Olvidaos de encontrar vida en Marte, en los hielos del satélite Europa, o en cualquier rincón de nuestro sistema solar. Los alrededores de nuestro planeta parecen estar desiertos. Pero que esto no os deprima en absoluto; al contrario, estamos cada vez más cerca de descubrir vida extraterrestre.
El universo es tan extremadamente vasto que sería inverosímil que no existiera otra vida inteligente preguntándose si hay alguien habitando unos cuantos años luz más lejos. El problema es que en lugar de unos cuantos años luz quizá sean miles y tardemos un poquito en ponernos en contacto. Sin embargo, vida simple parecida a las bacterias que conocemos por descontado que debe haberla incluso en nuestra propia galaxia. Los astrobiólogos están cada vez más convencidos de que la vida no es un fenómeno tan complicado como hasta hace un tiempo se pensaba, y el universo debe de estar plagado de ella. Otra cosa es que podamos llegar a percibirla. A pesar de que algunos mantienen una ligera esperanza, no parece que Marte ni ningún otro rincón del sistema solar albergue vida en estos momentos. No obstante, las esperanzas de descubrir vida fuera de la Tierra en algún momento del siglo XXI son cada vez más altas. ¿Cómo puede ser eso? Porque ahora podemos buscarla de manera indirecta.
Imaginemos que una civilización inteligente con telescopios ligeramente mejores que los nuestros fuera capaz de escanear a distancia las características básicas de los principales planetas de nuestro sistema solar. Vería que Marte tiene una gran cantidad de hierro, Venus un efecto invernadero tremendo, Mercurio una atmósfera tenue de potasio y sodio, y cuando observara la Tierra se preguntaría ¿una atmósfera con oxígeno?, ¡eso es imposible! La atmósfera de este planeta es completamente inestable. ¡No tiene ningún sentido tanta presencia de oxígeno! Claro, a no ser que haya algún proceso vivo generándolo. Esa civilización acabaría de descubrir vida fuera de su planeta. Incluso si hubieran mirado a la Tierra mucho antes de nuestra llegada, en cualquier momento desde que hace dos millones de años las cianobacterias oxigenaron la atmósfera, habrían llegado a esa conclusión irrefutable según las leyes de la química.
¿Podremos hacer eso nosotros algún día? Al ritmo que avanzamos, muy pronto.
Descubrir un nuevo planeta extrasolar ya ha dejado de ser noticia. Fue un gran hito en 1995, cuando se descubrió el primero; pero ahora que ya se conocen varios centenares dando vueltas alrededor de estrellas lejanas, ¿qué es lo realmente relevante en ese campo? ¿Cuál es el contexto de las investigaciones? Recuerdo una mañana en Boston en que leí una noticia publicada en Nature sobre el descubrimiento de metano en un planeta extrasolar. Todavía no había escrito en el blog sobre los planetas extrasolares y ésa parecía una buena excusa, pero enseguida me di cuenta de que no sabía muy bien cómo ubicar el estudio: ¿era un gran hallazgo o no? Y si lo era, ¿por qué? En ciencia, cuando una disciplina avanza muy rápido, es difícil seguirle la pista y mantener una idea clara del contexto global en el que se enmarcan las píldoras que nos llegan por los medios de comunicación. El estudio de exoplanetas es algo muy nuevo, donde es fácil perderse. Por eso contacté con Joshua Winn, el principal experto del MIT en el estudio de planetas extrasolares. Nos había impartido un seminario meses antes en el que insistió en que nos atendería encantado si teníamos dudas. Comprobé que lo decía en serio. El café que tomamos duró dos horas.
Empezó resaltando que el principal objetivo de la búsqueda de planetas extrasolares es encontrar pistas en atmósferas lejanas que indiquen existencia de vida, pero había otro objetivo por el que quería empezar a hablar Joshua: entender cómo se forman los sistemas solares, y comprobar si el nuestro era tan extraño como parecía.
Me explico. A partir del único ejemplo de sistema solar que teníamos (el nuestro) se construyó la siguiente teoría: grandes cantidades de materia se acumularon formando un disco giratorio alrededor del Sol En él las partículas se iban agrupando, creando estructuras más grandes. El disco se aceleraba, se producían grandes colisiones y algunas de esas estructuras adquirían una masa crítica que les permitía atraer todavía más materia, hasta acabar convirtiéndose en planetas. Esta explicación concuerda muy bien con el hecho de que los planetas pequeños y rocosos estén cercanos a la estrella, y los gigantes gaseosos estén lejanos. Así es nuestro sistema solar; ningún problema por el momento. Sin embargo, ¡sorpresa! A medida que se han ido descubriendo planetas, un par de detalles no encajan del todo: hay una gran cantidad de planetas gaseosos (estilo Júpiter) en posiciones muy cercanas a su estrella; demasiado cercanas según la teoría del disco giratorio. Y, además, se han observado órbitas exageradamente elípticas. Comparado con lo que estábamos observando, parece como si nuestro sistema solar fuera atípico. ¿Habríamos construido una teoría que explicaba una excepción? No del todo. Según Josh, la teoría básica del disco giratorio es correcta, pero debe haber otros procesos que acerquen los planetas grandes a las estrellas, y que no se habían tenido en cuenta. Él está estudiando posibles colisiones durante la formación de los sistemas solares que, como si fueran canicas, moverían a los planetas de sitio. La «anormalidad» de nuestro sistema solar se debería a que no sufrió esos efectos «extra» a lo largo de su historia. Para Josh, esos nuevos ejemplos de sistemas solares representan una herramienta fantástica para entender mejor la formación planetaria.
Pero, sin duda, la segunda gran pregunta que se quiere responder es saber si alguno de esos planetas alberga vida. Para ello, los astrofísicos analizan la composición de la atmósfera de los planetas. La idea es simple: buscar biomarcadores, elementos que no puedan haberse originado en un mundo inerte. Si en una atmósfera se descubre oxígeno, por ejemplo, indicará que allí hay algo que lo está generando. Se trata de encontrar moléculas «extrañas» en la atmósfera que nos indiquen que allí hay algún tipo de metabolismo. Pero esto no ocurrirá de manera inmediata. De momento, la mayoría de los planetas descubiertos son gigantes gaseosos como Júpiter, y se encuentran demasiado cercanos a su estrella para poder albergar una vida parecida a la que conocemos. Para encontrar planetas más pequeños, y en órbitas más grandes, los telescopios y los métodos de observación deben mejorar un poco. En el camino hacia la búsqueda de vida, el primer gran paso (y que sí merecerá estar en las portadas de los periódicos) será encontrar un planeta rocoso de tamaño máximo diez veces la masa de la Tierra, y situado en la «zona habitable» (lo suficientemente apartado de la estrella como para tener agua líquida). A los científicos no les gusta especular, pero Josh pronostica que el primer planeta de estas características se podría descubrir bastante pronto, en unos cinco años. El siguiente paso será intentar analizar con detalle su atmósfera. Esto requerirá bastante más tiempo, con lo que el descubrimiento de vida extraterrestre no está a la vuelta de la esquina.
Hasta cierto punto, casi más que los propios descubrimientos, en este campo parece más fascinante plantearse cómo diantre se puede detectar un planeta tan lejano cuando hace escasamente cincuenta años parecía del todo inaudito. Vemos fácilmente las estrellas porque emiten luz, pero un planeta es un cuerpo opaco, oscuro, en apariencia invisible para cualquier telescopio. ¿Cómo podemos ver un planeta? La clave está en detectarlo de forma indirecta, midiendo los efectos que ejerce sobre la estrella que orbitan. La principal herramienta es el efecto Doppler: cuando un planeta da vueltas a una estrella, ejerce sobre ella una fuerza de gravedad que la hace oscilar levemente. Es decir, por momentos se acerca un poquito a nosotros y luego se aleja, y esto afecta ligeramente al espectro de luz que recibimos de la estrella. Es un efecto muy sutil, pero sirve para ver si hay una masa invisible dando vueltas en torno a la estrella. Una segunda metodología más simple pero menos efectiva es mirar directamente si en algún momento cambia la intensidad de la luz de la estrella, ya que si un planeta transita por delante de ella afectará a su brillo. La limitación de este método es que sólo permite descubrir planetas muy grandes. Para los mundos más pequeños —y con mayor posibilidad de ser habitables—, existen otros métodos, como el de las microlentes gravitacionales, que mide distorsiones en la luz procedente de estrellas distantes al pasar junto a objetos masivos.
Y entonces tendremos que analizar su atmósfera. Esto parece todavía más inconcebible. ¿Cómo podemos saber qué gases hay en el aire de un planeta situado a varios años luz de distancia? Su explicación también se basa en las propiedades de la luz, pero en este caso de la que rebota en el planeta y llega a nosotros. Si estuviéramos en el espacio y miráramos a la Tierra, a simple vista podríamos distinguir el océano azul del desierto amarillento, ¿verdad? Esto es porque la luz emitida (rebotada) por el mar tiene unas características, y la emitida por la arena, otras. Por eso vemos diferentes colores. Pero el espectro electromagnético es muchísimo más amplio que el rango de luz visible, y los detectores pueden discernir variaciones infinitamente más precisas que nuestro ojo. Mirando la luz que proviene de un planeta pueden detectar los elementos que lo constituyen, o saber la temperatura a la que se encuentra. Es así como muy pronto encontraremos vida fuera de la Tierra.
Después de tanta divagación, finalmente le pregunté a Josh si la noticia del metano era importante o no. Hizo esa típica mueca en la que se levanta el labio superior y se arruga la nariz, y empezó a ladear la cabeza. Dijo que el descubrimiento en sí no era lo importante. No hay nada inesperado en que una atmósfera tenga metano. Lo relevante era demostrar que técnicamente se podía llegar a medir esa molécula en una atmósfera tan lejana. La metodología era lo trascendente. Y es que los grandes hallazgos vendrán precedidos de mejoras en las técnicas de medición.
Quién sabe cuándo quedará anticuado este texto. La búsqueda de planetas extrasolares es uno de los campos más activos de la astrofísica actual Si vas a un congreso anual de investigación sobre el cáncer, posiblemente no oigas avances revolucionarios respecto al año anterior. En cambio, en ciertas disciplinas, como es el caso de los exoplanetas, las novedades son constantes. En 1995 se encontró el primer planeta extrasolar. Luego empezaron a descubrirse más gigantes gaseosos cercanos a las estrellas, hasta el punto de que dejaron de ser noticia. El siguiente objetivo era encontrar planetas pequeños de tamaño similar a la Tierra. Los métodos mejoraron hasta que en febrero de 2009 se encontró a Corot-7b, un planeta rocoso como el nuestro con la diferencia de que alcanza los 2.000 grados de temperatura por estar muy pegado a su sol. El descubrimiento de Corot merecía de nuevo ser noticia, pero merecerá portada el día que encuentren un planeta de características similares que además esté en una zona habitable. Y significará una revolución si consiguen analizar su atmósfera y descubrir que algo no encaja en ella. Nadie se arriesga a predecir cuándo ocurrirá esto, pero podría convertirse en la noticia más importante del siglo XXI: la confirmación experimental de que los habitantes de la Tierra no estamos solos en el universo.