La historia de la Tierra ha presenciado cambios climáticos mucho más extremos del que podamos estar sufriendo ahora. Hace 700 millones de años el planeta estaba cubierto de hielo y nieve casi por completo. Unos 50 millones de años atrás, sin embargo, un calentamiento extremo aumentó drásticamente la temperatura del mar, derritió los polos, y provocó la extinción de un elevadísimo número de especies animales. En los últimos 3 millones de años los cambios en el clima no han sido tan abruptos, pero hemos continuado alternando temperaturas suaves como la actual con períodos de rápido calentamiento y épocas glaciales durante las cuales los continentes del hemisferio norte estaban cubiertos de enormes capas de hielo. La explicación más aceptada a estas últimas glaciaciones son ligeras oscilaciones periódicas en la orientación del eje de la Tierra que afectan a la distribución de energía que nos llega del Sol: la tierra firme, el hielo de las regiones polares y el agua no absorben ni reflejan de la misma manera la radiación solar. Y como la distribución de estos tres elementos es considerablemente diferente en ambos hemisferios, la modificación del eje de rotación terrestre hace que cambie la cantidad de energía solar que se queda en la Tierra y se encadenen una serie de sucesos que desembocan en una época glacial. De hecho, si sólo tuviéramos en cuenta esta geología básica, deberíamos haber llegado a escenarios muchísimo más extremos. A medida que la nieve y el hielo se fueron acumulando reflejaban cada vez mayor cantidad de luz solar de vuelta al espacio en un proceso de retroalimentación positiva (una perturbación genera efectos que incrementan la perturbación en el mismo sentido), debiendo haber continuado enfriando poco a poco el planeta hasta convertirlo en una gran bola de nieve, cuyo estado templado sólo podría haberse recuperado por grandes explosiones volcánicas u otros incidentes externos. De la misma manera, en períodos en los que el cambio del eje de rotación favoreció el aumento rápido de temperaturas, los procesos de retroalimentación positiva provocaron la acumulación de vapor de agua —el gas de efecto invernadero más poderoso que existe—, generando una espiral de calentamiento que debería haber convertido el planeta en un lugar increíblemente cálido, evaporándose incluso gran parte de los océanos.
Si estas situaciones no se han producido en la historia de la Tierra es gracias a la existencia de vida. Como popularizó en la década de 1960 la hipótesis de Gaia de James Lovelock, la vida ha atenuado estos cambios por medio de unos sistemas de retroalimentación negativa que han mantenido el planeta en unas condiciones favorables para sus habitantes, y la atmósfera en un extrañísimo equilibrio de nitrógeno, oxígeno y trazas de otros gases, como vapor de agua, metano, o dióxido de carbono. Este dióxido de carbono es justamente uno de los sistemas de retroalimentación que moldea el clima terrestre y, gracias a una reconstrucción mucho más afinada de cómo ha ido cambiando el clima en tiempos recientes, los paleoclimatólogos han podido constatar su estrecha relación con las temperaturas del planeta.
Para ello, se han servido de unas pistas preciosas: burbujas de aire que quedaron atrapadas en los hielos de Groenlandia y la Antártida a medida que éstos se iban formando. Mediante la perforación de esas densas capas de hielo, los paleoclimatólogos están rescatando dichas burbujas prehistóricas y midiendo su composición química, detectando la presencia de metano, dióxido de carbono, y llegando incluso a poder evaluar la temperatura de la atmósfera gracias a la relación que ésta guarda con la proporción entre dos isótopos del oxígeno. Entre las conclusiones que han sacado, hay una fuera de cualquier duda: el vínculo entre CO2 y temperatura es estrechísimo. Cuando los científicos sobreponen gráficos de aumentos y descensos de la temperatura en los últimos 800.000 años con los de incremento y disminución de CO2, la relación es inequívoca. Ambos factores están íntimamente relacionados, detectándose subidas de temperatura cuando aumenta la concentración del gas, y viceversa. Otro dato les ha sorprendido y dejado preocupados: nunca en los últimos 800.000 años la concentración de CO2 en la atmósfera había superado las 300 ppm (partes por millón). Pero en las últimas cinco décadas, y a consecuencia de nuestra quema de combustibles fósiles, la cantidad de dióxido de carbono ha aumentado de manera vertiginosa hasta alcanzar las 380 ppm en 2008, y superar las 390 ppm en 2010. Nada indica que vaya a detenerse aquí, y si su relación con la temperatura global del planeta se mantiene intacta, nos puede llevar a un calentamiento global de una rapidez sin precedentes.
¿Cómo? Hablemos del efecto invernadero y del papel que el CO2 juega en el mismo. El Sol nos envía constantemente energía por medio de radiaciones electromagnéticas. La atmósfera intercepta y refleja de vuelta al espacio una pequeña parte de ellas (por ejemplo, gran parte de la radiación ultravioleta gracias al ozono de la estratosfera), pero es transparente a la mayoría de las longitudes de onda que le llegan Cuando la radiación solar incide sobre la superficie de la Tierra, es absorbida y la calienta. Ese calor es posteriormente re-irradiado desde la Tierra hacia el espacio, con longitudes de onda menos energéticas de las que llegaron El problema —o ventaja— es que la atmósfera ya no es transparente a estas ondas menos energéticas, y en lugar de escapar de la Tierra, son absorbidas por ciertos gases y reflejadas de nuevo hacia la superficie. De esta forma, el calor «no puede escapar», quedando atrapado entre la fina capa de gases que compone la atmósfera y la superficie terrestre, como si de un invernadero se tratara, aumentando por consiguiente la temperatura del planeta. El oxígeno y el nitrógeno no intervienen en absoluto en dicho proceso; los principales responsables de este efecto invernadero son el vapor de agua, el CO2 y el metano. El vapor de agua es el elemento más influyente en el calentamiento, pero por suerte su concentración se regula constantemente mediante lluvias y evaporación. Algo muy diferente ocurre con el metano y el CO2, cuya presencia en la atmósfera tarda muchísimo más tiempo en reciclarse (centenares de años en el caso del dióxido de carbono), y el aumento súbito de su concentración en la atmósfera —ya sea por fenómenos naturales como la actividad volcánica o por emisiones antropocéntricas— tiene efectos durante un largo período de tiempo.
Sin duda, no es un fenómeno tan simple como el que acabo de describir, pero la física básica detrás del efecto invernadero está sobradamente comprendida y modelizada. Si cambiáramos la concentración de un gas manteniendo el resto del sistema intacto, los climatólogos podrían predecir con bastante acierto cómo ello afectaría a la temperatura del planeta. La controversia llega porque, evidentemente, los cambios nunca llegan solos, y es harto complicado discernir cómo se relacionan todos los elementos que forman parte de un sistema tan complejo como el clima terrestre. A pesar de eso, y de que es imposible predecir el clima atmosférico a cortos períodos de tiempo debido al caos inherente en el sistema, los científicos sí pueden tener bajo control algunos parámetros básicos. Por ejemplo, es muy fácil aventurar que en Madrid pasarás más frío en invierno que en verano debido a la inclinación del eje terrestre. También han logrado conocer cómo los ciclos regulares de actividad solar afectan a la temperatura del planeta. Y hasta cierto punto saben cómo calcular el efecto de las grandes erupciones volcánicas u otros fenómenos de origen natural Los climatólogos llevan varias décadas recogiendo datos y monitoreando todos estos factores. Las mediciones detalladas de datos meteorológicos no empezaron hasta el siglo XIX, pero utilizando anillos de árboles, acumulaciones de polen, o restos en sedimentos oceánicos, han sido capaces de remontarse mucho más atrás en el tiempo y conocer de manera muy precisa las fluctuaciones de la temperatura. Y cuando plasman todos estos datos en gráficos vuelven a encontrar un hecho sorprendente: aunque nosotros lo percibamos como nimio, el aumento de la temperatura en las últimas décadas se está produciendo a un ritmo sin precedentes. Nunca antes la temperatura había aumentado de manera tan rápida sin una causa natural que lo explicara. ¿Sin una causa natural que lo explicara? Aquí es donde aparecen en escena los controvertidos modelos climáticos, monumentales expresiones matemáticas capaces de simular la evolución climática que, al contrario de lo que argumentan algunos de sus críticos, sí pueden ser testados con relativa facilidad. La clave está en utilizar esos registros tan detallados de los últimos 150 años para poner a prueba los modelos e ir ajustándolos hasta que sean capaces de describir la evolución climática de este último siglo y medio. Una vez conseguido esto, se convierten en valiosas herramientas capaces de predecir el clima en el futuro. Nadie les presupone una perfección absoluta, pero el grado de afinamiento que han conseguido los modelos informáticos es realmente alto. Incluyen flujos de la atmósfera y los océanos, condensación y precipitación de agua, ciclos solares, y un gran número de otros factores. Existen decenas de estos modelos y, aunque difieren ligeramente, sí son consistentes en algunas conclusiones. Una de ellas es fundamental: cuando intentan predecir cómo habría evolucionado la temperatura de la Tierra durante el siglo XX eliminando la actividad humana de la ecuación, logran reproducir muy bien los altibajos ocurridos durante las primeras décadas, pero a partir de la de 1950 no prevén ningún aumento constante de la temperatura media. Con subidas y bajadas, pero la tendencia sigue estable. Sin embargo, cuando introducen el aumento de CO2 atmosférico de los últimos sesenta años por la quema de combustibles fósiles, describen a la perfección el aumento de temperaturas que estamos viviendo. Es decir, los modelos ajustan todos los parámetros naturales, y sólo logran explicar el calentamiento reciente del planeta si incluyen el incremento antrópico reciente de CO2. Otro factor importante es que el CO2 producido por la quema de combustibles fósiles generados hace millones de años contiene una menor cantidad de isótopos 13C que el emitido por otras fuentes. Gracias a ello, los científicos han podido analizar la proporción de isótopos 13C/ 12C en el dióxido de carbono atmosférico y concluido con total seguridad que su aumento durante las últimas décadas es de origen antropocéntrico.
Sin duda se trata de un fenómeno complejo. Pero toda esta acumulación de datos —y muchos más— son los que dejan a la comunidad científica convencidísima de que el aumento de CO2 atmosférico que estamos provocando con nuestra quema de combustibles fósiles es el principal responsable del cambio climático que ya hemos empezado a sufrir.
¿Qué nos depara el futuro? Aquí la incertidumbre aumenta. Todos los modelos climáticos apuntan a un aumento de la temperatura media que conllevará graves disrupciones en el clima. Posiblemente, la realidad se encontrará entre las estimaciones más altas y las más bajas, pero todos los cálculos, sin excepción, apuntan al alza. Desertificación en ciertas zonas, inundaciones en otras, deshielo de los glaciares y los polos, acidificación de los océanos, pérdida de la biodiversidad y sobre todo huracanes más extremos y aumento del nivel del mar parecen consecuencias inevitables de tener un sistema tan sobrecargado energéticamente. La severidad de estos daños, y cómo minimizarlos, es lo que está en discusión dentro de la comunidad científica. Los más optimistas confían en la capacidad de autorregulación de la Tierra para atenuar esta tendencia. Pero otros temen que, como ha ocurrido en ocasiones anteriores, los efectos se retroalimenten hasta crear saltos repentinos de un punto de equilibrio a otro, con resultados catastróficos. Si bien el calentamiento global y su origen están aceptados por la mayoría de los investigadores, el debate sobre la gravedad de sus consecuencias ha llegado totalmente desvirtuado a la opinión pública.
Haciendo un poco de historia, en 1979 un trabajo de la Academia Nacional de Ciencias de Estados Unidos ya alertó de que doblar el CO2 atmosférico implicaría subidas de temperaturas globales muy peligrosas. Y en 1988 el climatólogo de la NASA James Hansen testificó ante el Congreso estadounidense, mostrando pruebas de que el cambio climático ya había empezado. Sus palabras fueron tomadas inicialmente con escepticismo incluso dentro de la comunidad científica. Pero a medida que las evidencias iban confirmando la realidad del cambio climático, empezó a gestarse un debate politizado y polarizado entre dos posiciones antagónicas: unas versiones catastrofistas que pronosticaban escenarios de futuro apocalípticos, y un movimiento escéptico transformado a negacionista que renegaba del cambio climático y buscaba constantemente flecos en una ciencia que no podía pretender ser exacta.
LAS TRES FASES DEL ESCEPTICISMO SOBRE EL CAMBIO CLIMÁTICO
John Holdren fue tremendamente crítico con el movimiento escéptico, al que acusó de haber estado sembrando dudas y ralentizando enormemente la toma de decisiones políticas. Por eso quiso analizar las tres etapas por las que solían pasar las actitudes escépticas hacia la idea básica de que el cambio climático está causado por la actividad humana:
1ª etapa: «Los científicos pueden estar equivocados». Innegable. Pero este escepticismo sólo tenía sentido diez años atrás, cuando todavía no había pruebas tan concluyentes de que las emisiones antropocéntricas de CO2 eran la causa principal del calentamiento del planeta. Con los datos acumulados en ese momento, la unanimidad científica era prácticamente absoluta.
2ª etapa: «Los científicos exageran». Este escepticismo era más actual Asumía que los científicos tenían razón en cuanto al origen del problema, pero cuestionaba que los efectos del calentamiento global fueran tan graves como ellos pensaban. La controversia no estaba cerrada, desde luego, pero dicho escepticismo se basaba en apreciaciones individuales y estudios minoritarios. La gran mayoría de las investigaciones aseguraban de forma cada vez más contundente que la situación era realmente preocupante.
3ª etapa: «Ya es demasiado tarde para hacer algo al respecto». John Holdren se sentía preocupado porque esta postura —más bien pesimista que escéptica— estaba cogiendo fuerza incluso entre algunos expertos. Los que la mantienen reconocen que las predicciones científicas son acertadas, pero opinan que llevamos demasiado tiempo maltratando el planeta como para poder solucionarlo, y muestran cierto derrotismo tras constatar durante años la indiferencia política a sus mensajes.
A pesar de todo este escepticismo paralizador, el mensaje de Holdren era positivo. Desde una posición a la que pocos tenían acceso, decía percibir un cambio de actitud más que considerable en la clase política de su propio país, y aseguraba que los gobiernos por fin estaban analizando muy en serio el problema. Terminó la charla mostrándose muy expectante ante qué iba a suceder la semana siguiente durante la conferencia sobre cambio climático que las Naciones Unidas había organizado en Bali, en diciembre de 2007.
Nada ocurrió en Bali Estaba claro que el gobierno de Estados Unidos, a un año de finalizar el mandato de George W Bush, no empezaría a adoptar compromisos para reducir las emisiones de CO2. Y ninguna otra región iba a enfrentarse en serio al asunto hasta que el país con mayor responsabilidad en la problemática del cambio climático diera un claro primer paso. Tocaba esperar unos meses a ver quién iba a ocupar la Casa Blanca. Mientras, yo seguiría mi andadura particular intentando comprender el fenómeno del cambio climático desde una perspectiva amplia, y manteniendo un espíritu abierto a resquicios en las explicaciones que tan claras parecía tener ese consenso científico.
Recuerdo las clases sobre física atmosférica del meteorólogo Kerry Emmanuel, o la asignatura global climate change: economics, science and policy del genial Henry Jacoby. También reuniones internas con periodistas especializados discutiendo sobre las consecuencias negativas de un catastrofismo desmesurado cuya intención era movilizar a una opinión pública apática, del problema de un periodismo que alimentaba un debate interminable donde en realidad no lo había, o de la costumbre de contraponer siempre los dos lados más radicales de la historia. Y todavía tengo grabado en la memoria el día en que, desde la confidencialidad que prometían nuestros seminarios, uno de los expertos más influyentes en materia de cambio climático nos confesó: «Yo soy de los que en su momento recomendó al presidente de Estados Unidos no respetar Kioto, porque los datos de que disponíamos entonces no eran concluyentes. Ahora son incontestables».
Yo escuchaba con una mente abierta y en absoluto crédula, pero reconozco que por muy mal que me sonara la palabra «consenso», mi escepticismo se iba diluyendo. Aun sabiendo que la verdad no era democrática, mantener dudas sobre la solidez científica del cambio climático lo hubiera transformado en negacionismo. Por eso, cuando alguien insinuó que debía ser más crítico con el consenso científico, sentí la necesidad de exponer en el blog cuál era mi posición intelectual al respecto.