14

MÁQUINAS DE MOVIMIENTO PERPETUO

Una teoría pasa por cuatro etapas antes de ser aceptada:
I. esto es un sinsentido sin ningún valor;
II. es interesante, pero perversa;
III. esto es cierto, pero no tiene ninguna importancia;
IV. yo siempre lo dije.

J.B.S. HALDANE, 1963

En la clásica novela de Isaac Asimov Los propios dioses, un oscuro químico del año 2070 topa accidentalmente con el mayor descubrimiento de todos los tiempos, la bomba de electrones, que produce energía limitada sin coste alguno. El impacto es inmediato y profundo. Es aclamado como el mayor científico de todos los tiempos por satisfacer la insaciable necesidad de energía por parte de la civilización. «Era el Santa Claus y la lámpara de Aladino del mundo entero», escribía Asimov. Funda una compañía que pronto se convierte en una de las corporaciones más ricas del planeta y deja fuera de juego a las industrias del petróleo, el gas, el carbón y la energía nuclear.[90]

El mundo es inundado con energía gratuita y la civilización se emborracha con este nuevo poder. Mientras todos celebran este gran logro, un físico solitario se siente incómodo. «¿De dónde sale toda esta energía gratuita?», se pregunta. Finalmente descubre el secreto. La energía gratuita tiene en realidad un terrible precio: proviene de un agujero en el espacio que conecta nuestro universo con un universo paralelo, y el súbito aflujo de energía en nuestro universo está iniciando una reacción en cadena que con el tiempo destruirá estrellas y galaxias, convertirá el Sol en una supernova y destruirá a la Tierra con él.

Desde que existe la historia escrita, el Santo Grial de inventores y científicos, pero también de charlatanes y artistas del fraude, ha sido la legendaria «máquina de movimiento perpetuo», un dispositivo que puede funcionar indefinidamente sin pérdida de energía. Una versión aún mejor es un dispositivo que crea más energía de la que consume, tal como la bomba de electrones, que crea energía gratuita e ilimitada.

En los próximos años, a medida que nuestro mundo industrializado agote poco a poco el petróleo barato, habrá una enorme presión para encontrar nuevas y abundantes fuentes de energía limpia. El aumento del precio del gas, la caída de la producción, el aumento de la contaminación, los cambios atmosféricos, etc., todo ello alimenta un renovado e intenso interés por la energía.

Esta preocupación es aprovechada hoy por inventores que prometen entregar cantidades ilimitadas de energía libre y tratan de vender sus inventos por cientos de millones. Periódicamente surgen numerosos inventores heterodoxos que son recibidos con afirmaciones sensacionales en los medios financieros y aclamados como los próximos Edison.

La popularidad de la máquina de movimiento perpetuo es amplia. En un episodio de Los Simpson titulado «El PTA se dispersa», Lisa construye su propia máquina de movimiento perpetuo durante una huelga de profesores. Esto impulsa a Homer a declarar seriamente: «Lisa, deja eso… en esta casa obedecemos las leyes de la termodinámica».

En los juegos de ordenador Los Sims, Xenosaga Episodes I and II y Ultima VI: The False Prophet, así como en el programa de Nickelodeon Invasor Zim, las máquinas de movimiento perpetuo tienen un papel destacado en los argumentos.

Pero si la energía es tan preciosa, entonces ¿cuál es exactamente la probabilidad de crear máquinas de movimiento perpetuo? ¿Realmente son imposibles estos aparatos, o su creación requeriría una revisión de las leyes de la física?

La historia vista a través de la energía

La energía es vital para la civilización. De hecho, toda la historia de la humanidad puede verse a través de la lente de la energía. Durante el 99,9 por ciento de la existencia humana las sociedades primitivas fueron nómadas y llevaban una precaria vida de recolección y caza en busca de alimento. La vida era brutal y corta. La energía disponible era de un quinto de caballo de potencia —la potencia de nuestros propios músculos—. Los análisis de los huesos de nuestros antepasados muestran pruebas de enormes deterioros, a causa del impresionante esfuerzo por la supervivencia diaria. La esperanza de vida era de menos de veinte años.

Pero tras el final de la última época glacial hace unos 10 000 años, el ser humano descubrió la agricultura y empezó a domesticar animales, especialmente el caballo, lo que poco a poco aumentó su producción de energía hasta uno o dos caballos de potencia. Esto puso en marcha la primera gran revolución en la historia de la humanidad. Con el caballo o el buey, un hombre tenía energía suficiente para arar un campo entero por sí solo, viajar decenas de kilómetros en un día o mover cientos de kilos de grano o roca de un lugar a otro. Por primera vez en la historia, las familias tenían un excedente de energía, y el resultado fue la fundación de las primeras ciudades. Un exceso de energía significaba que la sociedad podía ofrecer apoyo a una clase de artesanos, arquitectos, constructores y escribas, y así pudo florecer la civilización antigua. Pronto, de las junglas y del desierto surgieron grandes ciudades e imperios. La esperanza de vida llegó a unos treinta años.

Mucho más tarde, hace unos trescientos años, tuvo lugar la segunda gran revolución en la historia. Con la llegada de las máquinas de vapor, la energía disponible para una persona ascendió a decenas de caballos de potencia. Con el dominio del poder de las locomotoras de vapor, era posible cruzar continentes enteros en unos días. Las máquinas podían arar grandes campos, transportar a cientos de pasajeros a miles de kilómetros, y permitían construir ciudades enormes. La esperanza de vida hacia 1900 se había elevado hasta casi los cincuenta años en Estados Unidos.

Hoy estamos inmersos en la tercera gran revolución en la historia. Debido a la explosión demográfica y a nuestro voraz apetito de electricidad y potencia, nuestras necesidades de energía se han disparado y nuestro suministro está llegando al límite. La energía disponible por individuo se mide ahora en miles de caballos de potencia. No es sorprendente que esta demanda haya suscitado el interés por conseguir mayores fuentes de energía, incluidas las máquinas de movimiento perpetuo.

Las máquinas de movimiento perpetuo a través de la historia

La búsqueda de máquinas de movimiento perpetuo es antigua. El primer intento registrado de construir una máquina de movimiento perpetuo se remonta al siglo VIII en Baviera. Fue un prototipo para los cientos de variantes que se propusieron en los mil años siguientes; se basaba en una serie de pequeños imanes unidos a una rueda, como una noria. La rueda estaba colocada por encima de un imán mucho mayor situado en el suelo. Se suponía que a medida que cada imán de la rueda pasaba sobre el imán estacionario, era primero atraído y luego repelido por el imán más grande, lo que empujaba así a la rueda y creaba un movimiento perpetuo.

Otro ingenioso diseño fue ideado en 1150 por el filósofo indio Bhaskara, que propuso una rueda que daría vueltas continuamente si se añadía un peso en el borde; el peso desequilibraría a la rueda y la haría girar. El peso haría un trabajo mientras la rueda hacía una revolución, y luego volvería a su posición original. Iterando esto una y otra vez, Bhaskara afirmaba que él podía extraer trabajo ilimitado de forma gratuita.

Los diseños bávaro y de Bhaskara para máquinas de movimiento perpetuo y sus numerosas variantes comparten el mismo principio: algún tipo de rueda que puede dar una vuelta sin adición de energía y producir trabajo útil en el proceso. (Un examen cuidadoso de estas ingeniosas máquinas suele poner de manifiesto que realmente se pierde energía en cada ciclo, o que no puede extraerse trabajo utilizable).

La llegada del Renacimiento aceleró las propuestas de máquinas de movimiento perpetuo. En 1635 se concedió la primera patente para una máquina de movimiento perpetuo. En 1712 Johann Bessler había analizado unos trescientos modelos diferentes y propuso un diseño propio. (Según la leyenda, su doncella reveló más tarde que su máquina era un fraude). Incluso el gran pintor y científico del Renacimiento Leonardo da Vinci se interesó en las máquinas de movimiento perpetuo. Aunque las criticaba en público, comparándolas con la búsqueda infructuosa de la piedra filosofal, en sus cuadernos de notas privados hacía bocetos ingeniosos de máquinas de movimiento perpetuo autopropulsadas, incluidas una bomba centrífuga y un gato utilizado para rotar una broqueta de asar sobre un fuego.

En 1775 se estaban proponiendo tantos diseños que la Real Academia de Ciencias de París anunció que «ya no aceptaba ni estudiaba propuestas concernientes a movimiento perpetuo».

Arthur Ord-Hume, un historiador de las máquinas de movimiento perpetuo, ha escrito sobre la incansable dedicación de estos inventores, con todos los elementos en contra, comparándolos a los antiguos alquimistas. Pero, señalaba, «incluso el alquimista… sabía cuándo estaba batido».

Estafas y fraudes

El incentivo para producir una máquina de movimiento perpetuo era tan grande que las estafas se convirtieron en algo habitual. En 1813 Charles Redheffer exhibió una máquina en Nueva York que sorprendió a la audiencia al producir energía ilimitada sin ningún coste. (Pero cuando Robert Fulton examinó la máquina cuidadosamente, encontró una cinta oculta que impulsaba a la máquina. Este cable estaba conectado a su vez a un hombre que daba vueltas en secreto a una manivela en el ático).

También científicos e ingenieros se entusiasmaron con las máquinas de movimiento perpetuo. En 1870 los editores de Scientific American fueron engañados por una máquina construida por E.P Willis. La revista publicó una historia con el título sensacionalista «El mayor descubrimiento hecho jamás». Solo posteriormente los investigadores descubrieron que había fuentes ocultas de energía para la máquina de movimiento perpetuo de Willis.

En 1872 John Ernst Worren Kelly perpetró el timo más sensacional y lucrativo de su tiempo, con el que estafó a inversores que habían aportado casi 5 millones de dólares, una espléndida suma para finales del siglo XIX. Su máquina de movimiento perpetuo se basaba en diapasones resonantes que, afirmaba él, repiqueteaban en el éter. Kelly, un hombre sin formación científica, invitaba a inversores privados a su casa, donde les sorprendía con su motor-vacuo-hidro-neumático-pulsante que funcionaba a gran velocidad sin ninguna fuente de alimentación externa. Sorprendidos por esta máquina autopropulsada, ávidos inversores acudieron en bandadas a meter dinero en sus arcas.

Posteriormente, algunos inversores desilusionados le acusaron de fraude, y de hecho pasó algún tiempo en la cárcel, pero cuando murió era un hombre adinerado. Tras su muerte, los investigadores encontraron el ingenioso secreto de su máquina. Cuando su casa fue demolida se encontraron tubos ocultos en el suelo y en las paredes de los cimientos, que secretamente enviaban aire comprimido a sus máquinas. Estos tubos eran a su vez alimentados por un molino.

Incluso la Marina y el presidente de Estados Unidos fueron engañados con una máquina semejante. En 1881 John Gamgee inventó una máquina de amoniaco líquido. La evaporación del amoniaco frío crearía gases expansivos que podrían mover un pistón, e impulsar así máquinas utilizando solo el calor de los océanos. La Marina estaba tan fascinada por la idea de extraer energía ilimitada de los océanos que aprobó el aparato e incluso hizo una demostración ante el presidente James Garfield. El problema era que el vapor no volvía a condensarse en líquido de la forma apropiada, y con ello el ciclo no podía completarse.

Se han presentado tantas propuestas de una máquina de movimiento perpetuo a la Oficina de Patentes y Marcas de Estados Unidos (USPTO), que esta se niega a conceder una patente para dicho aparato a menos que se presente un modelo operativo. En algunas raras circunstancias, cuando los examinadores de la patente no pueden encontrar nada obviamente erróneo con un modelo, se concede una patente. La USPTO estipula: «Con la excepción de casos que implican movimiento perpetuo, normalmente la Oficina no exige un modelo para demostrar la operatividad de un aparato». (Esta cláusula ha permitido que inventores poco escrupulosos persuadieran a inversores ingenuos para financiar sus inventos, con el argumento de que la USPTO había reconocido oficialmente su máquina).

No obstante, la búsqueda de la máquina de movimiento perpetuo no ha sido estéril desde un punto de vista científico. Por el contrario, si bien los inventores nunca han construido una máquina de movimiento perpetuo, los enormes tiempos y energías invertidos en construir esa fabulosa máquina han llevado a los físicos a estudiar cuidadosamente la naturaleza de las máquinas térmicas. (Del mismo modo, la búsqueda infructuosa por parte de los alquimistas de la piedra filosofal, que convertía todo en oro, ayudó a descubrir algunas leyes básicas de la química).

Por ejemplo, hacia 1760 John Cox ideó un reloj que podía seguir en marcha indefinidamente, impulsado por cambios en la presión atmosférica. Los cambios en la presión del aire movían un barómetro que hacía girar las agujas del reloj. Este reloj funcionaba realmente y existe hoy. El reloj puede seguir en marcha indefinidamente porque extrae energía del exterior en forma de cambios en la presión atmosférica.

Las máquinas de movimiento perpetuo como la de Cox llevaron finalmente a los físicos a hacer la hipótesis de que tales máquinas solo podían funcionar de manera indefinida si en el aparato se introducía energía desde el exterior, es decir, si la energía total se conservaba. Esta teoría llevó a la primera ley de la termodinámica: la cantidad total de materia y de energía no puede ser creada ni destruida. Finalmente se postularon tres leyes de la termodinámica. La segunda ley afirma que la cantidad total de entropía (desorden) siempre aumenta. (Hablando crudamente, esta ley dice que el calor fluye de manera espontánea solo de los lugares más calientes a los más fríos). La tercera ley afirma que nunca se puede alcanzar el cero absoluto.

Si comparamos el universo a un juego y el objetivo de este juego es extraer energía, entonces las tres leyes pueden parafrasearse de la siguiente forma:

(Los físicos tienen cuidado al afirmar que estas leyes no son necesariamente ciertas en todo momento. En cualquier caso, todavía no se ha encontrado ninguna desviación. Cualquiera que trate de refutar estas leyes debe ir contra siglos de cuidadosos experimentos científicos. Pronto discutiremos posibles desviaciones de estas leyes).

Entre los logros cimeros de la ciencia del siglo XIX, estas leyes están marcadas tanto por la tragedia como por el triunfo. Una de las figuras clave en la formulación de dichas leyes, el gran físico austríaco Ludwig Boltzmann, se suicidó, debido en parte a la controversia que creó al formularlas.

Ludwig Boltzmann y la entropía

Boltzmann era un hombre pequeño y grueso, con una barba larga y poblada. Sin embargo, su formidable y feroz aspecto no hacía justicia a todas las heridas que tuvo que sufrir por defender sus ideas. Aunque la física newtoniana estaba firmemente establecida en el siglo XIX, Boltzmann sabía que esas leyes nunca habían sido aplicadas al controvertido concepto de los átomos, un concepto que todavía no era aceptado por muchos físicos destacados. (A veces olvidamos que hace tan solo un siglo eran legión los científicos que insistían en que el átomo era solamente un truco ingenioso, no una entidad real. Los átomos eran tan imposiblemente minúsculos, afirmaban, que tal vez no existían).

Newton demostró que fuerzas mecánicas, y no espíritus o deseos, eran suficientes para determinar los movimientos de todos los objetos. Luego Boltzmann derivó de forma elegante muchas de las leyes de los gases a partir de una sencilla hipótesis: que los gases estaban formados por átomos minúsculos que, como bolas de billar, obedecían las leyes de las fuerzas establecidas por Newton. Para Boltzmann, una cámara que contenía un gas era como una caja llena de billones de minúsculas bolas de acero, cada una de ellas rebotando contra las paredes y con todas las demás según las leyes de movimiento de Newton. En una de las más grandes obras maestras de la física, Boltzmann (e independientemente James Clerk Maxwell) demostraron matemáticamente cómo esta simple hipótesis podía dar como resultado leyes nuevas y deslumbrantes, y abría una nueva rama de la física llamada mecánica estadística.

De repente, muchas de las propiedades de la materia podían derivarse de primeros principios. Puesto que las leyes de Newton estipulaban que la energía debe conservarse cuando se aplica a los átomos, cada colisión entre átomos conservaba la energía; eso significaba que toda una cámara con billones de átomos también conservaba la energía. La conservación de la energía podía establecerse ahora no solo por vía experimental, sino a partir de primeros principios, es decir, de las leyes newtonianas del movimiento.

Pero en el siglo XIX la existencia de los átomos aún era acaloradamente debatida, y a menudo ridiculizada, por científicos prominentes, tales como el filósofo Ernst Mach. Hombre sensible y con frecuentes depresiones, Boltzmann se sentía como una especie de pararrayos, foco de los a menudo crueles ataques de los antiatomistas. Para los antiatomistas, lo que no se podía medir no existía, incluidos los átomos. Para mayor humillación, muchos de los artículos de Boltzmann fueron rechazados por el editor de una destacada revista de física alemana porque este insistía en que átomos y moléculas eran herramientas convenientes estrictamente teóricas, y no objetos que existieran realmente en la naturaleza.

Agotado y amargado por tantos ataques personales, Boltzmann se ahorcó en 1906, mientras su mujer y su hija estaban en la playa. Lamentablemente, no llegó a enterarse de que solo un año antes un joven físico llamado Albert Einstein había hecho lo imposible: había escrito el primer artículo que demostraba la existencia de los átomos.

La entropía total siempre aumenta

El trabajo de Boltzmann y otros físicos contribuyó a aclarar la naturaleza de las máquinas de movimiento perpetuo, clasificándolas en dos tipos. Máquinas de movimiento perpetuo del primer tipo son aquellos que violan la primera ley de la termodinámica, es decir, que en realidad producen más energía de la que consumen. En cada caso, los físicos descubrieron que este tipo de máquina de movimiento perpetuo basado en fuentes de energía ocultas y externas, o son un fraude, o el inventor no se dio cuenta de la fuente de energía exterior.

Las máquinas de movimiento perpetuo del segundo tipo son más sutiles. Obedecen a la Primera Ley de la Termodinámica —la conservación de la energía— pero violan la segunda ley. En teoría, una máquina de movimiento perpetuo del segundo tipo no produce calor residual, por lo que es 100 por ciento eficaz.[91] Sin embargo, la segunda ley dice que una máquina así no es posible —el calor residual siempre se produce— y por lo tanto, el desorden o caos en el universo, la entropía, siempre aumenta. No importa qué tan eficiente puede ser una máquina, siempre se produce algo de calor residual, con lo cual la entropía del universo aumenta.

El hecho de que la entropía total siempre aumenta está en el corazón de la historia humana, tanto como en la madre naturaleza. Según la Segunda Ley, es mucho más fácil destruir que construir. Algo que se puede tardar miles de años para ser creado, como el gran imperio azteca en México, puede ser destruido en cuestión de meses, y esto es lo que ocurrió cuando una banda de andrajosos conquistadores españoles, armados con caballos y armas de fuego, destrozaron completamente dicho imperio.

Cada vez que miras en un espejo y ves una nueva arruga o una cana estás observando los efectos de la segunda ley. Los biólogos nos dicen que el proceso de envejecimiento es la acumulación gradual de errores genéticos en las células y los genes, de modo que la capacidad de la célula para funcionar poco a poco se deteriora. Envejecimiento, oxidación, descomposición, decadencia, desintegración y colapso son también ejemplos de la segunda ley.

Al comentar la naturaleza profunda de la segunda ley, el astrónomo Arthur Eddington dijo en cierta ocasión: «La ley del incremento continuo de la entropía ocupa, a mi entender, la posición suprema entre las leyes de la naturaleza. […] Si usted tiene una teoría que va contra la segunda ley de la termodinámica, no puedo darle ninguna esperanza; no le queda otra opción que hundirse en la más profunda humillación».

Incluso hoy, ingenieros emprendedores (y charlatanes ingeniosos) siguen anunciando la invención de máquinas de movimiento perpetuo. Recientemente, el Wall Street Journal me pidió que comentara el trabajo de un inventor que había persuadido a inversores para invertir millones de dólares en su máquina. Periódicos financieros importantes publicaron extensos artículos, escritos por periodistas sin formación científica, que hablaban del potencial de esta invención para cambiar el mundo (y generar fabulosos y lucrativos beneficios). «¿Genios o charlatanes?», decían los titulares.

Los inversores pusieron enormes cantidades de dinero en efectivo en ese aparato que violaba las leyes más básicas de la física y la química que se enseñan en la escuela. (Lo que me chocaba no era que una persona tratara de hacer lo imposible —algo que se hace desde tiempos inmemoriales—. Lo sorprendente era que fuera tan fácil para su inventor engañar a inversores adinerados debido a que estos carecían de una mínima comprensión de la física elemental). Yo repetí al Journal el proverbio «Un loco y su dinero son fácilmente engañados» y el famoso lema de P. T. Barnum: «Cada minuto nace un incauto». No es muy sorprendente que el Financial Times, The Economist y el Wall Street Journal hayan publicado largos artículos sobre varios inventores con sus máquinas de movimiento perpetuo.

Las tres leyes y las simetrías

Pero todo esto plantea una cuestión más profunda: ¿por qué son válidas de entrada las leyes de hierro de la termodinámica? Es un misterio que ha intrigado a los científicos desde que las leyes se propusieron por primera vez. Si pudiéramos responder a esta pregunta, quizá podríamos encontrar escapatorias en las leyes, y las implicaciones tendrían el efecto de un terremoto.

Cuando estudiaba en la facultad, me quedé sin habla el día en que finalmente aprendí el verdadero origen de la conservación de la energía. Uno de los principios fundamentales de la física (descubierto por la matemática Emmy Noether en 1918) es que cuando quiera que un sistema posea una simetría, el resultado es una ley de conservación. Si las leyes del universo siguen siendo las mismas con el paso del tiempo, entonces el sorprendente resultado es que el sistema conserva la energía. (Además, si las leyes de la física siguen siendo las mismas si uno se mueve en cualquier dirección, entonces el momento lineal también se conserva en cualquier dirección. Y si las leyes de la física siguen siendo las mismas bajo una rotación, entonces el momento angular se conserva).

Esto fue sorprendente para mí. Comprendí que cuando analizamos la luz estelar procedente de galaxias lejanas que están a miles de millones de años luz, en el mismo límite del universo visible, encontramos que el espectro de la luz es idéntico a los espectros que podemos hallar en la Tierra. En esta luz reliquia que fue emitida miles de millones antes de que la Tierra o el Sol hubieran nacido, vemos las mismas «huellas dactilares» inequívocas del espectro del hidrógeno, el helio, el carbono, el neón, y demás elementos que encontramos hoy en la Tierra. En otras palabras, las leyes básicas de la física no han cambiado durante miles de millones de años, y son constantes hasta los límites exteriores del universo.

Como mínimo, advertí, el teorema de Noether significa que la conservación de la energía durará probablemente miles de millones de años, si no para siempre. Por lo que sabemos, ninguna de las leyes fundamentales de la física ha cambiado con el tiempo, y esta es la razón de que la energía se conserve.

Las implicaciones del teorema de Noether en la física moderna son profundas. Cuando quiera que los físicos crean una nueva teoría, ya aborde el origen del universo, las interacciones de quarks y otras partículas subatómicas, o la antimateria, empiezan por las simetrías a las que obedece el sistema. De hecho, ahora se sabe que las simetrías son los principios guía fundamentales para crear cualquier nueva teoría. En el pasado se pensaba que las simetrías eran subproductos de una teoría —una propiedad de la teoría atractiva pero en definitiva inútil, bonita, pero no esencial—. Hoy comprendemos que las simetrías son la característica esencial que define cualquier teoría. Al crear nuevas teorías los físicos partimos de la simetría, y luego construimos la teoría a su alrededor.

(Tristemente, Emmy Noether, como Boltzmann antes que ella, tuvo que luchar con uñas y dientes por su reconocimiento. Se le negó una posición permanente en las principales instituciones porque era una mujer. Su mentor, el gran matemático David Hilbert, estaba tan frustrado por no poder asegurar un nombramiento docente para Noether que exclamó: «¿Qué somos, una universidad o una sociedad de baños?»).

Esto plantea una pregunta molesta. Si la energía se conserva porque las leyes de la física no cambian con el tiempo, entonces ¿podría esta simetría romperse en circunstancias raras e inusuales? Existe todavía la posibilidad de que la conservación de la energía pudiera violarse en una escala cósmica si la simetría de nuestras leyes se rompe en lugares exóticos e inesperados.

Una forma en que esto podría suceder es si las leyes de la física varían con el tiempo o cambian con la distancia. (En la novela de Asimov Los propios dioses esta simetría se rompía porque había un agujero en el espacio que conectaba nuestro universo con un universo paralelo. Las leyes de la física cambian en la vecindad del agujero en el espacio, y así permiten un fallo en las leyes de la termodinámica. De ahí que la conservación de la energía podría violarse si hay agujeros en el espacio, es decir, agujeros de gusano).

Otra escapatoria que se está debatiendo hoy calurosamente es si la energía puede brotar de la nada.

¿Energía a partir del vacío?

Una pregunta tentadora es: ¿es posible extraer energía de la nada? Los físicos solo han comprendido recientemente que la «nada» del vacío no está vacía en absoluto, sino que rezuma actividad.

Uno de los que propuso esta idea fue el excéntrico genio del siglo XX Nikola Tesla, un digno rival de Thomas Edison. También fue uno de los proponentes de la energía de punto cero, es decir, la idea de que el vacío quizá posea inagotables cantidades de energía.[92] Si es cierto, el vacío sería el definitivo «almuerzo de balde», capaz de proporcionar energía ilimitada literalmente a partir del aire. El vacío, en lugar de ser considerado vacío y desprovisto de cualquier materia, sería el almacén de energía definitivo.

Tesla nació en una pequeña ciudad de la actual Serbia, y llegó sin un céntimo a Estados Unidos en 1884. Pronto se convirtió en ayudante de Thomas Edison, pero debido a su brillo acabó siendo rival. En una famosa competición, que los historiadores calificaron como «la guerra de las corrientes», Tesla se enfrentó a Edison. Este creía que podía electrificar el mundo con sus motores de corriente continua (DC), mientras que Tesla fue el padre de la corriente alterna (AC) y demostró satisfactoriamente que sus métodos eran muy superiores a los de Edison y reducían de manera considerable las pérdidas de energía con la distancia. Hoy todo el planeta está electrificado sobre la base de las patentes de Tesla, no de Edison.

Las invenciones y patentes de Tesla superan las 700 en número y contienen algunos de los hitos más importantes en la moderna historia eléctrica. Los historiadores han argumentado con verosimilitud que Tesla inventó la radio antes que Guglielmo Marconi (ampliamente reconocido como el inventor de la radio) y que estaba trabajando con rayos X antes de su descubrimiento oficial por Wilhelm Roentgen. (Tanto Marconi como Roentgen ganarían más tarde el premio Nobel por descubrimientos hechos probablemente por Tesla años antes).

Tesla creía también que podía extraer energía ilimitada del vacío, una afirmación que por desgracia no demostró en sus notas. A primera vista, la «energía de punto cero» (o la energía contenida en un vacío) parece violar la primera ley de la termodinámica. Aunque la energía de punto cero desafía las leyes de la mecánica newtoniana, la noción de la energía de punto cero ha resurgido recientemente desde una nueva dirección.

Cuando los científicos han analizado los datos procedentes de satélites que están actualmente en el espacio, como el satélite WMAP, han llegado a la sorprendente conclusión de que un 75 por ciento del universo está hecho de «energía oscura», la energía de un vacío puro. Esto significa que el mayor reservorio de energía en todo el universo es el vacío que separa las galaxias en el universo. (Esta energía oscura es tan colosal que está apartando a unas galaxias de otras, y con el tiempo puede desgarrar al universo en un big freeze).

La energía oscura está en todos los lugares del universo, incluso en el salón de nuestra casa y en el interior de nuestro cuerpo. La cantidad de energía oscura en el espacio exterior es verdaderamente astronómica, y supera a toda la energía de las estrellas y las galaxias juntas. También podemos calcular la cantidad de energía oscura en la Tierra, y es muy pequeña, demasiado pequeña para ser utilizada para impulsar una máquina de movimiento perpetuo. Tesla estaba en lo cierto sobre la energía oscura, pero equivocado sobre la cantidad de energía oscura en la Tierra.

¿O no?

Una de las lagunas más embarazosas en la física moderna es que nadie puede calcular la cantidad de energía oscura que podemos medir con nuestros satélites. Si utilizamos la teoría más reciente de la física atómica para calcular la cantidad de energía oscura en el universo, llegamos a un número que está equivocado ¡en un factor de 10120! Esto es, «uno» ¡seguido de ciento veinte ceros! Es con mucho el mayor desacuerdo entre teoría y experimento en toda la física.

La cuestión es que nadie sabe cómo calcular la «energía de la nada». Esta es una de las preguntas más importantes en física (porque finalmente determinará el destino del universo), pero por el momento estamos sin claves acerca de cómo calcularla. Ninguna teoría puede explicar la energía oscura, aunque la evidencia experimental a favor de su existencia esté delante de nosotros.

Así pues, el vacío tiene energía, como sospechaba Tesla. Pero la cantidad de energía es probablemente demasiado pequeña para ser utilizada como una fuente de energía útil. Existen enormes cantidades de energía oscura entre las galaxias, pero la cantidad que puede encontrarse en la Tierra es minúscula. Pero lo embarazoso es que nadie sabe cómo calcular esta energía, ni de dónde procede.

Lo que quiero resaltar es que la conservación de la energía surge de razones cosmológicas profundas. Cualquier violación de estas leyes significaría necesariamente un cambio profundo en nuestra comprensión de la evolución del universo. Y el misterio de la energía oscura está obligando a los físicos a encarar de frente esta cuestión.

Puesto que la creación de una verdadera máquina de movimiento perpetuo quizá nos exija reevaluar las leyes fundamentales de la física en una escala cosmológica, yo colocaría las máquinas de movimiento perpetuo como una imposibilidad de Clase III; es decir, o bien son realmente imposibles, o bien necesitaríamos un cambio fundamental en nuestra comprensión de la física fundamental en una escala cosmológica para hacer posible una máquina semejante. La energía oscura sigue siendo uno de los grandes capítulos inacabados de la ciencia moderna.