Una de las discusiones más profundas en el mundo de la física entre teóricos, físicos de partículas, cosmólogos, cuánticos es, ¡¿por qué hay menos mujeres en esta profesión?! De los muchos e importantes factores que pueden influir en esta gran preocupación (para ellos), tuve la oportunidad de muestrear uno de los menos relevantes cuando Ivan Semeniijk nos envió un mail a los diez Knight Fellows del MIT preguntando si queríamos acompañarle a una cita privada con un físico teórico de Harvard interesantísimo, para hablar de gravedad cuántica, teoría de cuerdas, dimensiones ocultas, supersimetría y agujeros negros. Acudimos los cinco chicos, y ninguna de las cinco chicas. Estaba reflexionando sobre si —por algún motivo— ya desde un principio a las mujeres les interesaba menos la física teórica que a los hombres, hasta que de golpe, en cuanto empezó la conversación, el físico Nima Arkani-Hamed dijo: «A mí en realidad no me importan las partículas subatómicas con nombres estúpidos. Me da igual si algo está hecho de mesones K o Q. Eso de los ladrillos que constituyen la materia me deja indiferente, porque es como el alfabeto. A mí lo que realmente me interesa son las leyes que rigen la naturaleza. No es que las partículas no sean importantes, pero lo de verdad cautivador es la historia que nos cuentan, la novela. Eso es lo apasionante, y lo que queremos averiguar».
Su provocación nos introdujo de inmediato en la conversación, y no exagero al decir que viajamos por el mundo más inverosímil que os podáis imaginar.
Empecemos enfocando el problema fundamental que científicos como Nima Arkani-Hamed quieren resolver: qué diantre es algo tan corriente como la gravedad. Me explico. La relatividad general de Einstein define la gravedad como una deformación del espacio, y sus ecuaciones predicen con absoluta exactitud el movimiento de todos los cuerpos que puedas observar. Su precisión es impresionante. Sin embargo, cuando nos enfrentamos a un electrón orbitando dentro en un átomo, ahí la relatividad se pierde. Sus fórmulas matemáticas son incapaces de definir qué le ocurre a ese electrón, por qué no pierde energía y cómo es que no termina cayendo encima del núcleo. Estos enigmas, sin embargo, los explica con un grado de detalle exquisito la mecánica cuántica, quizá la teoría científica más corroborada que existe. Pero la física cuántica también sufre un grave problema: ni siquiera ha oído hablar de la fuerza de la gravedad. Como no la necesita para describir con exactitud cómo funciona el mundo subatómico, para ella es como si no existiera. Y claro, cuando utiliza sus ecuaciones cuánticas para intentar predecir algún sistema macroscópico que sí se ve afectado por la gravedad, falla estrepitosamente. Quizá estés pensando: «¿Dónde está el problema? Si tan bien funcionan por separado, utilizad relatividad o cuántica cuando os convenga y sanseacabó». De hecho, es lo que se está haciendo; pero los físicos son caprichosos y no soportan tener que describir el mundo con dos paquetes de ecuaciones tan diferentes e incompatibles, aunque sean tremendamente exitosas por separado. Quieren una única teoría del todo. Cierto que a nivel práctico no es un gran problema, porque cuando algo es tan pequeño que se rige por las leyes de la cuántica los efectos de la gravedad son despreciables, y a la inversa. Pero esto no resulta intelectualmente satisfactorio. Y, además, hay excepciones. La más conocida son los agujeros negros, el paradigma de sistema que muestra efectos cuánticos y gravitacionales al mismo tiempo.
En realidad, el concepto de agujero negro es muy sencillo: según la relatividad general, se trata de una concentración de masa tan grande que deforma el espacio de manera extrema y se traga todo lo que pasa por allí. No deja escapar nada, ni siquiera la luz Sin embargo, en 1974 Stephen Hawking estableció que, debido a efectos cuánticos y al principio de Metenrmación, en la parte más exterior de los agujeros negros (lo que llaman horizonte), deben tener una temperatura mínima y emitir al exterior cierto tipo de radiación. Los científicos, en efecto, saben que esto ocurre así, pero no logran explicarlo matemáticamente. Para entender y poder caracterizar por completo un agujero negro deberían combinar las ecuaciones de la teoría de la relatividad y las de la mecánica cuántica. Y no encajan de ninguna manera.
¿Solución al «problema»? Aceptar que ambas teorías son incompletas, no se pueden unir, y buscar unas ecuaciones radicalmente nuevas que describan al mismo tiempo el mundo subatómico y la gravedad; una teoría de la gravedad cuántica. Fácil, ¿no? Bueno, ése fue el sueño de Einstein, y es lo que los físicos llevan buscando desde hace décadas. Pero el primer candidato firme no llegó hasta la década de 1960: la teoría de cuerdas.
Esta controvertida teoría que para algunos es física, para muchos matemáticas y para otros una pérdida de tiempo, parte de la base de que las partículas elementales que ves como un punto en un espacio de tres dimensiones en realidad son minúsculas líneas que se extienden por otras dimensiones que no puedes percibir.
Imagínate que dejas un zapato encima de la acera, te alejas 200 metros de él, y al primero que pase por tu lado le preguntas: «¿Qué es ese bulto que ves allí?». Te dirá que no lo sabe, que lo único que ve es un punto oscuro. Os aproximáis un poco y le vuelves a preguntar, pero continúa viendo algo indescifrable. Sólo a medida que se acerque lo suficiente conseguirá finalmente distinguir la forma del zapato. Algo parecido ocurre cuando observamos partículas subatómicas como neutrones o protones. Para nosotros son puntos, pero algunos científicos creen que si lográramos acercarnos lo suficiente veríamos que en realidad están constituidos por cuerdecitas diminutas vibrando dentro de unas dimensiones extrainvisibles. Pero no es sólo cuestión de forma externa; la manera en que estas cuerdas vibran dentro del espacio multidimensional es lo que las convierte en un electrón, un quark, un gluón, o cualquier otra partícula. Incluso, según los teóricos, uno de los modos de vibración fundamentales de las cuerdas es el de una partícula que sería la transmisora de la fuerza de la gravedad, y cuyas ecuaciones trasladadas a sistemas macroscópicos terminarían correspondiendo con las de la relatividad general de Einstein. Aquí aparece la tan ansiada fusión entre el mundo macroscópico y el nanoscópico.
Con todo este embrollo, al final los físicos de cuerdas han sido capaces de construir unas ecuaciones matemáticas que describen tanto a las partículas subatómicas como a la gravedad. Y la verdad, les cuadran bastante bien Desde la década de 1970 las han estado puliendo, creando diferentes versiones de la teoría, y logrando describir con ellas una considerable serie de fenómenos físicos. Pero hay un par de problemillas; uno que concierne a los científicos, y otro que mosquea al resto de los mortales. Empecemos por el segundo: las ecuaciones de la teoría de cuerdas implican que a nivel microscópico existen otras dimensiones aparte de las arriba-abajo, izquierda-derecha y delante-detrás a las que estamos acostumbrados. Claro, esto parece una locura y desafía al sentido común: «¿Nos estáis diciendo que vivimos en un universo lleno de dimensiones invisibles?», le preguntaríamos a un matemático de cuerdas, a lo que él respondería: «Bueno, sí, pero no te asustes; once como máximo. Y algunos modelos sólo prevén cinco». Tranquilo nos deja, pero el tipo continúa: «¡Ah! Se me olvidaba un pequeño detalle: también existen universos paralelos. Cada uno en una membrana del espacio a las que llamamos branas, no me mires así, no lo digo yo. Lo dice la teoría M». Complicado, muy complicado. Suena increíble. Pero una manera de plantearlo es: ¿y por qué no? Al fin y al cabo la ciencia nos ha sorprendido en muchas otras ocasiones. Obvio, pero ante esto alguien también puede responder: ¿y por qué sí? Hasta que un tercero se harta y pone el dedo en la llaga: ¿tenéis alguna prueba? Entonces los físicos de cuerdas agachan la cabeza y confiesan el primer problemilla que mencionábamos: después de cuatro décadas de trabajo, no tienen ninguna prueba experimental que la demuestre. Tragan saliva ante las miradas inquisidoras. Pero enseguida recuperan de nuevo su bravura y replican que tampoco tenía pruebas Einstein cuando predijo matemáticamente que la gravedad no era una fuerza, sino una consecuencia de la deformación del espacio causada por la masa de los objetos. A pesar de que todos los indicios matemáticos decían que Einstein tenía razón, muchos se escudaban en el sentido común para asegurar que su teoría no tenía sentido físico alguno. No fue hasta 1919 cuando se pudo demostrar experimentalmente su relatividad general, aprovechando el eclipse más famoso de la historia. Los expertos en teoría de cuerdas se encuentran en una situación parecida; su formalismo matemático hace muy buenas predicciones, ha conseguido diversos éxitos en el campo de la física teórica, y es la única teoría conocida que reconcilia la cuántica con la gravedad. Y muchos están plenamente convencidos de la existencia de dimensiones ocultas a nivel microscópico, pero por el momento no hay un experimento que pueda probar su existencia real en el mundo físico.
Esto puede cambiar cuando el gran colisionador de hadrones (LHC) permita rastrear regiones del espacio extremadamente diminutas en que se puedan encontrar indicios de la existencia de otras dimensiones. En concreto, Lisa Randall, de Harvard, nos explicó durante una charla su sueño de hallar unas partículas llamadas Kaluza Klein que viajan entre esas dimensiones extras y significarían la prueba experimental de estas dimensiones ocultas. Nadie se atreve a predecir cuándo seremos capaces de comprobar qué partes de la teoría de cuerdas son ciertas y cuáles no. Quizá termine siendo una teoría de nada. Pero algunos estamos convencidos de que el siglo XXI nos regalará una revolución en nuestra concepción del cosmos, de mayor escala incluso que la protagonizada por Einstein. No me sorprendería en absoluto si un día los periódicos anunciaran la existencia de dimensiones ocultas y posibles universos paralelos.
Nima Arkani-Hamed tenía razón; el camino hacia encontrar una teoría del todo que describa el espacio que nos contiene, y en un solo modelo matemático relacione las cuatro fuerzas fundamentales (interacción fuerte, débil, electromagnetismo y gravedad) con todos los constituyentes de la materia, es una de las novelas más apasionantes que se puedan contar.