18 La difracción de Fraunhofer

Cuando miramos un barco que navega en lontananza es imposible leer su nombre. Se pueden utilizar unos prismáticos para ampliar la imagen, pero ¿por qué tienen nuestros ojos esa resolución limitada? La razón es el tamaño de la pupila de nuestros ojos (su abertura). Tienen que estar completamente abiertos para permitir que entre luz suficiente para disparar los sensores de los ojos, pero cuanto más abiertos están más se difuminan las ondas de luz entrantes.

Las ondas lumínicas que atraviesan la lente y alcanzan el ojo pueden proceder de numerosas direcciones. Cuanto mayor sea la abertura, los rayos entrarán desde más puntos. Igual que con la difracción de Bragg, las diferentes trayectorias de la luz interfieren dependiendo de si están en fase o desfasadas. La mayoría pasan directamente en fase formando así un punto central claro y brillantes. Pero el ancho del punto se reduce al instante cuando los rayos adyacentes se anulan mutuamente y entonces aparecen una serie de bandas de luz y oscuridad en los bordes. Es el ancho de este punto central el que determina todos los detalles que nuestros ojos son capaces de captar.

El campo lejano La difracción de Fraunhofer, llamada así por el mayor fabricante de lentes alemán, Joseph von Fraunhofer, describe las imágenes borrosas que se ven cuando los rayos de luz que inciden en la abertura de una lente llegan a ésta paralelos entre sí. La difracción de Fraunhofer, también llamada difracción del campo lejano, tiene lugar cuando hacemos pasar luz desde una fuente distante (p. ej. la luz del Sol o de las estrellas) a través de una lente. Esta lente puede estar en nuestros ojos, en una cámara o en un telescopio. En cuanto a las limitaciones de la vista, en toda la fotografía, los efectos de la difracción difuminan la imagen final. Por consiguiente, existe un límite natural a lo nítida que puede ser una imagen una vez que ha viajado a través de un sistema óptico: el «límite de difracción». Este límite es directamente proporcional al tamaño de la abertura o lente. Así pues, las imágenes azules aparecen ligeramente más claras que las rojas, y las imágenes tomadas con una abertura o lente mayor serán menos borrosas.

Difracción Del mismo modo que los bordes de la sombra de su mano se vuelven borrosos debido a la difracción de la luz alrededor de ella, la luz se difunde cuando pasa a través de un agujero estrecho o una abertura. Contra lo que podría parecer, cuanto más estrecha es la abertura más luz se despliega. Al proyectarla en una pantalla, la luz que sale de la abertura produce un brillante pico central flanqueado por bandas alternas de luz y oscuridad o patrones de interferencia, cuyo brillo decae al alejarse del centro. La mayoría de los rayos lo atraviesan en línea recta y se refuerzan, pero los que penetran formando un ángulo interfieren para producir bandas oscuras o iluminadas.

Cuanto más pequeño es el agujero, mayor es la separación entre las bandas, porque las trayectorias de los rayos están más restringidas y por tanto son más similares. Si sostiene frente a la luz dos trozos de alguna gasa fina, por ejemplo, dos pañuelos de seda, y los mueve uno respecto a otro, se producirán bandas claras y oscuras similares desde los hilos superpuestos. Cuando se colocan uno sobre otro y se giran, nuestro ojo capta una serie de zonas claras y oscuras que se mueven por la tela. Estos patrones de interferencia de dos rejillas superpuestas también se conocen como «patrones de moiré».

Cuando la abertura o lente es circular, como en el caso de nuestras pupilas y muchas veces de la óptica de una cámara, el punto central y las bandas que lo rodean forman una serie de círculos concéntricos que se conocen como anillos o disco de Airy por el físico escocés del siglo XIX George Airy.

Campo cercano La difracción de Fraunhofer se observa en numerosas ocasiones, pero si la fuente de luz se encuentra cerca del plano de abertura a veces surge un patrón ligeramente diferente. Los rayos de luz incidentes no son paralelos y los frentes de onda que llegan a la abertura son curvos en lugar de rectos. En este caso resulta un patrón de difracción diferente, en el que las bandas ya no presentan un espacio regular. Las series de frentes de onda que llegan adoptan la forma de un conjunto de superficies concéntricas curvas, que recuerdan las capas de una cebolla, todas del mismo ancho de longitud de onda y con la fuente de luz en el centro. Cuando estos frentes de onda redondos alcanzan el plano de abertura, se cortan transversalmente igual que cuando el cuchillo corta una cebolla por la mitad. A través de la abertura aparecen una serie de anillos, donde cada uno de ellos representa una zona en la que las ondas que la atraviesan se encuentran en una misma longitud de onda.

Para calcular cómo se combinan esos rayos curvos entre sí, hay que sumar todos los rayos a partir de los anillos de la abertura. En una pantalla plana presentan una serie de bandas claras y oscuras, como en los rayos paralelos, pero las separaciones ya no son regulares, sino que cuanto más nos alejamos del centro más delgadas son. Esto se denomina difracción de Fresnel por Augustin Fresnel, el científico francés del siglo XIX que lo estableció.

Fresnel también descubrió que al variar la abertura se podía alterar la fase que la atravesaba y de esta manera cambiar el patrón resultante. Utilizó esta idea para construir un nuevo tipo de lente que sólo permitía atravesar a las ondas en fase. Una manera de hacerlo era, por ejemplo, eliminar una serie de anillos que tuvieran exactamente la misma posición que todos los valles negativos de las ondas cuando pasaban por la abertura, de modo que sólo los picos positivos pudieran pasar, sin producirse apenas ninguna interferencia. Alternativamente, se podrían desplazar los valles media longitud de onda y transmitirlos después para que volvieran a estar en fase con las ondas no bloqueadas. Al insertar anillos de cristal más grueso en la posición adecuada se puede disminuir la velocidad de la luz en una fase particular en la cantidad deseada para desplazar las longitudes de onda.

El propio Fresnel desarrolló lentes para los faros utilizando este concepto, y el primero se instaló en Francia en 1822. Imaginemos que se aumentan las lentes de cristal de un par de gafas al tamaño necesario para un faro de 15 metros. La alternativa de Fresnel fue una serie de anillos de cristal grandes aunque bastante delgados, cada uno de una fracción del peso de una sola lente convexa. Las lentes de Fresnel se utilizan para enfocar los faros de los coches y a veces se adhieren a la ventana trasera de los automóviles, en forma de unos paneles de plástico transparente grabados, para ayudar a dar marcha atrás.

El experimento de la doble rendija de Young

En su celebrado experimento de 1801, Thomas Young demostró de forma concluyente que la luz era una onda. Cuando difractó la luz a través de dos rendijas, no sólo observó una superposición de dos perfiles de difracción, sino líneas adicionales, debido a la interferencia de los rayos de luz que habían pasado a través de una u otra de las rendijas. Los rayos u otra de las rendijas. Los rayos volvían a interferir de nuevo para producir bandas claras y oscuras, pero con una separación que era inversamente proporcional a la distancia entre las rendijas. De modo que surgió un patrón común de bandas finas frente al patrón de difracción ancho original de una sola abertura. Cuantas más rendijas paralelas se añadían, más agudo se volvía este segundo patrón de interferencia.

Redes Fraunhofer amplió su estudio de las interferencias construyendo la primera red de difracción. Una red está provista de una serie de aberturas, como muchas filas de rendijas paralelas. Fraunhofer construyó la suya con alambres alineados. Las redes de difracción no sólo dispersan la luz, pues al tener numerosas rendijas, aumentan las interferencias características de la luz transmitida.

Como la luz se difracta y causa interferencias, se comporta en todos estos casos como una onda. Pero esto no siempre es así. Einstein y otros demostraron que a veces, si miramos en la dirección adecuada, la luz no sólo se comporta como una onda, sino también como una partícula. La mecánica cuántica surgió a partir de esta observación. Como veremos más adelante, sorprendentemente, en las versiones cuánticas del experimento de la doble rendija, la luz sabe si se tiene que comportar como una onda o como una partícula y cambia de carácter sólo porque estamos observando.

Cronología:

1801 d. C.: Thomas Young realiza su experimento de la doble rendija.

1814 d. C.: Fraunhofer inventa el espectroscopio.

1822 d. C.: La primera lente de Fresnel se utiliza en un faro.

La idea en síntesis: las ondas lumínicas de interferencia