12

EL VIAJE EN EL TIEMPO

Si el viaje en el tiempo es posible, entonces, ¿dónde están los turistas que vienen del futuro?

STEPHEN HAWKING

El viaje en el tiempo es contrario a la razón —dijo Filby—. ¿Qué razón? —dijo el Viajero en el Tiempo.

H.G. WELLS

En la novela Janus Equation, el escritor Steven G. Spruill exploraba uno de los terribles problemas del viaje en el tiempo.[76] En su historia, un matemático brillante cuyo objetivo es descubrir el secreto del viaje en el tiempo conoce a una extraña y bella mujer, y se hacen amantes. Él no sabe nada del pasado de ella, pero se siente intrigado y trata de descubrir su verdadera identidad. Con el tiempo descubre que ella se había sometido a cirugía plástica para cambiar sus facciones. Y, más aún, que también había cambiado de sexo. Finalmente descubre que «ella» es realmente un viajero del tiempo que viene del futuro, y que «ella» es en realidad él mismo, pero procedente del futuro. Esto significa que él ha hecho el amor consigo mismo. Y el lector se pregunta qué habría sucedido si ellos hubieran tenido un hijo. Y si ese hijo volviera al pasado, y creciera para hacerse el matemático con el que se inicia la historia, ¿sería posible que fuera su propia madre y padre e hijo e hija?

Cambiar el pasado

El tiempo es uno de los grandes misterios del universo. Todos nos vemos arrastrados en el río del tiempo contra nuestra voluntad. Alrededor del 400 d. C., san Agustín escribió extensamente sobre la naturaleza paradójica del tiempo: «¿Cómo pueden ser pasado y futuro, cuando el pasado ya no es, y el futuro no es todavía? Respecto al presente, si siempre hubiera presente y nunca llegara a convertirse en pasado, no habría tiempo, sino eternidad».[77] Si llevamos más lejos la lógica de san Agustín vemos que el tiempo no es posible, puesto que el pasado se ha ido, el futuro no existe y el presente existe solo por un instante. (San Agustín planteaba entonces profundas cuestiones teológicas sobre cómo debe influir el tiempo en Dios, cuestiones que son relevantes todavía hoy. Si Dios es omnipotente y todopoderoso, escribió, entonces, ¿está Él limitado por el paso del tiempo? En otras palabras, ¿tiene Dios, como el resto de nosotros mortales, que apresurarse porque llega tarde a una cita? San Agustín concluía finalmente que Dios es omnipotente y por ello no puede estar limitado por el tiempo; y que, por consiguiente, tendría que existir «fuera del tiempo». Aunque el concepto de estar fuera del tiempo parece absurdo, es una idea recurrente en la física moderna, como veremos).

Como san Agustín, todos nosotros nos hemos preguntado alguna vez sobre la extraña naturaleza del tiempo y cómo difiere del espacio. Si podemos movernos hacia delante y hacia atrás en el espacio, ¿por qué no en el tiempo? Todos nos hemos preguntado también qué nos puede reservar el futuro. Los humanos tenemos un tiempo de vida finito, pero somos muy curiosos sobre los sucesos que puedan suceder mucho después de que hayamos desaparecido.

Aunque nuestro deseo de viajar en el tiempo es probablemente tan antiguo como la humanidad, la primera historia escrita sobre un viaje en el tiempo es al parecer Memorias del siglo XX, escrita en 1733 por Samuel Madden, que trata de un ángel del año 1997 que viaja a doscientos cincuenta años atrás para entregar a un embajador británico documentos que describen el mundo del futuro.

Hubo muchas más historias semejantes. El relato corto de 1838 «Perder la diligencia: un anacronismo», de autor anónimo, trata de una persona que está esperando una diligencia y de repente se ve mil años atrás en el pasado. Encuentra a un monje de un antiguo monasterio y trata de explicarle cómo será la historia en los siguientes mil años. Después de eso se vuelve a encontrar transportado al presente tan misteriosamente como antes, excepto que ha perdido su diligencia.

Incluso la novela de Charles Dickens de 1843 Cuento de Navidad es una especie de historia de viaje en el tiempo, puesto que Ebenezer Scrooge es transportado al pasado y al futuro para ser testigo de cómo es el mundo antes del presente y después de su muerte.

En la literatura norteamericana la primera aparición del viaje en el tiempo data de la novela de Mark Twain de 1889 Un yanqui en la corte del rey Arturo. Un yanqui se ve transportado al pasado para acabar en la corte del rey Arturo en el 528 d. C. Es hecho prisionero y está a punto de ser quemado en la hoguera, pero entonces afirma que tiene el poder de oscurecer el Sol, pues sabe que ese mismo día debería producirse un eclipse. Cuando sucede esto, la muchedumbre queda horrorizada y acuerda ponerle en libertad y concederle privilegios a cambio de que haga volver al Sol.

Pero el primer intento serio por explorar el viaje en el tiempo en la ficción fue el clásico de H. G. Wells La máquina del tiempo, en el que el héroe es transportado a miles de años al futuro. En ese futuro lejano la propia humanidad se ha dividido genéticamente en dos razas, los amenazadores moorlocks, que mantienen las herrumbrosas máquinas subterráneas, y los inútiles e infantiles eloi, que bailan a la luz del Sol en la superficie, sin darse cuenta nunca de su terrible destino (ser devorados por los moorlocks).

Desde entonces, el viaje en el tiempo se ha convertido en un ingrediente regular de la ciencia ficción, desde Star Trek hasta Regreso al futuro. En Superman I, cuando Superman se entera de que Lois Lane ha muerto, decide, presa de la desesperación, volver atrás las manecillas del tiempo, para lo que empieza a girar alrededor de la Tierra más rápido que la velocidad de la luz, hasta que el propio tiempo retrocede. La Tierra se frena, se detiene y finalmente gira en la dirección opuesta, hasta que todos los relojes de la Tierra marchan hacia atrás. Las aguas desbocadas retroceden, las presas rotas se rehacen milagrosamente y Lois Lane regresa de la muerte.

Desde la perspectiva científica, el viaje en el tiempo era imposible en el universo de Newton, donde el tiempo se veía como una flecha. Una vez disparado, nunca podría desviarse de su pasado. Un segundo en la Tierra era un segundo en todo el universo. Esta idea fue derrocada por Einstein, que demostró que el tiempo era más parecido a un río que hacía meandros a lo largo del universo, acelerándose y frenándose cuando serpenteaba a través de estrellas y galaxias. Por eso, un segundo en la Tierra no es absoluto; el tiempo varía cuando nos movemos por el universo.

Como he dicho antes, según la teoría de la relatividad especial de Einstein, el tiempo se frena más dentro de un cohete cuanto más rápido se mueve. Los escritores de ciencia ficción han especulado con que si se pudiera romper la barrera de la luz, se podría ir atrás en el tiempo. Pero esto no es posible, puesto que la masa se haría infinita al alcanzar la velocidad de la luz. La velocidad de la luz es la barrera última para cualquier cohete. La tripulación del Enterprise en Star Trek IV: El viaje a casa abordaba una nave espacial klingon y la utilizaba para girar alrededor del Sol como una honda y romper la barrera de la luz para acabar en el San Francisco de la década de 1960. Pero esto desafía las leyes de la física.

Sin embargo, el viaje en el tiempo al futuro es posible, y ha sido verificado experimentalmente millones de veces. El viaje del héroe de La máquina del tiempo al futuro lejano es físicamente posible. Si un astronauta llegara a viajar a una velocidad próxima a la de la luz, podría costarle, digamos, un minuto llegar a las estrellas más cercanas. Habrían transcurrido cuatro años en la Tierra, pero para él solo habría transcurrido un minuto porque el tiempo se habría frenado en el interior de la nave. Por lo tanto, él habría viajado a cuatro años en el futuro, tal como se experimentan en la Tierra. (Nuestro astronauta haría en realidad un viaje corto al futuro cada vez que entrara en el espacio exterior. Cuando viajara a 30 000 kilómetros por hora sobre la Tierra, sus relojes llevarían un ritmo más lento que los de la Tierra. Por ello, al cabo de una misión de un año de duración en la estación espacial, los astronautas han viajado en realidad una fracción de segundo al futuro cuando vuelven a la Tierra. El récord del mundo de viajar al futuro lo ostenta actualmente el cosmonauta ruso Serguéi Avdeyev, que estuvo en órbita durante 748 días y por eso fue lanzado 0,02 segundos al futuro).

Por lo tanto, una máquina del tiempo que puede llevarnos al futuro es compatible con la teoría de la relatividad especial de Einstein. Pero ¿qué hay sobre viajar hacia atrás en el tiempo?

Si pudiéramos viajar al pasado, sería imposible escribir la historia. En cuanto un historiador registrara la historia del pasado, alguien podría volver al pasado y reescribirlo. Las máquinas del tiempo no solo dejarían en paro a los historiadores, sino que nos permitirían alterar el curso del tiempo a voluntad. Si, por ejemplo, retrocediéramos hasta la era de los dinosaurios y accidentalmente matáramos a un mamífero que por casualidad fuera nuestro antepasado, podríamos acabar involuntariamente con toda la raza humana. La historia se convertiría en un inacabable episodio absurdo de los Monty Phyton, cuando los turistas del futuro alteraran los sucesos históricos mientras tratan de conseguir el mejor ángulo de cámara.

El viaje en el tiempo: un terreno de juego para los físicos

Quizá la persona que más se ha distinguido en las densas ecuaciones matemáticas de los agujeros negros y las máquinas del tiempo es el cosmólogo Stephen Hawking. A diferencia de otros estudiantes de relatividad que suelen destacar en física matemática a una edad temprana, Hawking no fue un estudiante sobresaliente en su juventud. Obviamente era en extremo brillante, pero sus profesores advertían a menudo que no se centraba en sus estudios y nunca desplegaba todas sus capacidades. Pero en 1962 ocurrió algo decisivo cuando, tras graduarse en Oxford, empezó a notar por primera vez los síntomas de la ELA (esclerosis lateral amiotrófica, o enfermedad de Lou Gehrig). Entonces se le comunicó que padecía esta incurable enfermedad de las neuronas motoras que anularía todas sus funciones motoras y probablemente acabaría pronto con él. De entrada, las noticias fueron extraordinariamente perturbadoras. ¿Qué sentido tendría obtener un doctorado si en cualquier caso iba a morir pronto?

Pero una vez que superó el golpe empezó a centrarse por primera vez en su vida. Al comprender que no le quedaba mucho tiempo, empezó a abordar febrilmente algunos de los problemas más difíciles en relatividad general. A principios de los años setenta publicó una señera serie de artículos que demostraban que las «singularidades» en la teoría de Einstein (donde el campo gravitatorio se hace infinito, como en el centro de los agujeros negros y en el instante del big bang) eran una característica esencial de la relatividad y no podían eliminarse con facilidad (como pensaba Einstein). En 1974 Hawking demostró también que los agujeros negros no son completamente negros sino que emiten radiación, conocida ahora como radiación de Hawking, porque puede atravesar por efecto túnel el campo gravitatorio de incluso un agujero negro. Este artículo fue la primera aplicación importante de la teoría cuántica a la teoría de la relatividad, y representa su trabajo más conocido.

Como se había pronosticado, la ELA le llevó poco a poco a la parálisis de manos, piernas e incluso cuerdas vocales, pero a un ritmo mucho más lento que el que los médicos habían predicho inicialmente. Como resultado, Hawking ya ha pasado por muchas de las etapas habituales en las personas normales: ha tenido tres hijos (ahora es abuelo), se divorció de su primera mujer en 1991 para casarse cuatro años después con la mujer del hombre que creó su sintetizador de voz, y pidió el divorcio de su segunda mujer en 2006. En 2007 fue noticia en la prensa por haber ido a bordo de un avión a reacción donde experimentó la ingravidez, con lo que satisfacía un antiguo deseo. Su próximo objetivo es viajar al espacio exterior.

Hoy está casi totalmente paralizado en su silla de ruedas y se comunica con el mundo exterior con movimientos de los ojos. Pero incluso con una discapacidad así, sigue bromeando, escribe artículos, imparte conferencias y entra en controversias. Es más productivo moviendo sus ojos que equipos enteros de científicos con un control total de su cuerpo. (Su colega en la Universidad de Cambridge, sir Martin Rees, que fue nombrado astrónomo real por la reina, me confesó una vez que la discapacidad de Hawking le impide hacer los tediosos cálculos necesarios para mantenerse en cabeza de su área de investigación. Por eso se concentra en generar nuevas y frescas ideas en lugar de hacer cálculos difíciles, que pueden ejecutar sus estudiantes).

En 1990 Hawking leyó artículos de sus colegas que proponían versiones de una máquina del tiempo, e inmediatamente adoptó una actitud escéptica. Su intuición le decía que el viaje en el tiempo no era posible porque no hay turistas que vengan del futuro. Si el viaje en el tiempo fuera tan normal como ir un domingo de picnic al parque, entonces los viajeros del tiempo procedentes del futuro estarían atosigándonos con sus cámaras, pidiéndonos que posáramos para sus álbumes fotográficos.

Hawking planteó también un reto al mundo de la física. Afirmó que debería haber una ley que hacía imposible el viaje en el tiempo. Propuso una «conjetura de protección de la cronología» que excluía el viaje en el tiempo de las leyes de la física, para «hacer la historia segura para los historiadores».

Sin embargo, por mucho que los físicos lo intentaran, no podían encontrar una ley que impida viajar en el tiempo. Aparentemente, el tiempo parece compatible con las leyes de la física conocidas. Incapaz de encontrar una ley física que haga imposible el viaje en el tiempo, Hawking cambió de opinión hace poco. De nuevo fue noticia cuando dijo: «Quizá el viaje en el tiempo sea posible, pero no es práctico».

Considerado en otro tiempo al margen de la ciencia, el viaje en el tiempo se ha convertido de repente en terreno de juego para los físicos. El físico Kip Thorne, del Caltech, escribe: «El viaje en el tiempo era solamente un dominio reservado a los escritores de ciencia ficción. Los científicos serios lo evitaban como una plaga —incluso si escribían de ficción bajo pseudónimo o leían sobre ello en privado—. ¡Cómo han cambiado los tiempos! Ahora encontramos análisis eruditos sobre el viaje en el tiempo en revistas científicas serias, escritos por físicos teóricos eminentes […] ¿Por qué el cambio? Porque los físicos nos hemos dado cuenta de que la naturaleza del tiempo es algo demasiado importante para dejarlo solo en manos solamente de los escritores de ciencia ficción».[78]

La razón de toda esta confusión y excitación es que las ecuaciones de Einstein permiten muchos tipos de máquinas del tiempo. (No obstante, todavía está en duda el que sobrevivan a los retos de la mecánica cuántica). En la teoría de Einstein, de hecho, encontramos con frecuencia las llamadas «curvas cerradas de tipo tiempo», que es el nombre técnico para trayectorias que permiten el viaje en el tiempo al pasado. Si siguiéramos la trayectoria de una curva cerrada de tipo tiempo, empezaríamos un viaje y regresaríamos antes de salir.

La primera máquina del tiempo requiere un agujero de gusano. Hay muchas soluciones de las ecuaciones de Einstein que conectan dos puntos distantes en el espacio. Pero puesto que espacio y tiempo están íntimamente entretejidos en la teoría de Einstein, ese mismo agujero de gusano puede conectar también dos puntos en el tiempo. Al caer en el agujero de gusano, uno podría viajar (matemáticamente al menos) al pasado. Es concebible que uno pudiera entonces viajar al punto de partida original y encontrarse consigo mismo antes de partir. Pero como he mencionado en el capítulo anterior, atravesar el agujero de gusano en el centro de un agujero negro es un viaje de una dirección. Como ha dicho el físico Richard Gott: «No creo que haya ningún problema en que una persona pudiera viajar hacia atrás en el tiempo mientras está en un agujero negro. La cuestión es si podría salir alguna vez para hablar de ello».[79]

Otra máquina del tiempo implica un universo en rotación. En 1949 el matemático Kurt Gödel encontró la primera solución a las ecuaciones de Einstein que implica un viaje en el tiempo. Si el universo gira, entonces, si viajáramos alrededor del universo con suficiente rapidez, podríamos encontrarnos a nosotros mismos en el pasado y llegar antes de haber salido. Un viaje alrededor del universo es, por consiguiente, también un viaje al pasado. Cuando los astrónomos visitaban el Instituto de Estudios Avanzados, Gödel les preguntaba si alguna vez habían encontrado pruebas de que el universo estuviera girando. Quedó decepcionado cuando le dijeron que había una clara evidencia de que el universo se expandía, pero el espín neto del universo era probablemente cero. (De lo contrario, el viaje en el tiempo podría ser un lugar común, y la historia tal como la conocemos se vendría abajo).

En tercer lugar, si uno da vueltas alrededor de un cilindro rotatorio infinitamente largo, también podría llegar antes de haber salido. (Esta solución fue encontrada por W.J. van Stockum en 1936, antes de la solución con viaje en el tiempo de Gödel, pero Van Stockum era al parecer inconsciente de que su solución permitía el viaje en el tiempo). En este caso, si uno bailaba alrededor de un palo de mayo en un Primero de Mayo, podría encontrarse a sí mismo en el mes de abril. (El problema con este diseño, sin embargo, es que el cilindro debe tener una longitud infinita y girar tan rápido que la mayoría de los materiales saldrían despedidos).

El ejemplo más reciente de viaje en el tiempo fue encontrado por Richard Gott de Princeton en 1991. Su solución se basaba en encontrar cuerdas cósmicas gigantescas (que pueden ser residuos del big bang original). Gott suponía que dos grandes cuerdas cósmicas estaban a punto de colisionar. Si uno viajaba rápidamente alrededor de dichas cuerdas cósmicas en colisión, viajaría hacia atrás en el tiempo. La ventaja de este tipo de máquina del tiempo es que no necesitaría cilindros rotatorios infinitos, universos rotatorios ni agujeros negros. (El problema con este diseño, sin embargo, es que uno debe encontrar primero cuerdas cósmicas enormes flotando en el espacio y luego hacerlas colisionar de una manera precisa. Y la posibilidad de ir hacia atrás en el tiempo solo duraría un breve período de tiempo). Según Gott: «Un lazo de cuerda en colapso suficientemente grande para permitirle a usted dar una vuelta y volver atrás en el tiempo un año tendría que tener más de la mitad de la masa-energía de toda una galaxia».[80]

Pero el diseño más prometedor para una máquina del tiempo es el «agujero de gusano practicable», mencionado en el capítulo anterior, un agujero en el espacio-tiempo por el que una persona podría caminar libremente hacia atrás y hacia delante en el tiempo. Sobre el papel, los agujeros de gusano practicables pueden proporcionar no solo un viaje más rápido que la luz, sino también un viaje en el tiempo. La clave para los agujeros de gusano practicables es la energía negativa.

Una máquina del tiempo con agujero de gusano practicable consistiría en dos cámaras. Cada una de ellas consistiría en dos esferas concéntricas, que estarían separadas una distancia minúscula. Implosionando la esfera exterior, las dos esferas crearían un efecto Casimir y con ello energía negativa. Supongamos que una civilización tipo III es capaz de tender un agujero de gusano entre estas dos cámaras (posiblemente extrayendo uno de la espuma espaciotemporal). A continuación, tomamos la primera cámara y la enviamos al espacio a velocidades próximas a la de la luz. El tiempo se frena en dicha cámara, de modo que los dos relojes ya no están sincronizados. El tiempo marcha a velocidades diferentes dentro de las dos cámaras, que están conectadas por un agujero de gusano.

Si uno está en la segunda cámara puede pasar instantáneamente por el agujero de gusano a la primera cámara, que existe en un tiempo anterior. Así pues, uno ha ido hacia atrás en el tiempo.

Este diseño tiene que hacer frente a problemas formidables. El agujero de gusano quizá sea minúsculo, mucho más pequeño que un átomo. Y las placas quizá tengan que ser estrujadas hasta distancias de la longitud de Planck para crear suficiente energía negativa. Finalmente, uno tendría que ser capaz de ir atrás en el tiempo solo hasta el momento en que se construyeron las máquinas del tiempo. Antes de eso, el tiempo en las dos cámaras estaría marchando al mismo ritmo.

Paradojas y enigmas del tiempo

El viaje en el tiempo plantea problemas de todo tipo, tanto técnicos como sociales.

Las cuestiones morales, legales y éticas han sido planteadas por Larry Dwyer, que señala: «¿Debería un viajero en el tiempo que golpea a su yo más joven (o viceversa) ser acusado de agresión? ¿Debería el viajero en el tiempo que asesina a alguien y luego huye al pasado en busca de santuario ser juzgado en el pasado por crímenes que cometió en el futuro? Si él se casa en el pasado, ¿puede ser juzgado por bigamia incluso si su otra mujer no nacerá hasta el menos cinco mil años después?».[81]

Pero quizá los problemas más espinosos son las paradojas lógicas que plantea el viaje en el tiempo. Por ejemplo, ¿qué sucede si matamos a nuestros padres antes de que hayamos nacido? Esta es una imposibilidad lógica. A veces es llamada la «paradoja del abuelo».

Hay tres maneras de resolver estas paradojas. En primer lugar, quizá uno simplemente repite la historia pasada cuando vuelve atrás en el tiempo, y por consiguiente satisface el pasado. En este caso, uno no tiene libre albedrío. Está obligado a completar el pasado como estaba escrito. Así pues, si uno vuelve al pasado para dar el secreto del viaje en el tiempo a su yo más joven, estaba escrito que sucedería de esa manera. El secreto del viaje en el tiempo venía del futuro. Era el destino (pero esto no nos dice de dónde procedía la idea original).

En segundo lugar, uno tiene libre albedrío, de modo que puede cambiar el pasado pero dentro de unos límites. A su libre albedrío no se le permite crear una paradoja temporal. Cada vez que uno trata de matar a sus padres antes de haber nacido, una fuerza misteriosa le impide apretar el gatillo. Esta posición ha sido defendida por el físico ruso Igor Novikov. (Él argumenta que hay una ley que nos impide caminar por el techo, aunque nos gustara hacerlo. Asimismo, podría haber una ley que nos impida matar a nuestros padres antes de que hayamos nacido. Alguna ley extraña nos impide apretar el gatillo).

En tercer lugar, el universo se desdobla en dos universos. En una línea temporal las personas a quienes uno mató son parecidas a sus padres, pero son diferentes porque uno está ahora en un universo paralelo. Esta última posibilidad parece consistente con la teoría cuántica, como expondré cuando hable del multiverso.

La segunda posibilidad se explora en la película Terminator 3, en la que Arnold Schwarzenegger representa a un robot del futuro en donde han tomado el poder máquinas asesinas. Los pocos humanos que quedan, cazados como animales por las máquinas, son guiados por un gran líder a quien las máquinas han sido incapaces de matar. Frustradas, las máquinas envían una serie de robots asesinos al pasado, a un tiempo anterior al nacimiento del gran líder, para que maten a su madre. Pero después de batallas épicas, la civilización humana es destruida al final de la película, como estaba escrito.

Regreso al futuro exploraba la tercera posibilidad. El doctor Brown inventa un automóvil DeLorean impulsado por plutonio, en realidad una máquina del tiempo para viajar al pasado. Michael J. Fox (Marty McFly) entra en la máquina, vuelve atrás y conoce a su madre quinceañera, que se enamora de él. Esto plantea un problema peliagudo. Si la madre quinceañera de Marty McFly rechaza a su futuro padre, entonces ellos nunca se habrían casado, y el personaje de Michael J. Fox nunca habría nacido.

El problema es aclarado por el doctor Brown. Va a la pizarra y traza una línea horizontal, que representa la línea de tiempo de nuestro universo. Luego traza una segunda línea que se ramifica de la primera y que representa un universo paralelo que se abre cuando uno cambia el pasado. Así, cada vez que uno vuelve atrás en el río del tiempo, el río se bifurca en dos, y una línea del tiempo se convierte en dos líneas del tiempo, o lo que se llama la aproximación de los «muchos mundos», que expondré en el capítulo siguiente.

Esto significa que pueden resolverse todas las paradojas del viaje en el tiempo. Si uno ha matado a sus padres antes de haber nacido, significa solo que ha matado a unas personas genéticamente idénticas a sus padres, con los mismos recuerdos y personalidades, pero que no son sus verdaderos padres.

La idea de los «muchos mundos» resuelve al menos un problema importante con el viaje en el tiempo. Para un físico, la principal crítica al viaje en el tiempo (aparte de encontrar energía negativa) es que los efectos de la radiación se acumularían hasta que o bien uno moriría en el momento de entrar en la máquina, o bien el agujero de gusano colapsaría sobre uno. Los efectos de la radiación se acumularían porque cualquier radiación que entrara en el portal del tiempo sería enviada al pasado, donde eventualmente vagaría por el universo hasta llegar al presente, y entonces caería de nuevo en el agujero de gusano. Puesto que la radiación puede entrar en la boca del agujero de gusano un número infinito de veces, la radiación dentro del agujero de gusano puede llegar a ser increíblemente intensa —lo bastante intensa para matarle—. Pero la interpretación de los «muchos mundos» resuelve este problema. Si la radiación entra en la máquina del tiempo y es enviada al pasado, entonces entra en un nuevo universo; no puede reentrar en la máquina del tiempo otra vez, y otra, y otra. Esto significa simplemente que hay un número infinito de universos, uno por cada ciclo, y cada ciclo solo contiene un fotón de radiación, no una cantidad infinita de radiación.

El debate se clarificó en 1997, cuando tres físicos demostraron finalmente que el programa de Hawking de excluir el viaje en el tiempo era intrínsecamente fallido. Bernard Kay, Marek Radzikowsi y Robert Wald demostraron que el viaje en el tiempo es compatible con todas las leyes de la física conocidas, excepto en un lugar. Cuando se viaja en el tiempo, todos los problemas potenciales se concentran en el horizonte de sucesos (localizado cerca de la entrada del agujero de gusano). Pero precisamente en el horizonte es donde esperamos que la teoría de Einstein deje de ser válida y dominen los efectos cuánticos. El problema es que cada vez que tratamos de calcular los efectos de la radiación cuando entramos en una máquina del tiempo, tenemos que utilizar una teoría que combine la teoría de la relatividad general de Einstein con la teoría cuántica de la radiación. Pero cada vez que ingenuamente intentamos casar estas dos teorías, la teoría resultante no tiene sentido: da una serie de respuestas infinitas que son absurdas.

Aquí es donde impera una teoría del todo. Todos los problemas de viajar a través de un agujero de gusano que han atormentado a los físicos (por ejemplo, la estabilidad del agujero de gusano, la radiación que podría matar, el cierre del agujero de gusano cuando uno entrara) se concentran en el horizonte de sucesos, precisamente donde la teoría de Einstein no tiene sentido.

Así pues, la clave para entender el viaje en el tiempo es entender la física del horizonte de sucesos, y solo una teoría del todo puede explicarlo. Esta es la razón de que la mayoría de los físicos estén hoy de acuerdo en que una manera de zanjar la cuestión del viaje en el tiempo es dar con una teoría completa de la gravedad y el espacio-tiempo.

Una teoría del todo unificaría las cuatro fuerzas del universo y nos permitiría calcular lo que sucedería cuando entráramos en una máquina del tiempo. Solo una teoría del todo podría calcular con éxito todos los efectos de la radiación creados por un agujero de gusano y zanjar de manera definitiva la cuestión de cuán estables serían los agujeros de gusano cuando entráramos en una máquina del tiempo. E incluso entonces, quizá tendríamos que esperar siglos o incluso más para construir realmente una máquina para poner a prueba estas teorías.

Puesto que las leyes del viaje en el tiempo están tan íntimamente relacionadas con la física de los agujeros de gusano, parece que el viaje en el tiempo debe clasificarse como una imposibilidad de clase II.