince minutos). Las estrellas enanas blancas, las rocas, el polvo, los cometas, las tenues nubes de gas y demás parafernalia astronómica sucumbiría del mismo modo en la eternidad del tiempo. Las 1048 toneladas de materia ordinaria que observamos en la actualidad esparcida por todo el universo está destinada a desaparecer o en los agujeros negros o por medio de una lenta descomposición nuclear.
Por supuesto que cuando los protones y los neutrones se descomponen, crean productos de descomposición, de modo que el universo no se queda necesariamente carente de materia alguna. Por ejemplo, y como ya se ha mencionado, una vía probable para la descomposición del protón es dar un positrón más un pión neutro. El pión es muy inestable y enseguida se descompone en dos fotones o puede que en un par electrón-positrón. Sea cual sea el caso, el universo irá adquiriendo poco a poco más y más positrones como resultado de la descomposición de los protones. Los físicos creen que el número total de partículas del universo cargadas positivamente (en la actualidad, sobre todo protones) es el mismo que el número de partículas cargadas negativamente (electrones sobre todo). Lo cual supone que una vez que se hayan descompuesto todos los protones habrá una mezcla a partes iguales de electrones y positrones. Ahora bien, el positrón es la llamada antipartícula del electrón y si un positrón se encuentra con un electrón se aniquilan ambos (proceso ya estudiado en el laboratorio) liberando energía en forma de fotones.
Se han hecho cálculos para intentar determinar si los positrones y los electrones que queden en un futuro lejano del universo se aniquilarán unos a otros por completo o si siempre quedaría un pequeño residuo. La aniquilación no se produce bruscamente. En su lugar, el electrón y el positrón se disponen primero en una especie de miniátomo llamado positronio, en el que ambas partículas bailan la danza de la muerte orbitando en torno al centro común de sus masas, ligadas por su mutua atracción eléctrica. Las partículas caen entonces una hacia la otra y se aniquilan. El tiempo de caída hacia la otra partícula depende de la distancia inicial entre positrón y electrón cuando se forma el «átomo» de positronio. En el laboratorio, el positronio se descompone en una minúscula fracción de segundo, pero en el espacio exterior, con pocas perturbaciones, electrones y positrones podrían quedar ligados en órbitas enormes. Las estimaciones indican que haría falta 1071 años para que la mayoría de los electrones y positrones formaran positronios, pero en la mayor parte de los casos sus órbitas tendrían ¡muchos billones de años de luz de diámetro! Las partículas se moverían tan despacio que tardarían un millón de años en avanzar un centímetro. Los electrones y los positrones se habrían hecho tan perezosos que el tiempo de caída sería la fabulosa cantidad de 10116 años. Con todo, el destino final de estos átomos de positronio está sellado desde el momento mismo de su formación.
Lo que es curioso es que no todos los electrones y positrones tengan que aniquilarse necesariamente. Mientras electrones y positrones buscan a sus opuestos, la densidad de estas partículas va decreciendo siempre, tanto como resultado de la aniquilación como también por la continua expansión del universo. Conforme pase el tiempo, será más difícil que se forme un positronio. De modo que aunque el minúsculo residuo de materia residual vaya siendo cada vez menor, no desaparece nunca por completo. Siempre habrá algún electrón o positrón suelto por algún sitio, incluso aunque esa partícula habite en soledad en el interior de un volumen de espacio vacío cada vez más grande.
Podemos ahora hacernos una imagen de lo que sería el universo después de que se hayan completado todos estos procesos increíblemente lentos. Primero, quedará el resto dejado por el gran pum, el fondo cósmico que siempre ha estado ahí. Consiste en fotones y neutrinos y puede que en algunas otras partículas completamente estables de las que no sabemos nada todavía. La energía de estas partículas irá decreciendo conforme se vaya expandiendo el universo hasta que formen un fondo despreciable. La materia corriente del universo habrá desaparecido. Se habrán evaporado todos los agujeros negros. La mayor parte de los agujeros negros se habrá transformado en fotones, aunque otros se habrán transformado en neutrinos y una fracción minúscula, emitida durante el último estallido de los agujeros, estará en forma de electrones, protones, neutrones y partículas más pesadas. Todas las partículas más pesadas se descomponen rápidamente y protones y neutrones se descomponen con más lentitud, dejando unos pocos electrones y positrones que se unen a los que quedan como último residuo de la materia corriente tal y como la vemos en la actualidad.
El universo del futuro lejanísimo será así una sopa inconcebiblemente aguada de fotones, neutrinos y de un número menguante de electrones y positrones, cada vez más alejados unos de otros. Por lo que sabemos, no ocurrirán más procesos físicos nunca jamás. No se dará ningún suceso significativo que altere esa árida esterilidad de un universo que ha acabado sus días y que sin embargo se enfrenta a la vida eterna: quizá muerte eterna sea una descripción más ajustada.
Esta sombría imagen de una casi-nada, fría, oscura, sin diferenciar, es lo más cercano a la «muerte térmica» de la física decimonónica que llega a la moderna cosmología. El tiempo que necesita el universo para degenerar hasta este estado es tan largo que desafía la imaginación humana. Y, sin embargo, sólo es una porción infinitesimal del infinito tiempo disponible. Como ya he señalado, la eternidad es muy larga.
Aunque la decadencia del universo ocupa una duración que excede tan enormemente la escala humana de tiempo que en la práctica carece de sentido para nosotros, todavía nos acomete la ansiedad de preguntarnos: «¿Qué le ocurrirá a nuestros descendientes? ¿Están fatalmente condenados por un universo que se irá cerrando lenta pero inexorablemente a su alrededor?». Dado el poco prometedor estado que la ciencia predice para el universo lejanísimo, da la impresión de que cualquier forma de vida debe estar condenada definitivamente. Pero la muerte no es tan sencilla.