Uno de los sucesos más alentadores de la última década ha sido la publicación de varios libros escritos por científicos eminentes en los que intentan comunicar la esencia y lo apasionante de su ciencia al lector profano. Algunos de los ejemplos más sorprendentes incluyen el extraordinario éxito de Una historia del tiempo de Stephen Hawking, que ahora forma parte de la historia de la edición; el libro Caos de James Gleick, que muestra de qué manera tan acertada un tema intrínsecamente difícil puede convertirse en una historia de detectives; y El sueño de una teoría final de Steven Weinberg, que hace notablemente accesibles y convincentes la naturaleza y los objetivos de la física de partículas contemporánea.
En este alud de divulgación, el libro La nueva mente del emperador de Roger Penrose, publicado en 1989, destaca como algo particularmente diferente. Mientras que otros autores se proponían comunicar el contenido y la emoción de la ciencia contemporánea, el libro de Roger presentaba una visión sorprendente y original acerca de los muchos aspectos, en apariencia dispares, de la física, las matemáticas, la biología, las ciencias del cerebro e incluso la filosofía, que podían ser subsumidos dentro de una nueva, aunque todavía no definida, teoría de los procesos fundamentales. No es de extrañar que La nueva mente del emperador provocase una gran controversia; y, en 1994, Roger publicó un segundo libro, Las sombras de la mente, en el cual intentaba responder a diversas críticas a sus argumentos y ofrecía nuevas intuiciones y desarrollos de sus ideas. En sus «Conferencias Tanner» de 1995, presentó una revisión de los temas centrales discutidos en sus dos libros y después participó en una discusión sobre ellos con Abner Shimony, Nancy Cartwright y Stephen Hawking. Las tres conferencias, reproducidas en los capítulos 1, 2 y 3 de este libro, proporcionan una somera introducción a las ideas expuestas con mucho más detalle en los dos libros anteriores; y las aportaciones de los tres participantes, en los capítulos 4, 5 y 6, plantean muchas de las cuestiones que aquellas habían suscitado. Finalmente, Roger tiene la oportunidad de comentar estas cuestiones en el capítulo 7.
Los capítulos de Roger hablan por sí mismos de manera elocuente, pero unas palabras de introducción podrían fijar el escenario para el enfoque particular que Roger sigue en relación con algunos de los problemas más profundos de la ciencia moderna. Ha sido reconocido internacionalmente como uno de los matemáticos contemporáneos más dotados, pero sus investigaciones siempre han estado firmemente situadas en un escenario físico real. El trabajo por el que es más famoso en astrofísica y cosmología se refiere a dos teoremas relacionados con las teorías relativistas de la gravedad, tarea que, en parte, fue llevada a cabo conjuntamente con Stephen Hawking. Uno de estos teoremas demuestra que, según las teorías relativistas clásicas de la gravedad, dentro de un agujero negro debe existir inevitablemente una singularidad física, es decir, una región en la que la curvatura del espacio o, de forma equivalente, la densidad de materia, se hace infinitamente grande. El segundo teorema afirma que, de acuerdo con las teorías relativistas clásicas de la gravedad, existe inevitablemente una singularidad física similar en el origen en los modelos cosmológicos de Gran Explosión. Estos resultados indican que, en cierto sentido, esas teorías no están acabadas, puesto que las singularidades físicas deberían ser evitadas en cualquier teoría físicamente significativa.
Este es, sin embargo, solo un aspecto de un enorme abanico de aportaciones hechas en muchas áreas diferentes de las matemáticas y de la física matemática. El procedimiento de Penrose explica de qué modo las partículas pueden extraer energía de la energía rotacional de los agujeros negros. Los diagramas de Penrose se utilizan para estudiar el comportamiento de la materia en la vecindad de los agujeros negros. Subyacente a buena parte de su enfoque, hay un sentido geométrico muy fuerte, casi pictórico, que está presente a lo largo de los capítulos 1, 2 y 3. El público en general está más familiarizado con este aspecto de su trabajo a través de las imágenes imposibles de M.C. Escher y por las teselas de Penrose. Resulta fascinante que fuera el artículo de Roger y de su padre, L.S. Penrose, el que proporcionara la inspiración para varios grabados imposibles de Escher. Además, las figuras del Límite Circular de Escher se utilizan para ilustrar el entusiasmo de Roger por las geometrías hiperbólicas en el capítulo 1. Los teselados de Penrose son construcciones geométricas notables en los que un plano infinito puede ser completamente cubierto mediante teselas de unas pocas formas diferentes. Los ejemplos más sorprendentes de estos teselados son aquellos que pueden cubrir por completo un plano infinito pero en los cuales no hay repetición; en otras palabras, no es posible encontrar el mismo patrón de teselas en ninguna región del plano infinito. Este tema vuelve a aparecer en el capítulo 3 en relación con la cuestión de si conjuntos específicos de procedimientos matemáticos exactamente definidos pueden o no ser llevados a cabo por un ordenador.
Roger aporta así un formidable arsenal de armas matemáticas además de extraordinarios logros en esta disciplina y en física en algunos de los más trascendentales problemas de la física moderna. La realidad y la importancia de las cuestiones que aborda están fuera de discusión. Los cosmólogos tienen buenas razones para estar firmemente convencidos de que la Gran Explosión proporciona la imagen más convincente que tenemos para comprender las características a gran escala de nuestro Universo. Esta imagen es, sin embargo, incompleta en varios aspectos. La mayoría de los cosmólogos están convencidos de que tenemos una buena comprensión de la física básica necesaria para explicar las propiedades globales del Universo desde, aproximadamente, el instante en que tenía una milésima de segundo hasta el momento presente. Pero la imagen solo resulta correcta si fijamos las condiciones iniciales de una forma muy cuidadosa. El gran problema reside en que, al tratar el Universo cuando era significativamente más joven que una milésima de segundo, nos estamos apartando de la física ensayada y comprobada, y por ello tenemos que basarnos en extrapolaciones razonables de las leyes conocidas de la física. Sabemos bastante bien cuáles debieron de haber sido estas condiciones iniciales, pero el por qué fueron así es un asunto especulativo. Todos están de acuerdo en que estos problemas figuran entre los más importantes de la cosmología contemporánea.
Se ha desarrollado un marco estándar para tratar de resolver estos problemas, este modelo se conoce como la imagen inflacionaria del Universo primitivo. Incluso en este modelo se supone que algunos rasgos de nuestro Universo se originaron en los instantes más tempranos, en lo que se conoce como la era de Planck, para la que se hace necesario comprender la gravedad cuántica. Este periodo transcurrió cuando el Universo tenía, aproximadamente, solo 10−43 segundos; lo que puede parecer algo excesivo, pero sobre la base de lo que conocemos hoy tenemos que tomar muy en serio lo que sucedió en esos instantes iniciales.
Roger acepta la imagen convencional de la Gran Explosión, hasta donde ésta alcanza, pero rechaza la imagen inflacionaria de sus etapas primitivas. Más bien, cree que nos faltan algunos elementos de la física y que estos deben estar asociados con una adecuada teoría cuántica de la gravedad, una teoría que todavía no tenemos pese al hecho de que los teóricos han estado tratando de resolver este problema durante muchos años. Roger argumenta que se han enfrentado al problema equivocado. Una parte de su interés está relacionada con la entropía del Universo en conjunto. Puesto que la entropía o, para decirlo de forma más sencilla, el desorden, aumenta con el tiempo, el Universo debe haber empezado en un estado altamente ordenado con muy poca entropía. La probabilidad de que esto sucediera por azar es prácticamente nula. Roger señala que este problema debería quedar resuelto como parte de la teoría correcta de la gravedad cuántica.
La necesidad de cuantización conduce a la discusión de los problemas de la física cuántica en el capítulo 2. La mecánica cuántica y su extensión relativista en la teoría cuántica de campos han sido tremendamente acertadas para dar cuenta de muchos resultados experimentales en física de partículas y para explicar las propiedades de los átomos y de las partículas, aunque se necesitaron muchos años antes de que fuera apreciada en su totalidad la importancia física de la teoría. Como Roger ilustra de forma muy bella, la teoría contiene como parte de su estructura rasgos determinantes no intuitivos, que no poseen equivalente en la física clásica. Por ejemplo, el fenómeno de la no localidad significa que, cuando se produce un par de partículas materia-antimateria, cada partícula conserva un recuerdo del proceso de creación, es decir, que no pueden considerarse completamente independientes una de otra. Tal como Roger lo expresa: «El enmarañamiento cuántico es un fenómeno muy extraño. Es algo intermedio entre objetos que están separados y que están comunicados entre sí». La mecánica cuántica nos permite también obtener información acerca de procesos que podrían haber sucedido pero no sucedieron. El ejemplo más sorprendente que plantea es el extraordinario problema de la comprobación de bombas de Elitzur-Vaidman que refleja las profundas diferencias entre la mecánica cuántica y la física clásica.
Estos aspectos no intuitivos son parte de la estructura de la física cuántica, pero existen problemas más profundos. Aquellos en los que se centra Roger se refieren al modo en que relacionamos los fenómenos que ocurren en el nivel cuántico con el nivel macroscópico en el que hacemos las observaciones de sistemas cuánticos. Esta es una área controvertida. La mayoría de los físicos profesionales utilizan simplemente las reglas de la mecánica cuántica como una herramienta computacional que proporciona respuestas de una precisión extraordinaria. Si aplicamos las reglas correctamente, obtendremos las respuestas correctas. Esto incluye, sin embargo, un proceso poco elegante para traducir fenómenos desde el sencillo mundo lineal en el nivel cuántico al mundo del experimento real. Ese proceso implica lo que se conoce como colapso de la función de onda o reducción del vector de estado. Roger cree que faltan algunas piezas físicas fundamentales en la imagen convencional de la mecánica cuántica. Argumenta que es necesaria una teoría completamente nueva que incorpore lo que él llama la reducción objetiva de la función de onda como parte integral de la teoría. Esta nueva teoría debe reducirse a la mecánica cuántica convencional y a la teoría cuántica de campos en el límite apropiado, pero es probable que introduzca nuevos fenómenos físicos. En ello podrían estar las soluciones al problema de la cuantización de la gravedad y la física del Universo primitivo.
En el capítulo 3, Roger intenta descubrir las características comunes a las matemáticas, la física y la mente humana. Es sorprendente que la más rigurosamente lógica de las ciencias, las matemáticas abstractas, a menudo, no puedan ser programadas en un ordenador, por muy preciso que este sea y por mucha capacidad que tenga su memoria. Un ordenador no puede descubrir teoremas matemáticos tal como lo hacen los matemáticos humanos. Esta conclusión sorprendente se deriva de una variante de lo que se denomina el teorema de Gödel. La interpretación de Roger es que esto significa que la construcción del pensamiento matemático y, por extensión, todo pensamiento y comportamiento consciente, se lleva a cabo por medios no computacionales. Esta es una clave fructífera porque nuestra intuición nos dice que la enorme diversidad de nuestras percepciones conscientes es también no computacional. Debido a la importancia capital de este resultado para su argumento general, Roger dedicaba más de la mitad de su libro Las sombras de la mente a demostrar que su interpretación del teorema de Gödel era irrebatible.
Roger considera que los problemas de la mecánica cuántica y los de la comprensión de la consciencia están relacionados de varias maneras. La no localidad y la coherencia cuántica sugieren, en principio, modos en los que grandes áreas del cerebro podrían actuar coherentemente. Cree que los aspectos no computacionales de la consciencia pueden estar relacionados con los procesos no computacionales que podrían estar involucrados en la reducción objetiva de la función de onda observable en niveles macroscópicos. No contento con enunciar simplemente principios generales, intenta identificar las diferentes estructuras internas del cerebro que podrían ser capaces de sostener semejantes tipos de nuevos procesos físicos.
Este resumen apenas hace justicia a la originalidad y fecundidad de estas ideas y a la brillantez con que se desarrollan en este libro. A lo largo de la exposición, varios temas subyacentes tienen una gran importancia para determinar la dirección de su pensamiento.
Quizá el más importante sea la notable capacidad de las matemáticas para describir procesos fundamentales en el mundo natural. Tal como Roger lo expresa, el mundo físico emerge en cierto sentido del mundo platónico de las matemáticas. Sin embargo, nosotros no obtenemos las nuevas matemáticas a partir de la necesidad de describir el mundo, o de hacer que el experimento y la observación encajen en reglas matemáticas. La comprensión de la estructura del mundo puede venir de amplios principios generales y de las propias matemáticas.
No debe sorprender que ambas propuestas hayan sido tema de controversia. Las contribuciones de los participantes dan una idea de muchas de las preocupaciones manifestadas por expertos con formaciones intelectuales muy diferentes. Abner Shimony coincide con Roger en varios de sus objetivos: en que existe cierta insuficiencia en la formulación estándar de la mecánica cuántica, según las mismas líneas subrayadas por Roger, y en que los conceptos mecanocuánticos son relevantes para la comprensión de la mente humana. Afirma, sin embargo, que Roger «es un alpinista que ha tratado de escalar la montaña equivocada» y sugiere formas alternativas de considerar las mismas áreas de interés de una manera constructiva. Nancy Cartwright plantea la cuestión básica de si la física es o no el punto de partida correcto para entender la naturaleza de la consciencia. Plantea también el espinoso problema de si las leyes que gobiernan diferentes disciplinas científicas pueden ser obtenidas realmente unas a partir de otras. El más crítico de todos es Stephen Hawking, viejo amigo y colega de Roger. En muchos aspectos la posición de Hawking es la más próxima a la que podría denominarse la posición típica del físico medio, y le desafía a que desarrolle una teoría detallada de la reducción objetiva de la función de onda. Niega que la física tenga mucho de valor que decir sobre el problema de la consciencia. Todas estas son preocupaciones justificables, pero Roger defiende su posición en el último capítulo de este libro.
Roger ha creado con éxito una visión o manifiesto acerca del desarrollo que podría tener la física matemática en el Siglo XXI. A lo largo de los capítulos 1, 2 y 3, construye una narrativa que sugiere cómo cada parte de la historia podría encajar en una imagen coherente de un tipo de física completamente nuevo que lleva incorporadas sus preocupaciones fundamentales de no computabilidad y la reducción objetiva de la función de onda. La prueba de estos conceptos dependerá de la capacidad de Roger y de otros para hacer realidad este nuevo tipo de teoría física. E incluso si este programa no tuviera un éxito inmediato, ¿son fructíferas las ideas inherentes en el concepto general para el desarrollo futuro de la física teórica y las matemáticas? En verdad sería muy sorprendente que la respuesta fuera «no».