La siguiente lista incluye los textos a los que este libro hace referencia explícita y una selección de trabajos del autor. He añadido algunos otros trabajos recientes acerca de las fractales, pero sólo a título indicativo y sin la menor pretensión, ni en lo que se refiere al equilibrio ni a la exhaustividad.
Cada referencia comprende uno o varios nombres, una fecha y también (cuando es necesario) una letra de identificación, que no es necesariamente a, b, c, etc., sino que es distinta cada vez, intentando evocar el título de la colección en la que ha aparecido el trabajo en cuestión.
LIBROS DEDICADOS A LOS FRACTALES
* El asterisco indica las actas de una conferencia o simposium, cuya fecha y localidad se señalan entre paréntesis.
FALCONER, H. E. 1985 The Geometry of Fractal Sets. Cambridge UK: Cambridge University Press.
ELDER, J. & JOSSANG, I. 1986 Fractals: Modeling and Simulation. Department de Physique de l’Université d’Oslo.
MANDELBROT, B. B. 1977f. Fractals: Form, Chance and Dimension. San Francisco: W. H. Freemann & Co.
MANDELBROT, B. B. 1982g. The Fractal Geometry of Nature. New York: W. H. Freeman (han aparecido traducciones en japonés y alemán).
*MANDELBROT, B. B., et al. 1984, 1985, 1986. Fractal Aspects of Materials. (Extended Abstracts) (Boston, 1984, 1985, 1986) Pittsburgh PA: The Materials Research Society.
MANDELBROT, B. B. 1986. Entretiens (título provisional). Milano: Montedison, 1986 ou 1987.
*MAYER-KRESS, G. 1986. Dimensions and Entropies in Chaotic Systems. (Pecos River, 1985) New York. Springer.
PEITGEN, H. O. & RICHTER, P. H. 1986. The Beauty of Fractals. New York: Springer.
*PIETRONERO, I. & TOSATTI, E. 1986. Fractals in Physics. (Trieste, 1985) Amsterdam: North-Holland.
*PYNN. R. & SKJELTORP. A. 1985. Scaling Phenomena in Disordered Systems. (Geilo, 1985) New York: Plenum.
*SHUESINGER, M. E. et al. 1984. Fractals in the Physical Sciences. (Gaithersburg, 1983) Journal of Statistical Physics, 36, 516.
*STANLEY, H. E. & OSTROWSKY, N. 1986. On Growth and Form: Fractal and Non Fractal Patterns in Physics. (Cargèse, 1985) Boston & Dordrecht: Nijhoff-Kluwer.
STEWART, I. 1982. Les fractals. Pans: Berlin.
TAKAYASU, H. 1985. Les fractales (en japonés). Tokyo:
YOSHINARL, M. 1986. Entre la Science et l’art: l’esthétique fractale est née (en japonais). Tokyo.
OTROS TRABAJOS
ABBOT, L. F. & WISE, M. B. 1981. Dimension of a quantum-mechanical path. American J. of Physics 49, 37-39.
AGTENBERG, F. P. 1982. Recent developments in geomathematics. Geo-processing 2.
AHARONY, A. 1984. Percolation, fractals and anomalous diffusion. J. Statistical Physics 34.
ALEXANDER, S. & ORBACH, R. 1982. Density of states on fractals: «fractons». J. de Physique; Lettres 43, 625.
ANDREWS, D. J. 1980-1981. A stochastic fault model. I Static case, II Time-dependent case. J. of Geophysical Research 85B, 3867-3877 & 86B, 10821-10834.
APOSTEL, L., MANDELBROT, B. B. & MORF. A. 1957. Logique, language et théorie de l’information. Paris: Presses Universitaires de France.
ARTHUR, D. W. G. 1954. The distribution of lunar craters. J. of the British Astronomical Association 64, 127-132.
BACHELIER, L. 1900. Théorie de la spéculation. Thèse pour le Doctorat ès Sciences Mathématiques, soutenue le 29 mars 1900. Annales Scientifiques de l’école Normale Supérieure III-17, 21-86. Traducción en The random character of stock market prices. Ed. P. H. Cootner, 17-78. Cambridge, MA: MIT Press, 1964.
BACHELIER, L. 1914. Le jeu, la chance et le hasard. Flammarion.
BARBER, M. N. & NINHAM, B. W. 1970. Random and restricted walks: theory and applications. New York: Gordon & Breach.
BARENBLATT, G. I. 1982. Similarité, self-similarité, etc. 2ème édition Moscou: Mir.
BERGER, J. M. & MANDELBROT, B. B. 1963. A new model for the clustering of errors on telephone circuits. IBM J. of Research and Development 7. 224-236.
BERRY, M. V. 1978. Catastrophe and fractal regimes in random waves & Distribution of nodes in fractal resonators. Structural stability in physics. Ed. W. Güttinger, New York: Springer.
BERRY, M. V. 1979. Diffractals. J. of Physics A12, 781-797.
BERRY, M. V. & HANNAY. J. H. 1978. Topography of randon surfaces. Nature 273, 573.
BERRY, M. V. & LEWIS, Z. V. 1980. On the Weierstrass-Mandelbrot fractal function. Pr. of the Royal Society London A370, 459-484.
BESICOVITCH, A. S. 1934. On rational approximation to real numbers. J. of the London Mathematical Society 9, 126-131.
BESICOVITCH, A. S. 1935. On the sum of digits of real numbers represented in the dyadic system (On sets of fractional dimensions II). Mathematische Annalen 110, 321-330.
BIDAUX, R., BOCCARA, N., SARMA, G., SÈZE, L., DE GENNES. P. G. & PARODI, O. 1973. Statistical properties of focal conic textures in smectic liquid crystals. Le J. de Physique 34, 661-672.
BIENAYMÉ, J. 1853. Considérations à l’appui de la découverte de Laplace sur la loi de probabilité dans la méthode des moindres carrés. Comptes Rendus (Paris) 37, 309-329.
BILLINGSLEY, P. 1967. Ergodic theory and information. New York: Wiley.
BLUMENTHAL, L. M. & MENGER, K. 1970. Studies in geometry. San Francisco: W. H. Freeman.
BONDI, H. 1952; 1960. Cosmology. Cambridge, UK: Cambridge University Press.
BOREL, E. 1922. Définition arithmétique d’une distribution de masses s’étendant à l’infini et quasi périodique, avec une densité moyenne nulle. Comptes Rendus (Pans) 174, 977-979. Ver Oeuvres de Emile Borel. Paris: Editions du CNRS, 1972.
BOULIGAND, G. 1928. Ensembles impropres et nombre dimensionnel. Bulletin des Sciences Mathématiques 11-52, 320-334 & 361-376.
BOULIGAND, G. 1929. Sur la notion d’ordre de mesure d’un ensemble flan. Bulletin des Sciences Mathématiques U-53, 185-192.
BURKS, A. W. (Ed.) 1970. Essays on Cellular Automata. Urbana, IL: University of Illinois Press.
BURROUGH, P. A. 1981. Fractal dimensions of landscapes and other environmental data. Nature 294, 240-242.
CAFFARELLI, L., KOHN, R. & NIRENBERG. L. 1982. Partial regularity of suitable weak solutions of Navier-Stokes equations. Communications in Pure and Applied Mathematics 35, 771-831.
CANTOR, G. 1872. Uber die Ausdenuung eines Satzes aus der Theorie der Trigonometrischen Reihen. Mathematische Annaben 5, 123-132.
CANTOR, G. 1883. Grundlagen einer allgemeinen Mannichfä etigkeitslehre. Mathematische Annalen 21, 545-591. Ver Cantor 1932. Traducción francesa: Acta Mathematica 2, 381-408.
CANTOR, G. 1932. Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Ed. E. Zermelo. Berlin: Teubner.
CESÀRO, E. 1905. Remarques sur la courbe de von Koch. Atti della Reale Accademia delle Scienze Fisiche e Matematiche di Napoli XII, 1-12. Ver Cesàro Opere scelte. Rome: Edizioni Cremonese, II, 464-479.
CHANDRASEKHAR, S. 1943. Stochastic problems in physics and astronomy. Reviews of Modern Physics 15, 1-89. Reproduit dans Noise and Stochastic Processes. Ed. N. Wax. New York: Dover.
CHARLIER, C. V. L. 1908. Wie eine unendliche Welt aufgebaut sein kann. Arkiv für Matematik, Astronomioch Fysik 4, 1-15.
CHARLIER, C. V. L. 1922. How an infinite world may be built up. Arkiv for Matematik, Astronomi och Fysik 16, 1-34.
CHORIN, A. J. 1981. Estimates of intermittency, spectra, and blow up in developed turbulence. Communications in Pure and Applied Mathematics 34, 853-866.
CHORIN, A. J. 1982a. The evolution of a turbulent vortex. Communications in Mathematical Physics83, 517-535.
COOTNER, P. H. (Ed.) 1964. The random character of stock market prices. Cambridge, MA: M.I.T. Press.
DAMERAU, F. J. & mandelbrot, B. B. 1973. Tests of the degree of word clustering in written English. Linguistics 102, 58-75.
DAVIS, C. & KNUTH, D. E. 1970. Number representations and dragon curves. J. of Recreational Mathematics 3, 66-81 & 133-149.
DEKKING, F. M. 1982. Recurrent sets. Advances in Mathematics 44, 78-104.
DEUTSCHER, G., ZALLEN, R., & ADLER, J. 1983. Percolation Structures and Processes, Annals Israel Physical Society 5.
DOMB, C. 1964. Some statistical problems connected with crystal lattices. J. of the Royal Statistical Society 26B, 367-397.
DOMB, C., GILLIS, J. & WILMERS, G. 1965. On the shape and configuration of polymer molecules. Pr. of the Physical Society 85, 625-645.
DOUADY, A. & HUBBARD, J. H. 1982. Itération des polynomes quadratiques complexes. Comptes Rendus (Paris) 294-1, 123-126.
DUMOUCHEL, W. H. 1973, 1975. Stable distributions in statistical inference: J. of the American Statistical Association 68, 469-482 & 70, 386-393.
DUTTA, P. & HORN, P. M. 1981. Low-frequency fluctuation in solids: 1/f noise. Reviews of Modern Physics 53, 497-516.
EGGLESTON, H. G. 1953. On closest packing by equilateral triangles. Pr. of the Cambridge Philosophical Society 49, 26-30.
EL HÉLOU, Y. 1978. Recouvrement du tore par des ouverts aléatoires et dimension de Hausdorff de l’ensemble non recouvert. Comptes Rendus (Paris) 287A, 815-818.
FAMA, E. F. 1963. Mandelbrot and the stable Paretian hypothesis. J. of Business (Chicago) 36, 420-429. Reproducido en The Random Character of Stock Market Prices. Ed. P. H. Cootner. Cambridge, MA: MIT Press.
FAMA, E. F. 1965. The behavior of stock-market prices. J. of Business 38, 34-105. Basado en una Thèse de l’Université de Chicago, titulada The distribution of daily differences of stock prices: a test of Mandelbrot’s stable Paretian hypothesis.
FAMA, E. F. & BLUME, M. 1966. Filter rules and stock-market trading. J of Business (Chicago) 39, 226-241.
FEDERER, h. 1969. Geometric measure theory. New York: Springer.
FELLER, W. 1950-1957-1968. An Introduction to Probability Theory and Its Applications, vol. 1. New York: Wiley.
FELLER, W. 1966-1971. An Introduction to Probability Theory and Its Applications, vol. 2. New York: Wiley.
FISHER, M. H. 1967. The theory of condensation and the critical point. Physics 3. 255-283.
FOURNIER D’ALBE, E. F. 1907. Two new worlds: I The infra world; II The supra world. London: Longmans Green.
FRÉCHET, M. 1941. Sur la loi de répartition de certaines grandeurs géographiques. J. de la Société de Statistique de Paris 82, 114-122.
GAMOW, G. 1954. Modem cosmology. Scientific American 190 (March) 54-63. Reproducido en Munitz (Ed.) 1957, 390-404.
GARDNER, M. 1967. An array of problems that can be solved with elementary mathematical techniques. Scientific American 216 (March, April and June issues). También en Gardner Mathematical magic show. New York: Knopf. 1977, pp. 207-209 & 215-220. Existe una traducción castellana en A.E. El libro de bolsillo n.º 1023 Madrid 1984.
GARDNER, M. 1976. In which «monster» curves force redefinition of the word «curve». Scientific American 235 (December issue), 124-133.
GEFEN, Y., AHARONY, A. & MANDELBROT, B. B. 1983. Phase transitions on fractals: 1. Quasi-linear lattices. J. of Physics A 16, 1267-1278.
GEFEN, Y., AHARONY, A., MANDELBROT, B. B. & SHAPIR. Y. 1984. Phase transitions on fractals: II. Sierpinski gaskets. J. of Physics A 17, 435-444.
GEFEN, Y., AHARONY, A., & MANDELBROT, B. B. 1984. Phase transitions on Fractals: III. Infinitely ramified lattices. J. of Physics A 17, 1277-1289.
GEFEN, Y., AHARONY, A., MANDELBROT, B. B. & KIRKPATRICK, S. 1981. Solvable fractal family, and its possible relation to the backbone at percolation. Physical Review Letters. 47, 1771-1774.
GEFEN, Y., AHARONY, A. & ALEXANDER, S. 1983. Physical Review Letters 50, 77.
GEFEN, Y., MANDELBROT, B. B. & AHARONY, A. 1980. Critical phenomena on fractals. Physical Review Letters 45, 855-858.
GEFEN, Y., MEIR, Y., MANDELBROT, B. B. & AHARONY, A. 1983. Geometric implementation of hypercubic lattices with noninteger dimensionality, using low lacunarity fractal lattices. Physical Review Letters 50, 145-148.
GELBAUM, B. R. & OLMSTED, J. M. H. 1964. Counter examples in analysis. San Francisco: Holden-Day.
GERNSTEIN, G. L. & MANDELBROT, B. B. 1964. Random walk models for the spike activity of a single neuron. The Biophysical J. 4, 41-68.
GILBERT, W. T. 1982. Fractal geometry derived from complex bases. Mathematical Intelligencer 4, 78-86.
GIVEN, J. A. & MANDELBROT, B. B. 1983. Diffusion on fractal lattices and the fractal Einstein relation. J. Physics A 16, L565-L569.
GNEDENKO. B. V. & KOLMOGOROV. A. N. 1954. Limit distributions for sums of independent random variables. Trans. K. L. Chung. Reading, MA: Addison Wesley.
GUMOWSKI, I. & MIRA, C. 1980. Dynamique chaotique. Toulouse: Capadues.
HALLEY, J. W. & MAI, T. 1979. Numerical estimates of the Hausdorff dimension of the largest cluster and its backbone in the percolation problem in two dimensions. Physical Review Letters 43, 740-743.
HANDELMAN, S. W. 1980. A high-resolution computer graphics system. IBM Systems J. 19, 356-366.
HARBISON. R. J., BISHOP, G. J. & OLINN, G. P. 1978. Spanning lengths of percolation clusters. J. of Statistical Physics 19, 53-64.
HARTER, W. G. 1979-1981. Theory of hyperfine and superfine links in symmetric polyatomic molecules. I Trigonal and tetrahedral molecules. II Elementary cases in octahedral hexafluoride molecules Physical Review A 19, pp. 2277-2303 & A2 4, pp. 192-263.
HATLEE, M. D. & KOZAK, J. J. 1981. Stochastic flows in integral and fractal dimensions and morphogenesis. Proceedings of the National Academy of Sciences USA 78, 972-975.
HAUSDORFF, F. 1919. Dimension und á usseres Mass. Mathematische Annalen 79, 157-179.
HAWKING, S. W. 1978. Spacetime foam. Nuclear Physics B144, 349-362.
HEIDMANN, J. 1973. Introduction à la cosmologie. Paris: Presses Universitaires de France.
HENTSCHEL, H. G. E. & PROCACCIA, I. 1982. Intermittency exponent in fractally homogeneous turbulence. Physical Review Letters 49, 1158-1161.
HENTSCHEL, H. G. E. & PROCACCIA. I. 1983. Fractal nature of turbulence as manifested in turbulent diffusion. Physical Review A 27, 1266-1269.
HENTSCHEL, H. G. E. & PROCACCIA, I. 1984. Relative diffusion in turbulent media: the fractal dimension of clouds. Physical Review A 29, 1461-1470.
HERMITE. C. & STIELTJES, T. J. 1905. Correspondance d’Hermite et de Stieltjes. 2 vols. Ed. B. Baillaud & H. Bourget. Paris: Gauthier-Villars.
HOYLE, F. 1953. On the fragmentation of gas clouds into galaxies and stars. Astrophysical J. 118, 513-528.
HUGHES, B. D., MONTROLL, E. W. & SHLESINGER, M. F. 1982. Fractal random walks. Journal of Statistical Physics 28, 111-126.
HUREWICZ, W. & WALLMAN, H. 1941. Dimension theory. Princeton University Press.
HURST, H. E., BLACK, R. P., & SIMAIKA, Y. M. 1965. Long-term storage, an experimental study. London: Constable.
HUTCHINSON, J. E. 1981. Fractals and self-similarity, Indiana University Mathematics J. 30, 713-747.
JAKEMAN, E. 1982. Scattering by a corrugated random surface with fractal slope. Physics A 15, L55-L59.
JAKI, S. L. 1969. The paradox of Olber’s paradox. New York: Herder & Herder.
JEANS, J. H. 1929. Astronomy and cosmogony. Cambridge, UK: Cambridge University Press, (reimpreso por Dover).
KAC. M. Recollections concerning Peano curves and statistical independence. Probability, Number Theory and Statistical Physics (Selected Papers), Cambridge, MA: M.I.T. Press, ix-xiii.
KAGAN, Y. Y. & KNOPOFF L. 1978. Statistical study of the occurrence of shallow earthquakes. Geophysical Journal of the Royal Astronomical Society 55, 67-86.
KAGAN, Y. Y. & KNOPOFF. L. 1980. Spatial distribution of earthquakes: the two-point correlation function. Geophysical Journal of the Royal Astronomical Society 62, 303-320.
KAHANE. J. P. 1969. Trois notes sur les ensembles parfaits linéaires. Enseignement mathématique 15, 185-192.
KAHANE. J. P. 1970. Courbes étranges, ensembles minces. Bulletin de l’Association des Professeurs de Mathématiques de l’Enseignement Public 49, 325-339.
KAHANE. J. P. 1971. The technique of using random measures an random sets in harmonic analysis. Advances in Probability and Related Topics, Hd. P. Ner. 1, 65-101. New York: Marcèl Dekker.
KAHANE, J. P. 1974. Sur le modèle de turbulence de Benoît Mandelbrot, Comptes Rendus (París) 278A, 621-623.
KAHANE, J. P. & mandelbrot, B. B. 1965. Ensembles de multiplicité aléatoires. Comptes Rendus (Pans) 261, 3931-3933.
KAHANE, J. P. & PEYRIÈRE, J. 1976. Sur certaines martingales de B. mandelbrot, Advances in Mathematics 22, 131-145.
KAHANE. J. P. & SALI, M. R. 1963. Ensembles parfaits et séries trigonométriques. Paris: Hermann.
KAHANE, J. P 1976. Mesures et dimensions. Turbulence and Navier-Stokes Equations (Ed. R. Temam) Lecture Notes in Mathematics 565, 94-103, New York: Springer.
KAPITULNIK, A. & DEUTSCHER. G. 1982. Percolation characteristics in discontinuous thin films of Pb. Physical Review Letters 49, 1444-1448.
KAPITULNIK. A., AHARONY, A., DEUTSCHER, G. & STAUFFER, D. 1983. Self-similarity and correlation in percolation. Physical Review Letters 49, 1444-1448.
KAYE, B. H. 1978. Specification of ruggedness and/or texture of a fine particle profile by its fractal dimension. Powder Technology 21, 1-16.
KAYE, B. H. 1983. Fractal description of fine particle systems. Modern Methods in Fineparticle Characterization (Ed. J. K. Beddow) Boca Raton, FL: CRC Press.
VON KOCH, H. 1904. Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire. Arkiv for Matematik, Astronomioch Fysik 1, 681-704.
VON KOCH, H. 1906. Une méthode géométrique élémentaire pour l’étude de certaines questions de la théorie des courbes planes. Acta Mathematica 30, 145-174.
KOLMOGOROV, A. N. 1941. Local structure of turbulence in an incompressible liquid for very large Reynolds numbers. Comptes Rendus (Doklady) Académie des Sciences de l’URSS (N.S.) 30, 299-303.
KOLMOGOROV, A. N. 1962. A refinement of previous hypothesis concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. of Fluid Mechanics 13, 82-85.
KOLMOGOROV, A. N. & TIHOMIROV, V. M. 1959-1961. Epsilonentropy and epsilon-capacity of sets in functional spaces. Uspekhi Matematicheskikh Nauk (N.S.) 14, 3-86. Traducción en American Mathematical Society Translations (Series 2) 17, 277-364.
KORCAK, J. 1938. Deux types fondamentaux de distribution statistique. Bulletin de l’Institut International de Statistique III, 295-299.
LANDMAN, B. N. & RUSSO. R. L. 1971. On a pin versus block relationship for partitions of logic graphs. IEEE Tr. on Computers 20, 1469-1479.
LE MEHAUTE, A. & CREPY, G. 1982. Sur quelques propriétés de transferts électrochimiques en géométrie fractale. Comptes Rendus (París) 294-II, 685-688.
LEFFEVRE. J. 1980. Teleogical optimization of a fractal tree model of the pulmonary vascular bed. Bulletin Européen de physiopathologie respiratoire 16, 53.
LEVY, P. 1925. Calcul des probabilités. Paris: Gauthier Villars.
LEVY, P. 1930. Sur la possibilité d’un univers de masse infinie. Annales de Physique 14, 184-189. Ver Lévy 1973-11, 534-540.
LEVY, P. 1937-1954. Théorie de l’addition des variables aléatoires. Pans: Gauthier Villars.
LEVY, P. 1948-1965. Processus stochastiques et mouvement brownien. Pans: Gauthier-Villars.
LEVY, P. 1970. Quelques aspects de la pensée d’un mathématicien. Paris: Albert Blanchard.
LEVY, P. 1973. Oeuvres de Paul Lévy. Ed. D. Dugué, P. Deheuvels & M. Ibéro. Paris: Gauthier Villars.
LOVEJOY, S. 1981. A statistical analysis of rain areas in terms of fractals. Preprints. 20th Conference on Radar Meteorology. A.M.S., Boston, 476-483.
LOVEJOY, S. 1982. Area-perimeter relation for rain and doud areas. Science 216, 185-187.
LOVEJOY, S. & MANDELBROT, B. B. 1985. Fractal properties of rain, and a fractal model. Tellus, 37A, 209-232.
LYDALL. H. F. 1959. The distribution of employment income. Econometrica 27, 110-115.
MANDELBROT, B. B. 1951. Adaptation d’un message à la ligne de transmission. I & II. Comptes Rendus (Paris) 232, 1638-1640 & 2003-2005.
MANDELBROT, B. B. 1953t. Contribution à la théorie mathématique des jeux de communication (Thèse de Doctorat ès Sciences Mathématiques). Publications de l’Institut de Statistique de l’Université de Paris 2, 1-124.
MANDELBROT, B. B. 1954w. Structure formelle des textes et communication (deux études). Word 10, 1-27. Correcciones. Word 11, 424.
MANDELBROT, B. B. 1955b. On recurrent noise limiting coding. Information Net works, the Brooklyn Polytechnic Institute Symposium, 205-221. New York: Interscience.
MANDELBROT, B. B. 1956c. La distribution de Willis-Yule, relative au nombre d’espèces dans les genres taxonomiques. Comptes Rendus (Pans) 242, 2223-2225.
MANDELBROT, B. B. 19561. On the language of taxonomy: an outline of a thermostatistical theory of systems of categories, with Willis (natural) structure. Information Theory, the Third London Symposium. Ed. C. Cherry. 135-145. New York: Academic.
MANDELBROT, B. B. 1956t. Exhaustivité de l’énergie d’un système, pour l’estimation de sa temperature. Comptes Rendus (Pans) 243, 1835-1837.
MANDELBROT, B. B. 1956m. A purely phenomenological theory of statistical thermodynamics: canonical ensembles. IRE Tr. on Information Theory 112, 190-203.
MANDELBROT, B. B. 1959g. Ensembles grand canoniques de Gibbs; justification de leur unicité basée sur la divisibilité infinie de leur énergie aléatoire. Comptes Rendus (Paris) 249, 1464-1466.
MANDELBROT, B. B. 1959p. Variables et processus stochastiques de Pareto-Lévy et la répartition des revenus, I & II. Comptes Rendus (Paris) 249, 613-615 & 2153-2155.
MANDELBROT, B. B. 1960i. The Pareto-Lévy law and the distribution of income. International Economic Review I, 79-106.
MANDELBROT, B. B. 1961b. On the theory of word frequencies and on related Markovian models of discourse. Structures of language and its mathematical aspects. 120-219. New York: American Mathematical Society.
MANDELBROT, B. B. 196le. Stable Paretian random functions and the multiplicative variation of income. Econometrica 29, 517-543.
MANDELBROT, B. B. 1962c. Sur certains prix spéculatifs: faits empiriques et modèle basé sur les processus stables additifs de Paul Lévy. Comptes Rendus (Paris) 254, 3968-3970.
MANDELBROT, B. B. 1962e. Paretian distributions and income maximization. Quarterly J. of Economics 76, 57-85.
MANDELBROT, B. B. 1962n. Statistics of natural resources and the law of Pareto. IBM Research Note NC-146, June 29, 1962 (inédito).
MANDELBROT, B. B. 1962t. The role of sufficiency and estimation in thermodynamics. The Annals of Mathematical Statistics 33, 1021-1038.
MANDELBROT, B. B. 1963p. The stable Paretian income distribution, when the apparent exponent is near two. International Economic Review 4, 111-115.
MANDELBROT, B. B. 1963b. The variation of certain speculative prices. J. of Business (Chicago) 36, 394-419. Reproducido en The random character of stock market prices. Ed. P. H. Cootner, 297-337. Cambridge, MA: MIT Press.
MANDELBROT, B. B. 1963e. New methods in statistical economics. J. of Political Economy 71, 421-440. Reproducido en Bulletin of the International Statistical Institute, Ottawa Session: 40 (2), 669-720.
MANDELBROT, B. B. 1964j. The epistemology of chance in certain newer sciences. The Jerusalem International Congress on Logic, Methodology and the Philosophy of Science (inédito).
MANDELBROT, B. B. 1964t. Derivation of statistical thermodynamics from purely phenomenological principles. J. of Mathematical Physics 5, 164-171.
MANDELBROT, B. B. 1964o. Random walks, fire damage amount, and other Paretian risk phenomena. Operations Research 12, 582-585.
MANDELBROT, B. B. 1964s. Self-similar random processes and the range IBM Research Report RC-1163, April 13, 1964 (inédito).
MANDELBROT, B. B. 1965c. Self similar error clusters in communications systems and the concept of conditional stationarity. IEEE Tr. on Communications Technology 13, 71-90.
MANDELBROT, B. B. 1965h. Une classe de processus stochastiques homothétiques à soi; application à la loi climatologique de H. E. Hurst. Comptes Rendus (Paris) 260, 3274-3277.
MANDELBROT, B. B. 1965s. Leo Szilard and unique decipherability. IEEE Tr. on Information Theory IT-11, 455-456.
MANDELBROT, B. B. 1965z. Information theory and psycholinguistics. Scientific Psychology: Principles and Approaches, Ed. B. B. Wolman & E. N. Nagel. New York: Basic Books 550-562. Reproducido en Language, Selected Readings. Ed. R. C. Oldfield & J. C. Marshall. London: Penguin. Reproducido con apéndices en Readings in Mathematical Social Science. Ed. P. Lazarfeld and N. Henry. Chicago, III.: Science Research Associates (1966: hardcover). Cambridge, MA: M.I.T. Press (1968: paperback).
MANDELBROT, B. B. 1966b. Forecasts of future prices, unbiased markets, and «martingale» models. J. of Business (Chicago) 39, 242-255. Errata en un número ulterior de este Journal.
MANDELBROT, B. B. 1967b. Sporadic random functions and conditional spectral analysis; self-similar examples and limits. Pr. of the Fifth Berkeley Symposium on Mathematical Statistics and Probability 3, 155-179. Berkeley: University of California Press.
MANDELBROT, B. B. 1967k. Sporadic turbulence. Boundary Layers and Turbulence (Kyoto International Symposium, 1966), Supplement to Physics of Fluids 10, S302-S303.
MANDELBROT, B. B. 1967j. The variation of some other speculative prices. J. of Business (Chicago) 40, 393-413.
MANDELBROT, B. B. 1967p. Sur l’épistémologie du hasard dans les sciences sociales: invariance des lois et vérification des hypothèses, Encyclopédie de la Pléiade: Logique et Connaissance Scientifique. Ed. J. Piaget. 1097-1113. Paris: Gallimard.
MANDELBROT, B. B. 1967s. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 155, 636-638.
MANDELBROT, B. B. 1967i. Some noises with 1// spectrum* a bridge between direct current and white noise. IEEE Tr. on Information Theory 13, 289-298.
MANDELBROT, B. B. 1968p. Les constantes chiffrées du discours. Encyclopédie de la Pléiade: Linguistique textos remitidos por J. Martinet, Gallimard, 46-56.
MANDELBROT, B. B. 1969e. Long-run linearity, locally Gaussian process, H-spectra and infinite variance. International Economic Review 10, 82-111.
MANDELBROT, B. B. 1970p. On negative temperature for discourse. Discussion of a paper by Prof. N. F. Ramsey. Critical Review of Thermodynamics, 230-232. Baltimore, MD: Mono Book.
MANDELBROT, B. B. 1970e. Statistical dependence in prices and interest rates. Papers of the Second World Congress of the Econometric Society, Cambridge, England (8-14 Sept. 1970).
MANDELBROT, B. B. 1970y. Statistical Self Similarity and Very Erratic Chance Fluctuations. Trumbull Lectures, Yale University (inédito).
MANDELBROT, B. B. 1971e. When can price be arbitraged efficiently? A limit to the validity of the random walk and martingale models. Review of Economics and Statistics LIII, 225-236.
MANDELBROT, B. B. 1971f. A fast fractional Gaussian noise generator. Water Resources Research 7, 543-553. ERRATUM IMPORTANT: En la primera fracción de la p. 545, hay que borrar el 1 del numerador y añadirlo a la fracción.
MANDELBROT, B. B. 1971n. The conditional cosmographie principle and the fractional dimension of the universe (inédito involuntario).
MANDELBROT, B. B. 1972d. On Dvoretzky coverings for the circle. Z. für Wahrscheinlichkeitstheorie 22, 158-160.
MANDELBROT, B. B. 1972j. Possible refinement of the log normal hypothesis concerning the distribution of energy dissipation in intermittent turbulence in Statistical models and turbulence. Edited by Murray M. Rosenblatt and C. Van Atta. Proceedings of a conference held in La Jolla CA. Lecture Notes in Physics 12 333-351. New York: Springer.
MANDELBROT, B. B. 1972b. Correction of an error in «The variation of certain speculative prices (1963)». J. of Business 40, 542-543.
MANDELBROT, B. B. 1972c. Statistical methodology for nonperiodic cycles: from the covariance to the R/S analysis. Annals of Economic and Social Measurement 1, 259-290.
MANDELBROT, B. B. 1972w. Broken line process derived as an approximation to fractional noise. Water Resources Research 8, 1354-1356.
MANDELBROT, B. B. 1972z. Renewal sets and random cutout. Z. für Wahrscheinlichkeitstheorie 22, 145-157.
MANDELBROT, B. B. 1973c. Comments on «A subordinated stochastic process model with finite variance for speculative prices», by Peter K. Clark. Econometrica 41, 157-160.
MANDELBROT, B. B. 1973f. Formes nouvelles du hasard dans les sciences. Economie Appliquée 26, 307-319.
MANDELBROT, B. B. 1973j. Le problème de la réalité des cycles lents, et le syndrome de Joseph. Economie Appliquée 26, 349-365.
MANDELBROT, B. B. 1973v. Le syndrome de la variance infinie, et ses rapports avec la discontinuité des prix. Economie Appliquée 26, 321-348.
MANDELBROT, B. B. 1974c. Multiplications aléatoires itérées, et distributions invariantes par moyenne pondérée. Comptes Rendus (Paris) 278A, 289-292 & 355-358.
MANDELBROT, B. B. 1974d. A population birth and mutation process. I: Explicit distributions for the number of mutants in an old culture of bacteria. J. of Applied Probability 11, 437-444. (La parte II es un texto que se distribuye a petition).
MANDELBROT, B. B. 1974f. Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J. of Fluid Mechanics 62, 331-358.
MANDELBROT, B. B. 1975b. Fonctions aléatoires pluritemporelles: approximation poissonienne du cas brownien et généralisations. Comptes Rendus (Paris) 280A, 1075-1078.
MANDELBROT, B. B. 1975f. On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars. J. of Fluid Mechanics 72, 401-416.
MANDELBROT, B. B. 1975m. Hasards et tourbillons: quatre contes à clef. Annales des Mines (November), 61-66.
MANDELBROT, B. B. 1975o. Les objets fractals: forme, hasard et dimension. Flammarion.
MANDELBROT, B. B. 1975u. Sur un modèle décomposable d’univers hiérarchisé: déduction des corrélations galactiques sur la sphère céleste. Comptes Rendus (Paris) 280A, 1551-1554.
MANDELBROT, B. B. 1975w. Stochastic models for the Earth’s relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands. Pr. of the National Academy of Sciences USA 72, 3825-3828.
MANDELBROT, B. B. 1975h. Limit theorems on the self-normalized range for weakly and strongly dependent processes. Z. für Wahrscheinlichkeitstheorie 31, 271 - 285.
MANDELBROT, B. B. 1976c. Géométrie fractale de la turbulence. Dimension de Hausdorff, dispersion et nature des singularités du mouvement des fluides. Comptes Rendus (Paris) 282A, 119-120.
MANDELBROT, B. B. 1976o. Intermittent turbulence & fractal dimension: kurtosis and the spectral exponent 5/3+B. Turbulence and Navier Stokes Equations (Conference held at Orsay in 1975). Ed. R. Teman, Lecture Notes in Mathematics 565, 121-145. New York: Springer.
MANDELBROT, B. B. 1977b. Fractals and turbulence: attractors and dispersion. Turbulence Seminar Berkeley 1976/1977. Ed. P. Bernard & T. Ratiu. Lecture Notes in Mathematics 615, 83-93. New York: Springer.
MANDELBROT, B. B. 1977h. Geometric facets of statistical physics: scaling and fractals. Statistical Physics 13, IUPAP Conference, Haifa 1977. Edited by D. Cabib et al. Annals of the Israel Physical Society. 225-233.
MANDELBROT, B. B. 1978b. The fractal geometry of trees and other natural phenomena. Buffon Bicentenary Symposium on Geometrical Probability. Ed. R. Miles & J. Serra. Lecture Notes in Biomathematics 23, 235-249. New York: Springer.
MANDELBROT, B. B. 1978r. Les objets fractals. La Recherche 9 1-13.
MANDELBROT, B. B. 1978c. Colliers aléatoires et une alternative aux promenades au hasard sans boucle: les cordonnets discrets et fractals. Comptes Rendus (Paris) 286A, 933-936.
MANDELBROT. B. B. 1979n. Comment on bifurcation theory and fractals. Bifurcation Theory and Applications, Ed. Gurel & O. Rôssler. Annals of the New York Academy of Sciences 316, 463-464.
MANDELBROT, B. B. 1979u. Corrélations et texture dans un nouveau modèle d’Univers hiérarchisé, basé sur les ensembles trémas. Comptes Rendus (Paris) 288A, 81-83.
MANDELBROT, B. B. 1980b. Fractals and geometry with many scales of length. Encyclopaedia Britannica 1981 Yearbook of Science and the Future, 168-181.
MANDELBROT, B. B. 1980n. Fractal aspects of the iteration of z → λz(1 − z) for complex X and z. Non Linear Dynamics. Edited by R. M. G. Helleman. Annals of the New York Academy of Sciences 357, 249-259.
MANDELBROT, B. B. 19811. Scalebound or scaling shapes: A useful distinction in the visual arts and in the natural sciences. Leonardo 14, 45-47.
MANDELBROT, B. B. 1982c. Comments on computer rendering of fractal stochastic models. Communications of the Association for Computing Machinery 25, 581-583.
MANDELBROT, B. B. 1983d. Les fractales, les monstres et la beauté. Le Débat 24, 54-72.
MANDELBROT, B. B. 1983m. Self-inverse fractals osculated by sigma discs, and the limit sets of inversion groups. Mathematical Intelligencer 5, 2; 9-17.
MANDELBROT, B. B. 1983p. On. the quadratic mapping Z —z:—(i for complex and z: the fractal structure of its M-set, and scaling. Order in Chaos (Ed. D. Campbell) Amsterdam: North Holland, and Physica D, 7, 224-239.
MANDELBROT, B. B. 1984k. On the dynamics of iterated maps VIII: The map z-^z+l/z), from linear to planar chaos, and the measurement of chaos. Chaos and Statistical Mechanics. (Kyoto Summer Institute.) Edited by Y. Kuramoto, New York: Springer, 32-41.
MANDELBROT, B. B. 1984e. Fractals and physics: squig clusters, diffusions, fractal measures and the unicity of fractal dimensionality. Statistical Physics 15, International IUPAP Conference (Edinburgh, 1983). Edited by David Wallace & Alistair Bruce. J. of Statistical Physics 34, 1984, 895-910.
MANDELBROT, B. B. 1984f. Squig sheets and some other squig fractal constructions, followed by Comment on the equivalence between fracton/spectral dimensionality and the dimensionality of recurrence. Proceedings of the Gaithersburg Conference on Fractals. Edited by Michael F. Shlesinger, BBM & Robert J. Rubin. J. of Statistical Physics 36, 519-545.
MANDELBROT, B. B. 1984w. On fractal geometry and a few of the mathematical questions it has raised. Proceedings of the International Congress of Mathematicians (Warsaw 1983) Edited by Zbigniew Ciesielski, Warsaw: PWN and Amsterdam: North-Holland, 1661-1675.
MANDELBROT, B. B. 1985g. On the dynamics of iterated maps. Paper III: The individual molecules of the M-set: self-similarity properties, the N−2 rule, and the N−2 conjecture. Paper IV: The notion of «normalized radical» R, and the fractal dimension of the boundary of R. Paper V: Conjecture that the boundary of the M-set has a fractal dimension equal to 2. Paper VI: Conjecture that certain Julia sets include smooth components. Paper VII: Domain-filling («Peano») sequences of fractal Julia sets, and an intuitive rationale for the Siegel discs. Chaos, Fractals and Dynamical Systems Edited by Pal Fisher & William Smith. New York: Marcel Dekker, 213-253.
MANDELBROT, B. B. 1985n. Continuous interpolation of the complex discrete map z), and related topics (On the dynamics of iterated maps, IX). Nobel Foundation Symposium on the Physics of Chaos. Edited by N. R. Nilsson, Physica Scripta. T9, 59-63.
MANDELBROT, B. B. 19851. Self-affine fractals and fractal dimension. Physica Scripta, 32, 257-260.
MANDELBROT, B. B. 1986e. Fractals and fractal dimensions, in Encyclopedia of Physical Science and Technology. San Diego, CA: Academic Press.
MANDELBROT, B. B. 1986t. Self-affine fractal sets, I: The basic fractal dimensions, II: Length and area measurements, III: Hausdorff dimension anomalies and their implications. Fractals in Physics (Trieste, 1985). Edited by L. Pietronero and Erio Tosatti. North-Holland, 3-28.
MANDELBROT, B. B. 1986p. Fractal measures and multiplicative chaos. Dimensions and Entropies in Chaotic System (Workshop held in Pecos River, NM in 1985). Edited by W. Meyer-Kress, Springer, 19-25.
MANDELBROT, B. B., GEFEN, Y., AHARONY, A. & PEYRIÈRE, J. 1985. Fractals, their transfer matrices and their eigen-dimensional sequences. Journal of Physics A: 18, 335-354.
MANDELBROT, B. B. & GIVEN, J. S. 1984. Physical properties of a new fractal model of percolation clusters. Physical Review Letters, 52, 1853-1856.
MANDELBROT, B. B. & MCCAMY. K. 1970. On the secular pole motion and the Chandler wobble. Geophysical J. 21, 217-232.
MANDELBROT, B. B., PASSOJA, D. & PAULLAY, A. 1984. The fractal character of fracture surfaces of metals, Nature, 308, 721-722.
MANDELBROT, B. B. & TAYLOR, H. M. 1967. On the distribution of stock price differences. Operations Research 15, 1057-1062.
MANDELBROT, B. B. & VAN NESS, J. W. 1968. Fractional Brownian motions, fractional noises and applications. SIAM Review 10, 422.
MANDELBROT, B. B. & WALLIS, J. R. 1968. Noah, Joseph and operational hydrology. Water Resources Research 4, 909-918.
MANDELBROT, B. B. & WALLIS, J. R. 1969a. Computer experiments with fractional Gaussian noises. Water Resources Research 5, 228.
MANDELBROT, B. B. & WALLIS, J. R. 1969b. Some long-run properties of geophysical records. Water Resources Research 5, 231-340.
MANDELBROT, B. B. & WALLIS, J. R. 1969c. Robustness of the rescaled range R/S in the measurement of noncyclic long runstatistical dependence. Water Resources Research 5, 967-988. Ver también Apostel, M. & Morf; Berger & M.; Damerau & M.; Gefen, M. & Aharony; Gefen, Aharony, M. & Kirkpatrick; Gefen, Meir, M. & Aharony; Gefen, Aharony, M. & Peyriere; Gerstein & M.; Given & M.; Kahane & M.; Lovejoy & M.; Norton & M.; et Voldman, M. & al.
MARCUS, A. 1964. A stochastic model of the formation and survivance of lunar craters, distribution of diameters of clean craters. Icarus 3, 460-472.
MENDÈS-FRANCE, M. & TENENBAUM, G. 1981. Dimension des courbes planes, papiers pliés et suites de Rudin-Shapiro. Bulletin de la Société Mathématique de France 109, 207-215.
MINKOWSKI, H. 1901 Über die Begriffe Länge, Oberfläche und Volumen. Jahresbericht der Deutschen Mathematiker Vereinigung 9, 115-121. Reproducido en Minkowski 1911, 2, 122-127.
MINKOWSKI, H. 1911. Gesammelte Abhandlungen, Chelsea reprint.
MONIN, A. S. & YAGLOM. A M. 1971 & 1975. Statistical fluid mechanics. Volumes 1 and 2. Cambridge, MA: MIT Press.
MONTROLL, E. W. & SHLESINGER, M. F. 1982. On 1/f noise and other distributions with long tails. Proceedings of the National Academy of Science of the USA 79, 3380-3383.
MOORE, E. H. 1900. On certain crinkly curves. Tr. of the American Mathematical Society 1, 72-90.
MORI, H. 1980. Fractal dimensions of chaotic flows of autonomous dissipative systems. Progress of Theoretical Physics 63, 1044-1047.
MORI, H. & FUJISAKA. H. 1980. Statistical dynamics of chaotic flows. Progress of Theoretical Physics 63, 1931-1944.
MUNITZ, M. K. (Ed.) 1957. Theories of the universe. Glencoe, IL: The Free Press.
VON NEUMANN, J. 1949. Recent theories of turbulence. Dans Collected works. Ed. A. H. Traub. New York: Pergamon 6, 437-472.
NORTH, J. D. 1965. The measure of the universe. Oxford: Clarendon Press.
NORTON, V. A. 1982. Generation and display of geometric fractals in 3-D. Computer Graphics 16, 61-67.
NOVIKOV, E. A. & STEWART, R. W. 1964. Intermittency ot turbulence and the spectrum of fluctuations of energy dissipation (en ruso). Isvestia Akademii Nauk SSR; Seria Geofizicheskaia 3, 408-413.
NYE,. M. J. 1972. Molecular reality. A perspective on the scientific work of Jean Perrin. New York: American Elsevier.
OBOUKHOV, A. M. 1962. Some specific features of atmospheric turbulence. J. of Fluid Mechanics 13, 77-81. También en J. of Geophysical Research 67, 3011-3014.
OLBERS. W. 1823. Über die Durchsichtigkeit des Weltraums. Astronomisches Jahrbuch für das Jahr 1826 150, 110-121.
PAUMGARTNER, D., LOSA. G. & WEIBEL, E. R. 1981. Resolution effect on the stereological estimation of surface and volume and its interpretation in terms of fractal dimensions. Journal of Microscopy 121, 51-63.
PEANO, G. 1890. Sur une courbe, qui remplit une aire plane. Mathematische Annalen 36, 157-160. Traducido en Peano, Selected works. Toronto University Press, 1973.
PEEBLES, P. J. E. 1980. The large-scale structure of the universe. Princeton University Press.
PERDANG, J. 1981. The solar power spectrum —a fractal set. Astrophysics ans Space Science 74, 149-156.
PERRIN, J. 1906. La discontinuité de la matière. Revue du Mois 1, 323-344.
PERRIN, J. 1913. Les Atomes. París: Alean. Reimpreso en 1970 por Gallimard. Las ediciones posteriores a la de 1913 han envejecido más deprisa.
PEYRIÈRE, J. 1974. Turbulence et dimension de Hausdorff. Comptes Rendus (Paris) 278A, 567-569.
PEYRIÈRE, J. 1978. Sur les colliers aléatoires de B. Mandelbrot, Comptes Rendus (Paris) 286A, 937-939.
PEYRIÈRE, J. 1981. Processus de naissance avec interaction des voisins. H volution de graphes, Annales de l’Institut Fourier, 31, 187-218.
PONTRJAGIN, I. & SCHNIRELMAN, I. 1932. Sur une propriété métrique de la dimension. Annals of Mathematics 33, 156-162.
RAMMAL, R. & TOULOUSF, G. 1982. Spectrum of the Schrödinger equation on a self-similar structure. Physical Review Letters 49, 1194-1197.
RAMMAL, R. & TOLOUSF, G. 1983. Random walks on fractal structures and percolation clusters. J. de Physique Lettres 44, 13.
RAYLEIGH, LORD 1880. On the resultant of a large number of vibrations of the same pitch and arbitrary phase. Philosophical Magazine 10, 73. Ver Rayleigh 1899 1. 491.
RAYLEIGH, LORD 1899. Scientific papers. Cambridge UK: Cambridge University Press.
RICHARDSON, I. F. 1922. Weather prediction by numerical process. Cambridge UK: Cambridge University Press. La reedición de Dover contiene una introducción de J. Chapman que contiene una biografía.
RICHARDSON, I. F. 1926. Atmospheric diffusion shown on a distance-neighbour graph. Pr. of the Royal Society of London. A, 110, 709-737.
RICHARDSON, I. F. 1960a. Arms and insecurity: a mathematical study of the causes and origins of war. Ed. N. Rashevsky & E. Trucco. Pacific Grove, C’A: Boxwood Press.
RICHARDSON, I. F. 1960s. Statistics of deadly quarrels. Ed. Q. Wright & C. C. Lienau. Pacific Grove, CA: Boxwood Press. richardson. i., i 1961. The problem of contiguity: an appendix of statistics of deadly quarrels. General Systems Yearbook 6, 139-187.
RICHARDSON, I. F & STOMMEL, H. 1948. Note on eddy diffusion in the sea. J. of Meteorology 5, 238-240.
ROGERS, C. A. 1970. Hausdorff measures. Cambridge UK: Cambridge University Press.
ROTHROCK, D. A. & THORNDIKE, A. S. 1980. Geometric properties of the underside of sea ice. Journal of Geophysical Research 85C, 3955-3963.
SCHEFFER, V. 1976. Equations de Navier-Stokes et dimension de Hausdorff. Comptes Rendus (París) 282A, 121-122.
SCHEFFER, V. 1977. Partial regularity of solutions to the Navier-Stokes equation. Pacific J. of Mathematics 66, 535-552.
SCHEFFER, V. 1980. The Navier-Stokes equations on a bounded domain. Communications on Mathematical Physics 73, 1-42.
SCHERTZER, D. & LOVEJOY, S. 1984. The dimension and intermittency of atmospheric dynamics. Turbulent Stream Flow IV. Ed. B. Launder. New York: Springer.
SCHWARZ, H. & EXNER, H. E. 1980. The implement action of the concept of fractal dimension on a semiautomatic image analyzer. Powder Technology 28, 207-213.
SERRA, J. 1982. Image analysis and mathematical morphology. New York: Academic.
SHLESINGER, M. F. & HUGHES, B. D. 1981. Analogs of renormalization group transformations in random processes. Physica 109A, 597-608.
SIERPINSKI, W. 1974. Oeuvres choisies. Ed. S. Hartman et al. Varsovie: Editions scientifiques.
STANLEY, H. E. 1977. Cluster shapes at the percolation threshold: an effective cluster dimensionality and its connection with critical-point phenomena. J. of Physics A10, L211-L220.
STANLEY, H. E., BIRGENEAU, R. J., REYNOLDS, P. J. & NICOLL, J. E. 1976. Thermally driven phase transitions near the percolation threshold in two dimensions. J. of Physics C9, L553-L560.
STAPLETON, H. B., ALLEN. J. P., FLYNN, C. P., STINSON, D. G. & KURTZ, S. R. 1980. Fractal form of proteins. Physical Review Letters 45, 1456-1459.
STAUFFER, D. 1979. Scaling theory of percolation clusters. Physics Reports 34, 1-74. Stauffer, d. 1980. Hausdorff dimension… and percolation… Zeitschrift für Physik B37, 89-91.
STEIN, K. 1983. The fractal cosmos. Omni (February issue).
STEINHAUS, H. 1954. Length, shape and area. Colloquium Mathematicum 3, 1-13.
STENT, G. 1972. Prematurity and uniqueness in scientific discovery. Scientific American 227 (December) 84-93.
STEPHEN, M. J. 1981. Magnetic susceptibility of percolating clusters. Physics Letters A87, 67-68.
SUZUKI, M. 1981. Extension du concept de dimension —transitions de phases et fractales (en japonés). Suri Kagaku 221, 13-20.
TAQQU. M. S. 1970. Note on evaluation of R/S for fractional noises and geophysical records. Water Resources Research 6, 349-350.
TAQQU, M. S. 1975. Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. für Wahrscheinlichkeitstheorie 31, 287-302.
TAQQU, M. S. 1977. Law of the iterated logarithm for sums of nonlinear functions of the Gaussian variables that exhibit a long range dependence. Z. für Wahrscheinlichkeitstheorie 40, 203-238.
TAQQU, M. S. 1978. A representation for self-similar processes. Stochastic Processes and their Applications! 55-64.
TAQQU, M. S. 1979a. Convergence of integrated processes of arbitrary Hermite rank. Z. für Wahrscheinlichkeitstheorie 50, 53-83.
TAQQU, M. S. 1979b. Self-similar processes and related ultraviolet and infrared catastrophes. Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory. Amsterdam: North Holland.
TCHENTSOV, N. N. 1957 (traducción). Lévy’s Brownian motion for several parameters and generalized white noise. Theory of Probability and its Applications 2, 265-266.
TRICOT, C. 1981. Douze définitions de la densité logarithmique. Comptes Rendus (Paris) 293-1, 549-552.
ULAM, S. M. 1957. Infinite models in physics. Applied Probability. New York: McGraw-Hill. Ver Ulam 1974, 350-358.
ULAM, S. M. 1974. Sets, numbers and universes: selected works. Cambridge, MA: MIT Press.
DE VAUCOULEURS, G. 1956. The distribution of bright galaxies and the local supergalaxy. Vistas in Astronomy II, 1584-1606. London: Pergamon.
DE VAUCOULEURS, G. 1970. The case for a hierarchical cosmology. Science 167, 1203-1213.
DE VAUCOULEURS, G. 1971. The large scale distribution of galaxies and clusters of galaxies. Publications of the Astronomical Society of the Pacific 73, 113-143.
VILENKIN, N. Y. 1965. Stories about sets. New York: Academic.
VOLDMAN, J., MANDELBROT, B. B., HOFVEL, L. W., KNIGHT. J. & ROSENFELD, P. 1983. Fractal nature of software-cache interaction. IBM J. of Research and Development 27, 164-170.
VOSS. R. F. & CLARKE, J. 1975. «1/f noise» in music and speech. Nature 258, 317-318.
VOSS. R. F. 1978. 1/f noise in music; music from 1/f noise. J. of the Acoustical Society of America 63, 258-263.
VOSS, R. F. 1982. Random fractal forgeries, in Fundamental Algorithms for Computer Graphics. Edited by R. A. Earnshaw, NATO ASI Series Vol. FI3, New York: Springer Verlag, 13-16 & 805-835.
VOSS, R. F., LAIBOWITZ, R. B. & ALESSANDRINI, E. I. 1982. Fractal (scaling) clusters in thin gold films near the percolation threshold. Physical Review Letters 49, 1441-1444.
WIENER, N. 1953. Ex-prodigy. Cambridge, MA: MIT Press.
WIENER, N. 1956. I am a mathematician. Cambridge, MA: MIT Press.
WIENER, N. 1964. Selected papers. Cambridge, MA: MIT Press.
WIENER, N. 1976. Collected works. Cambridge, MA: MIT Press.
WIGNER, E. P. 1960. The unreasonable effectiveness of mathematics in the natural sciences. Communications on Pure and Applied Mathematics 13, 1-14. Ver Wigner: Symmetries and reflections. Bloomington: Indiana University Press (también el MIT Press Paperback) 222-237.
DE WIJS, H. J. 1951 & 1953. Statistics of ore distribution. Geologie en Mijnbouw (Amsterdam) 13, 365-375 & 15, 12-24.
XIPF, G. K. 1949. Human behasier and the principle of least-effort. Cambridge, MA: Addison-Wesley.