Podemos continuar de este modo para ilustrar la existencia de otras formas de energía. En primer lugar, consideremos la energía elástica. Para comprimir verticalmente un muelle debemos hacer algún trabajo, pues cuando lo tenemos comprimido podemos levantar pesos con él. Por lo tanto, en su condición comprimida tiene una posibilidad de hacer algún trabajo. Si calculásemos la suma de los productos de los pesos por las alturas, ésta no cuadraría: debemos añadir algo más para dar cuenta del hecho de que el muelle está bajo tensión. La energía elástica es la fórmula para un muelle cuando está comprimido. ¿Cuánta energía es? Si lo soltamos, la energía elástica se convierte en energía cinética cuando el muelle pasa por el punto de equilibrio, y pasa alternativamente de una forma a otra, entre compresiones o estiramientos del muelle y la energía cinética de movimiento. (Hay también alguna energía gravitatoria que entra y sale, pero podemos hacer este experimento «en horizontal» si queremos). Sigue así hasta que todo se para: ¡Ajá! Hemos trampeado todo el rato colocando pequeños pesos para mover cosas, o diciendo que las máquinas son reversibles o que siguen actuando indefinidamente, pero ahora podemos ver que las cosas llegan a pararse. ¿Dónde está la energía cuando el muelle ha dejado de subir y bajar? Esto nos lleva a otra forma de energía: la energía térmica.
En el interior de un muelle o una palanca hay cristales que están formados por montones de átomos; con gran cuidado y delicadeza en la disposición de las partes podemos tratar de ajustar las cosas de modo que, cuando algo rueda sobre alguna otra cosa, ninguno de los átomos se agite en absoluto. Pero hay que ser muy cuidadosos. Normalmente, cuando las cosas ruedan hay un bamboleo y una agitación debidos a las irregularidades del material, y los átomos empiezan a vibrar en su interior. De este modo perdemos la pista de dicha energía; una vez que el movimiento se ha detenido, encontramos que los átomos están vibrando en el interior de un modo aleatorio y confuso. Sigue habiendo energía cinética, por supuesto, pero no está asociada con movimiento visible. ¡Qué imaginación! ¿Cómo sabemos que sigue habiendo energía cinética? Resulta que con termómetros es posible descubrir que el muelle o la palanca están más calientes, y que realmente hay un aumento de energía cinética en una cantidad precisa. Llamamos a esta forma de energía energía térmica, pero sabemos que no es realmente una forma nueva: es simplemente energía cinética, movimiento interno. (Una de las dificultades con todos estos experimentos que hacemos con materia a gran escala es que no podemos demostrar realmente la conservación de la energía y no podemos hacer realmente nuestras máquinas reversibles, porque cada vez que movemos un gran montón de materia los átomos no quedan absolutamente imperturbables, y de este modo entra en el sistema atómico cierta cantidad de movimiento aleatorio. No podemos verlo, pero podemos medirlo con termómetros, etc.).
Hay otras muchas formas de energía, y por supuesto no podemos describirlas ahora con más detalle. Hay energía eléctrica, que tiene que ver con las atracciones y repulsiones de cargas eléctricas. Hay energía radiante, la energía de la luz que sabemos que es una forma de energía eléctrica porque la luz puede representarse como oscilaciones del campo electromagnético. Hay energía química, la energía que se libera en las reacciones químicas. En realidad, la energía elástica es, en cierta medida, similar a la energía química, porque la energía química es la energía de la atracción mutua de los átomos, y por lo tanto es energía elástica. Nuestra comprensión moderna es la siguiente: la energía química tiene dos partes, energía cinética de los electrones dentro de los átomos, de modo que una parte es cinética, y energía eléctrica de interacción entre electrones y protones, de modo que el resto es energía eléctrica. A continuación llegamos a la energía nuclear, la energía implicada en la disposición de las partículas dentro del núcleo, y tenemos fórmulas para ella aunque no tenemos las leyes fundamentales. Sabemos que no es eléctrica ni gravitatoria, ni puramente química, pero no sabemos qué es. Parece ser una forma adicional de energía. Finalmente, asociada con la teoría de la relatividad hay una modificación de las leyes de la energía cinética, o como quiera que ustedes prefieran llamarla, de modo que la energía cinética se combina con otra cosa llamada energía de masa. Un objeto tiene energía por su sola existencia. Si yo tengo un positrón y un electrón quietos sin hacer nada prescindiendo de la gravedad, prescindiendo de cualquier cosa y se juntan y desaparecen, se liberará energía radiante en una cantidad definida, que puede ser calculada. Todo lo que necesitamos saber es la masa del objeto. No depende de qué objeto sea: hacemos que dos cosas desaparezcan y obtenemos una cierta cantidad de energía. La fórmula fue descubierta por primera vez por Einstein; es
E = mc2.
Resulta obvio de nuestra discusión que la ley de la conservación de la energía es enormemente útil para hacer análisis, tal como hemos ilustrado en algunos ejemplos sin conocer todas las fórmulas. Si tuviéramos todas las fórmulas para todos los tipos de energía podríamos analizar cuántos procesos deberían estar en acción sin tener que entrar en detalles. Por lo tanto, las leyes de conservación son muy interesantes. Naturalmente surge la cuestión de qué otras leyes de conservación hay en física. Hay otras dos leyes de conservación que son análogas a la conservación de la energía. Una se denomina conservación del momento lineal. La otra se denomina conservación del momento angular. Descubriremos más cosas sobre estas leyes más adelante. En última instancia, no entendemos en profundidad las leyes de conservación. No entendemos la conservación de la energía. No entendemos la energía como un cierto número de pequeñas gotas. Quizá ustedes hayan oído decir que los fotones vienen en gotas y que la energía de un fotón es la constante de Planck multiplicada por la frecuencia. Esto es cierto pero, puesto que la frecuencia de la luz puede ser cualquiera, no hay ninguna ley que diga que la energía tiene que ser una cierta cantidad definida. A diferencia de los bloques de Daniel, puede haber cualquier cantidad de energía, al menos tal como se entiende actualmente. Así pues, por ahora no entendemos esta energía como el recuento de algo, sino sólo como una magnitud matemática, lo que es una circunstancia abstracta y bastante peculiar. En mecánica cuántica resulta que la conservación de la energía está muy íntimamente relacionada con otra importante propiedad del mundo: las cosas no dependen del tiempo absoluto. Podemos montar un experimento en un instante dado y hacerlo, y luego hacer el mismo experimento en un instante posterior, y se comportará exactamente de la misma forma. Si esto es estrictamente cierto o no, no lo sabemos. Si suponemos que es cierto, y añadimos los principios de la mecánica cuántica, entonces podemos deducir el principio de la conservación de la energía. Es algo sutil e interesante, y no es nada fácil de explicar. Las otras leyes de conservación también están relacionadas. La conservación del momento está asociada en mecánica cuántica con la afirmación de que, independientemente de dónde hagan ustedes el experimento, los resultados siempre serán los mismos. Del mismo modo que la independencia respecto al espacio tiene que ver con la conservación del momento, la independencia respecto al tiempo tiene que ver con la conservación de la energía; y finalmente, si giramos nuestro aparato, esto tampoco supone ninguna diferencia, y así la invariancia del mundo respecto a la orientación angular está relacionada con la conservación del momento angular. Además de estas, existen otras tres leyes de conservación, exactas hasta donde hoy podemos decir, que son mucho más simples de entender porque son más parecidas al recuento de bloques.
La primera de estas tres es la conservación de la carga, que significa simplemente que ustedes pueden contar el número de cargas eléctricas positivas y restar el número de cargas negativas que tienen, y el número resultante nunca cambia. Ustedes pueden cancelar una carga positiva con una negativa, pero no pueden crear un exceso neto de cargas positivas sobre cargas negativas. Otras dos leyes son análogas a esta: una se denomina la conservación de bariones. Hay cierto número de partículas raras, un neutrón y un protón son ejemplos de ellas, que se denominan bariones. En cualquier reacción que tenga lugar en la naturaleza, si contamos cuántos bariones intervienen en un proceso, el número de bariones[4] que resulta de ello será exactamente el mismo. Hay otra ley: la conservación de leptones. Podemos decir que el grupo de partículas denominadas leptones está constituido por el electrón, el mesón-µ y el neutrino. Existe un antielectrón que es un positrón, es decir, −1 leptón. Contando el número total de leptones en una reacción se pone de manifiesto que el número inicial es siempre igual que el número final, al menos hasta donde sabemos actualmente.
Estas son las seis leyes de conservación, tres de ellas sutiles, que implican el espacio y el tiempo, y tres de ellas simples, en el sentido de contar algo.
Con respecto a la conservación de la energía deberíamos advertir que la energía disponible es otra cuestión: hay un montón de agitación en los átomos del agua del mar, porque el mar tiene una cierta temperatura, pero es imposible encauzarlos en un movimiento definido sin tomar energía de alguna otra parte. Es decir, aunque sabemos y damos por hecho que la energía se conserva, la energía disponible para utilización humana no se conserva tan fácilmente. Las leyes que gobiernan cuánta energía hay disponible se denominan leyes de la termodinámica e implican un concepto denominado entropía para procesos termodinámicos irreversibles.
Para terminar, haremos un comentario sobre la cuestión de dónde podemos obtener hoy nuestros suministros energéticos. Nuestros suministros energéticos proceden del Sol, la lluvia, el carbón, el uranio y el hidrógeno. El Sol provoca la lluvia, y también provoca el carbón, de modo que todos ellos proceden del Sol. Aunque la energía se conserva, la naturaleza no parece interesada en ello: ella libera un montón de energía desde el Sol, pero sólo una parte en dos mil millones llega a la Tierra. La naturaleza conserva la energía, pero no se preocupa realmente; malgasta un montón en todas direcciones. Ya hemos obtenido energía del uranio; también podemos obtener energía del hidrógeno, pero por el momento sólo en situaciones explosivas y peligrosas. Si pudiera ser controlada en reacciones termonucleares, resultaría que la energía que puede obtenerse de 10 litros de agua por segundo equivale a toda la potencia eléctrica generada en los Estados Unidos. Con 600 litros de agua corriente por minuto, ¡ustedes tendrían combustible suficiente para suministrar toda la energía que se utiliza hoy en los Estados Unidos! Por lo tanto, es tarea del físico descubrir la forma de liberarnos de la necesidad de disponer de energía. Puede hacerse.