Se dice que a Newton se le ocurrió la idea de la gravedad cuando vio caer una manzana de un árbol. No sabemos si esta historia es cierta, pero sí lo es que Newton tuvo que desplegar toda su imaginación para explicar los movimientos terrestres y celestes, y para enunciar su ley de la gravitación. Intuyó que una fuerza que se relacionaba con la aceleración atraía los objetos hacia el suelo. Y no dejaba de plantearse preguntas como: ¿cómo influye la altura del árbol en la caída de las manzanas? ¿Y si el árbol llegara a alcanzar la Luna? O también ¿por qué la Luna no se desploma sobre la Tierra como una manzana?
Todo se cae Newton respondió a estas preguntas mediante sus leyes del movimiento, en las que se unían fuerza, masa y aceleración. Un proyectil que sale despedido de un cañón viaja una determinada distancia antes de volver a caer sobre el suelo. Si lo dispararan con más velocidad, el proyectil avanzaría más rápido. Pero, ¿dónde acabaría cayendo si lo dispararan tan rápido que viajara lo suficientemente lejos en línea recta para que la Tierra llegara a curvarse bajo él? Newton se dio cuenta de que el proyectil sería atraído hacia la Tierra pero siguiendo una órbita circular, del mismo modo que un satélite permanece a altura constante sin llegar a alcanzar el suelo.
ISAAC NEWTON (1643-1727)
Isaac Newton fue el primer científico que tuvo el honor de ser nombrado caballero de Gran Bretaña. A pesar de ser «holgazán» y «distraído» en la escuela, y un estudiante del montón en la Universidad de Cambridge, floreció de repente cuando la peste obligó a cerrar la universidad en verano de 1665. Cuando volvió a su hogar en Lincolnshire, se dedicó a estudiar matemáticas, física y astronomía, e incluso estableció los fundamentos del cálculo. Ahí elaboró las primeras versiones de sus tres leyes del movimiento y dedujo la ley del inverso del cuadrado. Tras semejante inicio prometedor, Newton fue elegido para ocupar la cátedra Lucasiana de Matemáticas en 1669 con tan sólo 27 años. Más tarde, cuando centró su interés en la óptica, descubrió con un prisma que la luz blanca está formada por un arcoiris de colores, tema sobre el que mantuvo un famoso debate con Robert Hooke y Christiaan Huygens. Newton escribió dos obras fundamentales, Philosophiae naturales principia mathematica, o Principia y Opticks. Más adelante, se involucró en política. Defendió la libertad académica cuando el rey Jacobo II intentó interferir en cargos de la universidad y consiguió formar parte del Parlamento en 1689. Era un personaje contradictorio, ya que por una parte deseaba atraer la atención, y por la otra se retraía en sí mismo y procuraba evitar las críticas. Newton usó su posición de poder para luchar contra sus rivales científicos y siguió siendo una figura polémica hasta su momento.
Cuando los lanzadores de martillo olímpicos empiezan a girar acelerando sobre sus tobillos, lo que mantiene el martillo girando es la fuerza que ejerce el lanzador al tirar de la cuerda. Sin esa fuerza, el martillo simplemente saldría volando en línea recta, como ocurre cuando lo sueltan. Lo mismo sucede en el caso del proyectil de Newton: sin la fuerza centrípeta que lo une a la Tierra, saldría volando al espacio. Yendo incluso más allá, Newton afirmó que la Luna también permanece colgada en el cielo porque el vínculo invisible de la gravedad la mantiene ahí. Sin gravedad, podría desplazarse libremente por el espacio.
«La gravedad es una costumbre difícil de abandonar.»
Terry Pratchett
Ley del inverso del cuadrado Newton intentó, entonces, cuantificar sus predicciones. Después de intercambiar cartas con su contemporáneo. Robert Hooke, demostró que la gravedad sigue una ley del inverso del cuadrado: la fuerza de la gravedad disminuye proporcionalmente al inverso del cuadrado de la distancia del cuadrado a un cuerpo. Es decir, si la distancia a un cuerpo es dos veces mayor, su gravedad es cuatro veces menor. Por tanto, la fuerza de gravedad que ejerce el Sol sobre un planeta cuya órbita estuviera al doble de distancia de él de lo que está la Tierra sería cuatro veces menor, e, igualmente, un planeta separado por una distancia tres veces mayor, experimentaría una fuerza de gravedad nueve veces menor. La ley del inverso del cuadrado de Newton de la gravedad explicaba en una sola ecuación las órbitas de todos los planetas, tal y como estaban descritas en las tres leyes de Johannes Kepler (véase la p. 18). La ley de Newton predecía que los planetas viajaban más rápido cerca del Sol al seguir sus trayectorias elípticas. El Sol ejerce una mayor fuerza gravitacional sobre un planeta cuando viaja cerca de él, lo que hace aumentar su velocidad. Conforme aumenta la velocidad del planeta, vuelve a alejarse del Sol, y su velocidad empieza a disminuir gradualmente. Así Newton recogió en una teoría de alcance general todo el trabajo anterior.
Ley universal Generalizando con audacia, Newton propuso que la teoría de la gravedad podía aplicarse a todo el universo. Todo cuerpo ejerce una fuerza gravitatoria proporcional a su masa, y esa fuerza gravitacional es inversamente proporcional al cuadrado de la distancia. Por tanto dos cuerpos cualesquiera se atraen mutuamente, pero como la fuerza de la gravedad es débil sólo podemos observar realmente este fenómeno en los cuerpos con una masa muy grande, como el Sol, la Tierra y los planetas.
Aceleración
En la superficie de la Tierra la aceleración de un cuerpo que cae bajo la acción de la gravedad, g, es de 9,81 metros cada segundo.
No obstante, si se observa minuciosamente, se pueden ver pequeñas variaciones en la fuerza local de gravedad en la superficie de la Tierra. Dado que las montañas grandes y las rocas de diferente densidad pueden aumentar o reducir la fuerza de la gravedad en la zona cercana a ellas, es posible usar sensores de gravedad para realizar el mapa de terrenos geográficos y saber más sobre la estructura de la corteza terrestre. Los arqueólogos usan también los pequeños cambios de gravedad para localizar yacimientos enterrados. Recientemente, los científicos han usado satélites espaciales medidores de gravedad para registrar el descenso de la cantidad de hielo que cubre los polos terrestres y también para detectar cambios en la corteza terrestre después de grandes terremotos.
«Todo objeto del universo atrae a cualquier otro objeto a lo largo de una línea recta que une los centros de dichos objetos: esa fuerza es proporcional a la masa de cada objeto, e inversamente proporcional al cuadrado de la distancia entre ellos.»
Isaac Newton
En el siglo XVII, Newton vertió todas sus ideas sobre la gravitación en un libro, Philosophiae naturalis principia mathematica, conocido como los Principia. Publicado en 1687, sigue considerándose un hito de la ciencia. La ley universal de la gravedad de Newton explicó los movimientos no sólo de los planetas y las lunas sino también de proyectiles, péndulos y manzanas. Explicó las órbitas de los cometas, la formación de mareas y el movimiento del eje de la Tierra. Esta obra consolidó su fama como uno de los mayores científicos de todos los tiempos.
Relatividad La ley de la gravitación universal de Newton ha seguido siendo válida durante cientos de años, y aún hoy proporciona una descripción básica del movimiento de los cuerpos. Sin embargo, la ciencia no se estanca ni se detiene, y los científicos del siglo XX, y Einstein en concreto con su teoría de la relatividad general, han seguido avanzando a partir de la base establecida por Newton. La gravedad newtoniana sigue funcionando bien para describir el comportamiento de la mayoría de los objetos que vemos y de los planetas, cometas y asteroides del sistema solar que están a grandes distancias del Sol, donde la gravedad es relativamente débil. Aunque la ley de la gravitación de Newton era lo suficientemente poderosa para predecir la posición del planeta Neptuno, descubierto en 1846 en la ubicación esperada más allá de Urano, la órbita de otro planeta, Mercurio, exigió una física más avanzada que la de Newton. Así, se necesita la relatividad general para explicar situaciones en las que la gravedad es muy fuerte, como ocurre cerca del Sol, de las estrellas y de los agujeros negros.
Cronología:
350 a. C.: Aristóteles reflexiona sobre por qué se caen los objetos
1609: Kepler establece las leyes de las órbitas planetarias
1687: Se publican los Principia de Newton
1905: Einstein publica la teoría especial de la relatividad
1915: Einstein publica la teoría general de la relatividad
La idea en síntesis: atracción de la masa