4.1. VOLUNTARIOS POR OBAMA: EL DINERO REDUCE LA SATISFACCIÓN
Sin duda, una de las noches más especiales que he vivido en Estados Unidos fue la del 4 de noviembre de 2008, celebrando la victoria de Barack Obama frente a McCain en un lugar tan representativo históricamente como el cruce de la calle U y la Catorce en Washington D.C., el epicentro de los violentos disturbios tras el asesinato de Martin Luther King en 1968. Además, tuve la enorme suerte de poder seguir esa emocionante experiencia acompañado de un grupo de voluntarios de DC for Obama, muchos de los cuales habían invertido gran cantidad de tiempo y esfuerzo sin ningún tipo de recompensa económica a cambio.
La pregunta provocadora que planteo es: si la tarea de esos voluntarios hubiera sido remunerada, ¿su dedicación habría sido más intensa o se habría alistado un número mayor de personas?
Si reflexionamos utilizando parámetros exclusivamente «racionales», la respuesta debería ser sí todo aquel convencidísimo de querer luchar de manera activa por Obama lo hará igualmente, tanto si cobra como si no. Pero, además, quizá añadiendo un pequeño incentivo económico se les sumarán algunos indecisos. En cualquier caso, cobrar podría ser también una justificación añadida para trabajar con más dedicación.
Éste sería el razonamiento utilizado si los responsables de decidir pagar o no a los voluntarios hubieran sido economistas de la corriente más neoclásica, la que asume que los humanos somos Homo economicus que calculamos «racionalmente» y de manera egoísta los beneficios y costes que derivan de nuestras decisiones. Probablemente porque ellos sí utilizarían un planteamiento analítico a la hora de valorar «objetivamente» cuántos voluntarios necesitarían, cuál sería el gasto de pagarles a todos, si valdría la pena o no.
En cambio, si le preguntamos a un psicólogo experto en el campo de la behavioral economics, «economía conductual», nos advertirá que a veces las emociones juegan un papel mucho más importante que la razón en la toma de decisiones, y que la idea del Homo economicus construida por los economistas neoclásicos es una falacia. No somos maximizadores racionales de beneficios. Introducir un premio económico puede reducir la satisfacción que sientes por tu entrega, ya que «inconscientemente» compite con los motivos intrínsecos por los que participas como voluntario. De hecho, durante un estudio realizado en Suiza observaron que los voluntarios que colaboraban sin cobrar en un proyecto determinado dedicaron más horas por semana que aquéllos a los que se les daba una pequeña cantidad de dinero.
El efecto contrario también existe: en una guardería de Israel estaban preocupados porque varios padres solían llegar tarde a recoger a sus hijos, y decidieron poner pequeñas multas simbólicas pensando que eso disminuiría los retrasos. Sorprendentemente, no sólo más padres empezaron a llegar tarde, sino que además se demoraban más tiempo. El dinero compensaba su sentimiento de culpa por tener a sus hijos esperándolos.
Porque, señores, volviendo al asunto del voluntariado, aunque algunos modelos económicos anticuados no lo predigan, la satisfacción por el altruismo sincero existe de verdad. Y si alguno todavía no se lo cree, que piense en la siguiente situación: llamas a un buen amigo para invitarle a él y a su pareja a cenar en vuestra casa, simplemente porque hace tiempo que no les ves y te apetece charlar con ellos. Acepta encantado, pero dice que te pagará 15 euros por la comida. ¿Los cogerías? ¡Claro que no!, a pesar de que «racionalmente» sí tenga sentido. Y en caso de que insistiera hasta el extremo de no poder rechazarlo porque «él se sentiría mejor así.», ¿pondrías más esmero en la elaboración de la cena? No, incluso quizá aumentaría la desidia. Podéis pensar que no es lo mismo, pero os aseguro que para los voluntarios por Obama con los que compartí la victoria demócrata no era tan diferente.
4.2. VACUNAS CONTRA LA ADICCIÓN
Eso sí que nunca me lo hubiera imaginado. ¿Una vacuna para la adicción al tabaco o la cocaína? ¿Cómo se entiende eso? Las vacunas actúan contra agentes infecciosos, ¿no? Como el virus del sarampión o la gripe, las bacterias que provocan la meningitis. La verdad es que cuando oí a Nora Volkow, directora del Instituto Nacional de Drogas de Estados Unidos, hablar de sus investigaciones encaminadas a conseguir vacunas contra la adicción, no me encajaba de ninguna manera. No lograba imaginarme, ni de cerca, un posible mecanismo que explicara el funcionamiento de una vacuna contra el tabaco. El primer escollo que tuve que superar para comprenderlo fue asumir que el tipo de vacunas contra agentes infecciosos que yo tenía en mente eran las convencionales, las que pones unos virus inactivos de gripe para que estimulen tu sistema inmunológico y cuando lleguen virus activos ya tengas anticuerpos específicos contra ellos esperándoles. Estas vacunas son las profilácticas, las que actúan antes de tener la enfermedad. Pero hace tiempo que se está investigando en un nuevo tipo de vacunas terapéuticas que se administrarían durante la enfermedad. La idea básica es reforzar el sistema inmunológico, estimularlo para que actúe de manera más eficiente y dirigida contra algo que en principio no actuaría. Se habla de vacunas terapéuticas para el cáncer, frente a la diabetes, o incluso contra drogas como la cocaína.
En el fondo, el concepto es sencillo: inyectas en el torrente sanguíneo moléculas de cocaína unidas a proteínas bacterianas. Esto provocará una respuesta inmune en tu cuerpo, que generará anticuerpos específicos contra ese nuevo invasor. Tú habrás diseñado el complejo de manera que las proteínas bacterianas sean el compuesto antigénico que estimule la respuesta inmune, pero los anticuerpos que se formen reconozcan a la molécula de cocaína como el lugar donde engancharse.
Entonces, si algún día consumes cocaína, los anticuerpos se acoplarán a ella impidiendo que supere la barrera hematoencefálica y llegue al cerebro. Consecuencia: no notarás los efectos de la cocaína y perderá su poder adictivo.
Maticemos: de ninguna manera se trata de vacunar a todo el mundo, sino sólo a adictos que estén en fase de rehabilitación y convencidos de intentar dejarlo. Uno de los grandes problemas durante la recuperación de los drogodependientes es que tarde o temprano llega ese día fatídico, ese momento de debilidad, o persona que les tienta, y recaen. Pero ¿qué ocurriría si en ese momento transitorio de debilidad no notaran los efectos de la droga? Pues que en principio no volverían a engancharse y podrían continuar con su terapia psicológica. Eso es lo que persigue la vacunación contra la cocaína: inmunizar contra la droga a adictos, de manera que no recaigan debido a un consumo accidental ante unas circunstancias desafortunadas.
La vacuna no quita las ganas de consumir drogas en un primer momento; eso se trata con otras terapias conductuales o farmacológicas. Lo que hace es simplemente reducir los efectos placenteros de su consumo, para quitar la motivación física de volver a tomarla.
Debo reconocer que en el fondo, cuando oí a Nora Volkow hablar de estas investigaciones, más allá del valor futuro que podían tener las vacunas contra la adicción, lo que me dejó impactado fue el propio concepto. No ocurre cada día que algo inquiete tu mente y, cuando esto pasa, quieres profundizar un poco más. Por eso, trabajando en los Institutos Nacionales de la Salud (NIH), visité a uno de los expertos en este campo: Frank Vocci.
Segunda sorpresa: cuando tras pedirle que me explicara bien los mecanismos le pregunté si estaban haciendo estudios con ratitas, me respondió: «No, no, el tema está muy avanzado. Ya estamos haciendo pruebas con humanos. La primera vacuna contra la adicción al tabaco estará disponible en un plazo de tres o cuatro años. Y para la cocaína, quizá incluso antes». No terminé de creérmelo, pero sí vi que no era una vaga idea en fase de exploración. Ya llevaban años haciendo experimentos de laboratorio con ratas y monos, en los que la vacuna reducía significativamente su dependencia a las drogas. Pero en esos momentos los ensayos clínicos con humanos ya habían empezado. Un estudio del investigador Thomas Kosten con 114 adictos a la cocaína demostró que quienes recibían la vacuna en lugar del placebo tenían el doble de posibilidades de desengancharse, y al cabo de unos meses iba a comenzar otro ensayo clínico con más de 300 adictos. «Si los resultados son positivos, puede significar la aprobación de la vacuna por la Administración de Alimentos y Fármacos», me dijo Frank Vocci.
Esto era frente a la cocaína, pero había otras en desarrollo contra la nicotina, como la llamada NicVax, que estaba preparando una empresa en colaboración con los NIH Frank Vocci aseguró que ya estaba demostrado que era segura y funcionaba. El reto científico era mejorarla, conseguir que la vacuna generara el mayor número de anticuerpos posible. Estaban calibrando el calendario de dosis, las cantidades, las características moleculares de las proteínas utilizadas, para estimular una mayor respuesta inmune y reducir al máximo la cantidad de nicotina que llegue al cerebro.
La cosa iba en serio, y más cuando a finales de 2009 tuve de nuevo la oportunidad de hablar con Nora Volkow en los NIH y preguntarle cómo avanzaba este tema. «Acabamos de publicar los resultados de un nuevo ensayo clínico, y de los pacientes que producían anticuerpos al nivel necesario para tener una respuesta terapéutica, el 30 por ciento dejaban de tomar cocaína, a diferencia del 10 por ciento de aquéllos que no fueron vacunados», contestó. Quién lo iba a decir, vacunas como un tratamiento complementario contra la adicción Aunque suscitan todo tipo de claroscuros, quizá algún día serán una herramienta inesperada para prevenir recaídas de ex adictos, ayudar a dejar las drogas, o incluso suministrarlas a poblaciones de riesgo antes de un posible consumo inicial. Posiblemente sea sólo cuestión de tiempo.
4.3. BENEFICIOS DE LAS PRUEBAS DE ARMAMENTO NUCLEAR
Las centenares de bombas atómicas que explotaron durante las pruebas de armamento nuclear en la década de 1950 dejaron «algo» en la atmósfera que los científicos están aprovechando para identificar cadáveres, estudiar la regeneración celular, detectar falsificaciones, o solucionar crímenes al más puro estilo CSI.
¿Os suena la técnica del carbono-14 utilizada para la datación de restos fósiles? El principio básico es el siguiente: la interacción de los rayos cósmicos con la atmósfera genera isótopos de carbono14 (átomos de C con dos neutrones de más en el núcleo). Éstos se combinan con el oxígeno para formar CO2, que se incorpora a las plantas mediante la fotosíntesis y a los animales cuando se las comen. Al final, la proporción de isótopos de C-14 respecto al carbono «normal» (C-12) en animales y plantas es la misma que existe en la atmósfera, una cantidad que se ha mantenido relativamente constante en los últimos miles de años. Pero al morir, el tejido orgánico deja de incorporar nuevos átomos de C-14. De hecho, empieza a perderlos porque el C-14 es un isótopo inestable y se va desintegrando poco a poco, a un ritmo que los científicos conocen perfectamente. Por lo tanto, si analizas la cantidad de C-14 restante en un determinado fósil, serás capaz de averiguar su edad aproximada. La sensibilidad de esta técnica sólo permite analizar muestras con una antigüedad máxima de 60.000 años, y que tengan como mínimo varios miles de años. Pero, como consecuencia de las más de 500 bombas atómicas que Estados Unidos y la Unión Soviética hicieron explotar en tierra firme durante sus pruebas nucleares en la década de 1950, los niveles de C-14 en la atmósfera se multiplicaron notablemente. Cuando en 1963 se prohibieron las pruebas nucleares en la atmósfera (continuaron haciéndose bajo tierra), los índices de C-14 empezaron a bajar de manera progresiva, encontrándose todavía ahora más altos de lo que estaban antes de las explosiones.
Hace un tiempo, unos científicos ingeniosos pensaron: si los animales y las plantas han incorporado diferentes cantidades de C-14 atmosférico durante los últimos sesenta años… ¿podríamos aprovechar esta variabilidad para algo? Vaya si lo están aprovechando.
¿Quién murió antes?
En 1992 la policía austríaca descubrió los cadáveres de dos hermanas que llevaban años fallecidas en su casa sin que nadie se hubiera enterado. Por motivos económicos y cuantiosos seguros de vida, había mucho interés en saber quién de ellas había muerto antes. Los investigadores Walter Kutschera y Eva Maria Wild tuvieron una idea: si pudieran medir la cantidad de C-14 presente en algún material orgánico de los que se renuevan constantemente y compararlo con los niveles históricos de C-14 en la atmósfera, quizá podrían averiguar el momento de su defunción. Funcionó. Kutschera y Wild concluyeron que una hermana había fallecido en 1988, y la otra en 1989.
¿Se renuevan las neuronas?
En 2001 la joven neurocientífica australiana Kirsty Spalding viajó a Suecia para investigar acerca de la formación de nuevas neuronas. Al poco tiempo su jefe se enteró del caso de las hermana austríacas y le propuso la siguiente línea de investigación: para saber si en una determinada zona del cerebro nacen nuevas neuronas o no, podemos medir la cantidad de C-14 que tienen. Si no se regeneran, habrá la misma proporción que en el momento del nacimiento, y si se forman nuevas neuronas deberíamos encontrar niveles frentes. Kirsty pasó una temporada visitando mataderos hasta poner a punto la técnica con cerebros de caballo (necesitaba animales que vivieran bastante tiempo y tuvieran cerebros grandes). Cuando tuvo el procedimiento controlado, lo aplicó en humanos y demostró que en determinas zonas del neocórtex y del área visual no nacían nuevas neuronas en edad adulta, algo que resultaba muy difícil de averiguar con otras metodologías. Actualmente, Kirsty Spalding es una de las principales expertas en esta metodología que se sirve del C-14 originado durante las explosiones atómicas.
Identificación tras la tragedia del tsunami
El devastador tsunami de 2004 en el océano Índico mató a más de 200.000 personas, entre ellas unos 500 turistas suecos. Según el médico forense Henrik Druid, algunos de los cadáveres estaban en tal estado que no podía distinguirse siquiera si se trataba de un adolescente o de una persona mayor. La edad es un dato importantísimo en la identificación de los cuerpos, y para intentar averiguarla Henrik Druid recurrió a las técnica de C-14 que Spalding había desarrollado en el Instituto Karolinska de Estocolmo. La tarea parecía sencilla: el esmalte de los dientes es permanente, por lo tanto averiguando la cantidad de C-14 que contenían y comparándola con los datos históricos de C-14 en la atmósfera se podía averiguar el momento en que había salido cada pieza. Se aplicó la técnica a los cuerpos todavía no identificados de seis víctimas del tsunami y se predijo su edad con un margen de error de un año.
Las policías sueca y canadiense están interesadas en esta técnica como herramienta de investigación criminal Henrik Druid asegura que muy pronto oiremos hablar de casos resueltos con esta metodología. Pero el rango de aplicaciones va mucho más lejos. Un grupo australiano realizó un estudio en el que logró identificar la añada de unos vinos muy preciados embotellados entre 1958 y 1997, y científicos de los NIH la utilizan para estudiar la regeneración de las células beta pancreáticas. En California hay un grupo de investigadores que pueden saber si el marfil confiscado por la policía a vendedores ilegales provine de elefantes cazados antes o después de la prohibición de su caza, y si un cuadro supuestamente anterior a 1940 se trata en realidad de una falsificación moderna. Si el lienzo tiene niveles elevados de C-14, algo falla.
En la vertiente más científica, Spalding y su jefe Jonas Frin han desarrollado un ambicioso programa para investigar a fondo la regeneración celular en frentes tejidos humanos. Pero en ciertos experimentos les tocará apresurarse un poco. Se calcula que en 2020 los niveles atmosféricos de C-14 volverán a ser los mismos que había antes de las pruebas con armamento nuclear.
4.4 ELECTRICIDAD SIN CABLES
El investigador del MIT Marin Sojacic cuenta que una noche, cuando por enésima vez le despertó el pitido del móvil anunciando «batería baja», pensó: «¿No podría encontrar algún principio físico para lograr que el móvil se cargara solo en cuanto llegue a casa, sin necesidad de estar pendiente de enchufarlo?». Así empezó su cruzada particular hacia la electricidad sin cables.
Wireless electricity
¿Os imagináis que vuestro portátil funcionara ininterrumpidamente a través de una red eléctrica wireless,? ¿o que algún mecanismo transmitiera electricidad a distancia a tu televisor, y lo pudieras poner donde quisieras sin necesidad de estar físicamente conectado a la corriente? Sí, sí que os lo imagináis. No es una idea tan extraña. De hecho, cuesta pensar que ningún ingeniero haya conseguido todavía algo que sería tan práctico. Las bases teóricas de cómo conseguirlo se conocen desde hace muchísimo tiempo, y el inventor Nikola Tesla ya lo intentó a finales del siglo XIX. Pero superada la primera década del siglo XXI, continuamos dependiendo de los cables para transmitir electricidad. Por el momento.
Algunas empresas ya han construido pequeños aparatos que utilizan ondas de radio o láser para transmitir electricidad a muy corta distancia, pero el grupo de Sojacic ha utilizado un nuevo método para conseguir algo más espectacular: encender una bombilla de 60 vatios con un dispositivo situado a dos metros de distancia. Un logro muy considerable que ya ha generado algunas patentes y llamado la atención de varias compañías. El aparato que me mostró André Kurs —el autor del trabajo publicado en Science junto con Sojacic— parecía francamente rudimentario: dos espirales de medio metro transmitiéndose campos magnéticos entre ellas.
Pero, al observar cómo terminaba encendiéndose una bombilla, me dio la sensación de estar percibiendo los estadios preliminares de una nueva tecnología que sin duda será cotidiana en el futuro. Muchas veces, cuando los científicos te presentan sus investigaciones aparece en tu mente un «quién sabe.». Pero este caso me incita a creer que dentro de unos años tendremos a nuestro alcance dispositivos que transmitan electricidad por el aire en industrias, espacios públicos, o incluso hogares.
El mecanismo: resonancia magnética
La clave del trabajo de André Kurs y Marin Sojacic es combinar el hecho de que los campos magnéticos inducen electricidad con un fenómeno físico llamado resonancia: todos los objetos tienen una frecuencia de resonancia determinada y, si consigues hacerlos vibrar a esa frecuencia específica, la energía de la vibración se amplifica considerablemente. Es lo que ocurre cuando un grito muy agudo consigue romper una copa, o en las famosas imágenes de puentes oscilando de manera inverosímil Éstos eran dos ejemplos de resonancia mecánica, pero los mismos principios se pueden aplicar al magnetismo. Se trata de construir un dispositivo que genere un campo magnético, enviarlo por el aire, y hacer que sólo resuene en el aparato receptor.
Un esquema: a un enchufe convencional le conectas un circuito (A), que transforma la corriente estándar de 60 hertzios a 10 megahertzios. Entonces la transmite a una bobina (B) que emite un campo magnético de esta misma frecuencia. A dos metros, otra bobina (C) de exactamente las mismas dimensiones recibe el campo magnético, resuena a la misma frecuencia, y por un proceso llamado inducción magnética atrapa la energía del campo e induce una corriente eléctrica que hace iluminar la bombilla (D).
André Kurs me dijo que todavía falta recorrer mucha investigación básica hasta que tenga sentido implantar esto en casas y espacios públicos, pero se mostraba absolutamente convencido de su viabilidad futura. Las primeras aplicaciones serán industriales, médicas, en sitios o circunstancias en las que resultaría muy beneficioso prescindir de cables, o incluso de baterías. Aspectos a mejorar son la distancia de alcance y la eficiencia. Es un logro que este mecanismo sólo pierda el 50 por ciento de la energía que invierte, pero con la situación energética actual únicamente puede ser coherente implantarlo a gran escala si resulta muchísimo más eficiente. Algunas voces también han mostrado cierta preocupación acerca de posibles efectos sobre la salud, y la sensación de estar dentro de un microondas. Aunque a priori no hay motivos para preocuparse, sin duda deben ser investigados.
Nos sorprendimos hace algunos años con la llegada masiva de unos teléfonos que no requerían cables. Y hace menos, cuando incluso la información por internet viajaba de manera inalámbrica. Quién sabe si algún día la electricidad emulará al mundo wireless, y dejaremos de tener esos líos de cables por debajo de los escritorios, no buscaremos desesperadamente enchufes en conferencias o lugares públicos para conectar el portátil, en nuestra casa pondremos lámparas y aparatos eléctricos donde queramos, nos olvidaremos definitivamente de los dichosos alargadores, o nunca se terminará la batería del móvil.
4.5. ENCENDER Y APAGAR NEURONAS CON LA LUZ
Es muy arriesgado preguntarle a un científico que asiste a un congreso de neurociencia: «¿Qué es lo último?», porque te puede responder: «¡Los canales de rodopsina! Pueden significar una revolución en el estudio de la neurociencia. ¡Debes hablar de ellos en el blog!». ¡Uff! Con qué narices me atrevo yo a pedir a los lectores que presten atención a algo llamado canales de rodopsina, sobre todo cuando me confesaron que Vicky decía que era muy nuevo y sería noticia en el futuro.
Pero bueno, decidí investigar, y enseguida encontré la excusa ideal para presentarlos en sociedad sin reparo alguno: un vídeo espectacular que colgué en YouTube con el nombre «Mouse chr2». Si entráis en la página, veréis desde arriba un ratón oscuro tranquilito dentro de una caja blanca. Su única peculiaridad es que tiene un agujero en el cráneo y de él sobresale una bombillita. No parece molestarle, pero a los pocos segundos la bombilla se enciende con un tono azul y el ratón empieza a correr en círculos como un loco. Luego la bombilla se apaga, y él vuelve a quedarse quieto. Si miras otro vídeo llamado «Mouse chr2 control», observarás un nuevo ratón con la misma bombilla insertada en su cabeza, pero que no reacciona cuando ésta ilumina su corteza cerebral.
La diferencia entre ambos es que a la primera, además de la bombilla, los científicos han insertado algo más en las neuronas del córtex motor derecho del ratón
Permitidme que e xplique la historia desde el principio, porque es acoj… sorprendente:
En los años ochenta unos investigadores descubrieron que en la membrana celular de ciertas algas verdes había unos canales iónicos que, cuando recibían luz azul, se activaban y permitían la entrada de iones cargados positivamente a la célula. Bueno, pues muy bien Qué alegría, ¿no?
Pues resulta que hace muy poco otros científicos pensaron que si las neuronas tuvieran estos canales ChR2 de las algas verdes, como las señales eléctricas que recorren las neuronas se forman precisamente por la entrada y salida de iones positivos, quizá podrían activar células neuronales a voluntad utilizando sólo luz azul Dicho y hecho. En 2005 Ed Boyden logró trasplantar el canal ChR2 a cultivos celulares de neuronas, y estimularlas a distancia con luz a la frecuencia específica del color azul. Dos años después, Kart Deisseroth, de la Universidad de Stanford, creó el ratón transgénico del vídeo que os describía. Deisseroth le introdujo el gen que codificaba la proteína ChR2, y ahora es el único mamífero que tiene canales de rodopsina en las membranas de sus neuronas motoras. Cuando estas neuronas del córtex derecho reciben luz azul, los canales se abren, dejan entrar iones positivos, se activan de repente y el ratón empieza a girar atolondrado hacia la izquierda. Si se apaga la luz, sus neuronas vuelven al reposo y el animal se detiene.
Esperad, que todavía hay más. Y merece la pena, os lo aseguro. A principios de la década de 1990 otros científicos habían descubierto un microorganismo (la arquea Natronomonas pharaonis) con un canal iónico que hacía justo lo contrario: al recibir luz amarilla, permitía la entrada de iones negativos de cloro y detenía el potencial eléctrico de la membrana. Ed Boyden pensó de vuelta que este canal NpHR podía ser utilizado para desactivar neuronas y, a principios de 2007, en su laboratorio del MIT, esta vez creó unas neuronas que silenciaban cuando recibían luz amarilla. Poco después Kart Deisseroth y Feng Zhang anunciaron que habían inyectado genes en el cerebro de un gusano C. elegans para que expresara el canal NpHR en sus neuronas motoras. Resultado: cuando iluminaban al gusano con luz amarilla, los canales dejaban entrar iones negativos en las neuronas, disminuía el voltaje, las neuronas se desactivaban y el gusano detenía su movimiento. En el vídeo «C. elegans NpHR yellow light» podréis ver un gusano alternando movimientos intensos con paradas bruscas al aparecer una luz amarilla. Nuevo éxito y anuncio de revolución en la neurociencia. ¿Por qué? Por las radicales posibilidades que esto implica.
Si os estáis preguntando para qué sirven estos canales de rodopsina y NpHR, hay dos respuestas. Una es para investigar. La posibilidad de activar y desactivar grupos específicos de neuronas a voluntad es una nueva y poderosísima herramienta para entender el funcionamiento de los circuitos cerebrales implicados en una tarea, y cómo su actividad se relaciona con conductas o capacidades determinadas. Es decir, puedes activar o desactivar un conjunto de neuronas específicas, y ver qué ocurre. En un artículo de Nature estos avances se definieron como «lo mejor que le ha pasado a la neurociencia en mucho tiempo». La segunda respuesta, y es en lo que el grupo de neuroingeniería de Ed Boyden está trabajando, recae en las aplicaciones clínicas de esta metodología: silenciar neuronas que están hiperactivadas como ocurre en el Parkinson y la epilepsia. Actualmente, para tratar estas enfermedades se utilizan electrodos cuya acción es poco específica. Sería ideal sustituirlos por implantes ópticos que hicieran lo mismo con luz amarilla de manera más localizada.
Debo confesar que en el congreso de neurociencia me explicaron que la verdadera exaltación colectiva se había producido el año anterior, ya que los resultados más espectaculares se realizaron durante 2007. Pero, con la perspectiva que ofrece el paso del tiempo, también me dijeron que las expectativas no habían disminuido, sino todo lo contrario. De repente, muchísimos grupos se han puesto a trabajar con esta novedosa tecnología. Sin duda, la posibilidad de activar y desactivar células nerviosas concretas permitirá grandes avances más allá incluso de la neurociencia, y todo apunta a que algún Nobel recaerá en el futuro en las personas que han abierto este campo de investigación.
El embarazoso «¿Y esto para qué sirve»?
El «¿para qué?» es una pregunta que suele incomodar a los científicos que hacen investigación básica. Unas veces porque su trabajo es tan complejo que se sienten incapaces de explicarlo, otras porque saben que sólo un pequeño porcentaje de las hipótesis que barajan fructificarán y no quieren lanzar falsas expectativas, y hay ocasiones en que ni ellos mismos saben qué aplicaciones prácticas pueden dar de sí sus experimentos. Investigan para conocer y comprender; ése es el primer paso, y ya les parece suficiente. Que a ti también te lo parezca. A partir de ahora, cuando alguien me diga que está investigando sobre los canales iónicos de un microorganismo de nombre irrepetible, o estudiando cómo reaccionan ciertas algas verdes a la luz azul, nunca más me atreveré a poner en duda para qué sirve la ciencia básica.