Es célebre que Galileo fue uno de los primeros astrónomos que observó el cielo a través de un telescopio, y que su visión aumentada le permitió en 1609 descubrir cuatro de las lunas de Júpiter, las fases de Venus y los cráteres de la Luna. Y, no obstante, hay que recordar que sólo seguía la moda de su tiempo.
No hay nadie a quien se pueda adjudicar la invención del telescopio. El holandés Hans Lipperhey fue uno de los primeros que intentó patentar el diseño del telescopio en 1608, pero no lo consiguió porque su uso estaba muy extendido. El poder de aumento del material transparente con superficies curvadas estaba ampliamente reconocido; y las «lentes» con forma de lentejas se habían usado en lupas y gafas al menos desde el siglo XIII. Los archivos demuestran que los telescopios se habían construido y usado para observar la Luna a mediados del siglo XVI, pero el ritmo de las mejoras en la fabricación de cristales hace suponer que la calidad de los instrumentos no se generalizó hasta el siglo XVII. Las buenas lentes produjeron entonces imágenes nítidas, incluso de cuerpos celestes apenas visibles.
Capacidad de aumento ¿Cómo funciona un telescopio? En su versión más simple, se usan dos lentes encajadas en ambos extremos de un tubo. La primera lente estrecha los rayos de luz de manera que el ojo percibe que provienen de una fuente mayor.
La segunda lente actúa como un ocular, vuelve a poner los rayos de luz en paralelo antes de que entren en el ojo para que se vean enfocados.
«Vemos el pasado en un telescopio y el presente en un microscopio. De ahí las aparentes enormidades del presente.»
Victor Hugo
La curvatura de los rayos por la lente se llama refracción. La luz viaja más lentamente en materiales más densos, como el cristal, que en el aire. Esto explica el espejismo de un charco en una carretera caliente. Los rayos del cielo se curvan para apenas rozar la superficie de la carretera porque la luz cambia de velocidad en la capa de aire caliente que está justo encima del asfalto caldeado por el Sol. El aire caliente es menos denso que el aire frío, de manera que la luz se desvía de la vertical y podemos ver el reflejo del cielo en el asfalto, que parece un charco húmedo.
El ángulo en que un rayo se quiebra está relacionado con las velocidades relativas a las que viaja en los dos materiales: técnicamente, el cociente de las velocidades en ambos medios da el cociente del seno de los ángulos incidentes y el ángulo de refracción, medidos desde la vertical a la superficie. Así que cuando un rayo pasa del aire al vidrio, o a otras sustancias densas, se dobla hacia dentro y su trayectoria se aproxima a la normal.
Índice de refracción La luz viaja a una velocidad frenética de 300 millones de metros por segundo en el espacio vacío. El cociente de su velocidad en el vacío dividida por la velocidad en un material más denso, como el vidrio, se denomina índice de refracción del material. Por definición, el vacío tiene un índice de refracción de 1, por tanto, en un material con un índice de refracción de 2, la velocidad de la luz sería la mitad de la que tiene en el espacio libre.
Un índice de refracción elevado significa que la luz se desvía mucho cuando pasa a través de la sustancia.
El índice de refracción es una propiedad del material correspondiente, de manera que los índices de refracción específicos de algunos materiales pueden ser útiles, por ejemplo, para diseñar telescopios o lentes para gafas para que corrijan problemas de la visión. La potencia de las lentes y de los prismas depende de su índice de refracción; así, las lentes de potencia elevada tienen altos índices de refracción.
No obstante, los telescopios de refracción con dos lentes tienen inconvenientes, pues la imagen final aparece al revés, porque los rayos de luz se cruzan antes de alcanzar el ocular.
Para la astronomía esto no suele ser un problema, ya que una estrella no cambia demasiado vista al revés. El defecto puede corregirse incluyendo una tercera lente para invertir la imagen de nuevo, pero entonces el telescopio resulta más aparatoso y difícil de manejar. En segundo lugar, y esto puede ser más problemático, los telescopios de refracción producen imágenes con colores borrosos. Como las diferentes longitudes de onda de la luz se refractan de manera diferente (las ondas de la luz azul se curvan más que las de la luz roja), los colores se separan y la imagen pierde claridad. Nuevos tipos de lentes de los que disponemos hoy en día pueden minimizar este problema, pero su capacidad para hacerlo es limitado.
Telescopio de reflexión Para solucionar estos problemas, Newton inventó el telescopio de reflexión. Utilizando un espejo curvo en lugar de una lente para doblar la luz, consiguió reducir su longitud a la mitad y facilitar su manejo.
Su diseño también evitaba la visión borrosa diferencial porque el espejo de su superficie refleja todos los colores del mismo modo. No obstante, las técnicas de plateado de espejos no estaban muy avanzadas en la época de Newton, y se tardó siglos en perfeccionar el diseño.
En la actualidad, la mayoría de telescopios astronómicos profesionales usan un espejo gigante en lugar de una lente para captar la luz celeste y rebotarla, por último, al ocular. El tamaño del espejo dicta cuánta luz puede captarse —una gran área permite observar objetos muy difíciles de ver—. Los espejos de los telescopios ópticos modernos pueden tener el tamaño de una habitación: los más grandes que están operativos en la actualidad son los dos telescopios gemelos gigantes Keck, en Mauna Kea, Hawai, y tienen un diámetro de 10 metros. En las próximas décadas, hay planes para proyectar otros más grandes, con un diámetro que alcance los 100 metros.
«Donde hay un observatorio y un telescopio, esperamos que cualquier par de ojos vea nuevos mundos enseguida.»
Henry David Thoreau
Es difícil construir espejos muy grandes, pues son tan pesados que su forma se distorsiona cuando el telescopio se inclina para barrer el cielo. Por tanto, hay que desarrollar nuevos métodos de construcción, más inteligentes, que permitan hacer espejos tan ligeros como sea posible. A veces, los espejos se construyen en muchos segmentos; otros se gira cuidadosamente para que sean finos y estén esculpidos con precisión. Una solución alternativa, llamada «óptica adaptativa», corrige constantemente la forma del espejo usando una red de pequeños pistones pegados en la parte inferior, que empujan hacia arriba la superficie cuando se hunde.
Estrellas titilantes Al margen de los propios telescopios, la nitidez de las imágenes astronómicas se degrada por la turbulencia de la atmósfera. La presencia de masas de aire que se agitan delante de ellas hace que las estrellas titilen; concretamente, las que están cerca del horizonte lo hacen más que las que están en lo alto del cielo. El tamaño de los componentes ópticos del telescopio también da un límite absoluto a la concentración de luz de las estrellas debido a otro aspecto del comportamiento de la luz: la difracción, es decir, la curvatura de los rayos de luz alrededor de un borde de una lente, apertura o espejo.
Para conseguir imágenes claras, los astrónomos eligen ubicaciones especiales para sus telescopios. En la Tierra, los construyen en sitios altos donde el aire sea tenue, como en las montañas, y donde el flujo de aire sea suave, como cerca de la costa. El espacio exterior también es una ubicación privilegiada debido a la ausencia de atmósfera. De hecho, las imágenes más lejanas que tenemos del universo las captó el Telescopio espacial Hubble, que está en órbita.
Los telescopios pueden operar a longitudes de onda que no pertenecen al abanico visible. La luz infrarroja, el calor, puede detectarse con instrumentos que son como las gafas de visión nocturna montadas en telescopios, siempre y cuando el instrumental se mantenga frío.
Como las longitudes de onda de los rayos X son muy cortas, es más sencillo observarlos desde el espacio, con satélites equipados con ópticas reflectoras. Incluso las ondas de radio pueden distinguirse mediante una sola gran antena, como de Arecibo, que apareció en películas de James Bond, o en observatorios equipados con muchas antenas pequeñas, como el observatorio astronómico Very Large Array de Nuevo México, que salía en la película Contact. No obstante, quizás podría decirse que el telescopio supremo es la propia Tierra, puesto que todos los días la recorren partículas fundamentales, que los físicos se afanan por capturar en sus trampas.
Cronología:
1609: Galileo usó un telescopio para sus observaciones astronómicas
1668: Newton construye un telescopio de reflexión
1937: Se construye el primer radiotelescopio
1990: Lanzamiento del telescopio espacial Hubble
La idea en síntesis: aumento de la curvatura de la luz