Dos aristócratas salen a cabalgar y uno desafía al otro a decir un número más alto que él. El segundo acepta la apuesta, se concentra y al cabo de unos minutos dice, satisfecho: «Tres». El primero medita media hora, se encoge de hombros y se rinde.
Un veraneante entra en una ferretería de Maine y compra una gran cantidad de artículos caros. El dueño, un tanto reticente y escéptico, calla mientras va sumando la cuenta en la caja registradora. Cuando termina, señala el total y observa cómo el hombre cuenta 1.528,47 dólares. Luego cuenta y recuenta el dinero tres veces. Hasta que el cliente acaba por preguntar si le ha dado la cantidad correcta, a lo que el de Maine contesta de mala gana: «Más o menos».
Una vez, el matemático G. H. Hardy visitó en el hospital a su protégé, el matemático hindú Ramanujan. Sólo por darle conversación, señaló que 1729, el número del taxi que le había llevado, era bastante soso, a lo que Ramanujan replicó inmediatamente: «¡No, Hardy! ¡No! Se trata de un número muy interesante. Es el menor que se puede expresar como suma de dos cubos de dos maneras distintas».
Números grandes y probabilidades pequeñas
La facilidad con que la gente se desenvuelve con los números va de la del aristócrata a la de Ramanujan, pero la triste realidad es que la mayoría está más próxima al aristócrata. Siempre me sorprende y me deprime encontrar estudiantes que no tienen la menor idea de cuál es la población de los Estados Unidos, de la distancia aproximada entre las costas Este y Oeste, ni de qué porcentaje aproximado de la humanidad representan los chinos. A veces les pongo como ejercicio que calculen a qué velocidad crece el cabello humano en kilómetros por hora, cuántas personas mueren aproximadamente cada día en todo el mundo, o cuántos cigarrillos se fuman anualmente en el país. Y a pesar de que al principio muestran cierta desgana (un estudiante respondió, simplemente, que el cabello no crece en kilómetros por hora), en muchos casos su intuición numérica acaba mejorando espectacularmente.
Si uno no tiene cierta comprensión de los grandes números comunes, no reacciona con el escepticismo pertinente a informes aterradores, como que cada año son raptados más de un millón de niños norteamericanos, ni con la serenidad adecuada ante una cabeza nuclear de un megatón, la potencia explosiva de un millón de toneladas de TNT.
Y si uno no posee cierta comprensión de las probabilidades, los accidentes automovilísticos le pueden parecer un problema relativamente menor de la circulación local, y al mismo tiempo pensar que morir a manos de los terroristas es un riesgo importante en los viajes a ultramar. Sin embargo, como se ha dicho menudo, las 45.000 personas que mueren anualmente en las carreteras norteamericanas son una cifra próxima a la de los norteamericanos muertos en la guerra del Vietnam. En cambio, los 17 norteamericanos muertos por terroristas en 1985 representan una pequeñísima parte de los 28 millones que salieron al extranjero ese año: una posibilidad de ser víctima en 1,6 millones, para ser precisos. Compárese esta cifra con las siguientes tasas anuales correspondientes a los Estados Unidos: una posibilidad entre 68.000 de morir asfixiado; una entre 75.000 de morir en accidente de bicicleta; una entre 20.000 de morir ahogado y una entre sólo 5.300 de morir en accidente de automóvil.
Enfrentada a estos grandes números y a las correspondientes pequeñas probabilidades, la persona anumérica responderá con el inevitable non sequitur: «Sí, pero ¿y si te toca a ti?», y a continuación asentirá con la cabeza astutamente, como si hubiera hecho polvo nuestros argumentos con su profunda perspicacia. Esta tendencia a la personalización es, como veremos, una característica de muchas personas que padecen de anumerismo. También es típica de esta gente la tendencia de sentir como iguales el riesgo de padecer cualquier enfermedad exótica rara y la probabilidad de tener una enfermedad circulatoria o cardíaca, de las que mueren semanalmente 12.000 norteamericanos.
Hay un chiste que en cierto modo viene al caso. Una pareja de ancianos, que andará por los noventa años, visita a un abogado para que le tramite el divorcio. El ahogado trata de convencerles de que sigan juntos. «¿Por qué se van a divorciar ahora, después de setenta años de matrimonio? ¿Por qué no siguen como hasta ahora? ¿Por qué ahora precisamente?». Por fin, la ancianita responde con voz temblorosa: «Es que queríamos esperar a que murieran los chicos».
Para captar el chiste hace falta tener una idea de qué cantidades o qué lapsos de tiempo son adecuados a cada contexto. Por el mismo motivo, un patinazo entre millones y miles de millones, o entre miles de millones y billones debería hacernos reír también, y en cambio no es así, pues demasiado a menudo carecemos de una idea intuitiva de tales números. La comprensión que muchas personas cultas tienen de ellos es mínima, ni siquiera son conscientes de que un millón es 1.000.000, que mil millones es 1.000.000.000 y que un billón es 1.000.000.000.000.
En un estudio reciente, los doctores Kronlund y Phillips, de la Universidad de Washington, demostraban que la mayoría de apreciaciones de los médicos acerca de los riesgos de distintas operaciones, tratamientos y mediciones eran completamente erróneas (incluso en sus propias especialidades), y a menudo el error era de varios órdenes de magnitud. En cierta ocasión tuve una conversación con un médico que, en un intervalo de unos veinte minutos, llegó a afirmar que cierto tratamiento que estaba considerando: a) presentaba un riesgo de uno en un millón; b) era seguro al 99 por ciento; y c) normalmente salía a la perfección. Dado que hay tantos médicos que piensan que por lo menos ha de haber once personas en la sala de espera para que ellos no estén mano sobre mano, esta nueva muestra de su anumerismo no me sorprende lo más mínimo.
Para tratar con números muy grandes o muy pequeños, la notación científica suele resultar a menudo más fácil y clara que la normal, y por tanto echaré mano de ella algunas veces. La cosa no encierra gran dificultad. 10N representa un 1 seguido de N ceros, así 104 es 10.000 y 109 son mil millones. 10−N quiere decir 1 dividido por 10N, así por ejemplo, 10−4 es 1 dividido entre 10.000 ó 0,0001 y 10−2 es una centésima. 4 × 106 es 4 × 1.000.000 ó 4.000.000; 5,3 × 108 significa 5,3 × 100.000.000 ó 530.000.000; 2 × 10−3 es 2 × 1/1.000 ó 0,002; 3,4 × 10−7 significa 3,4 × 1/10.000.000 ó 0,00000034.
¿Por qué las revistas o los diarios no utilizan en sus relatos esta notación científica? No es ni con mucho tan misteriosa como muchos de los temas de que tratan esas publicaciones y resulta bastante más útil que el fracasado cambio al sistema decimal sobre el que se han escrito tantos artículos pesados. La expresión 7,39842 × 1010 es más legible y más fácilmente comprensible que setenta y tres mil novecientos ochenta y cuatro millones doscientos mil.
En notación científica, las respuestas a las preguntas que planteé al principio son las siguientes: el cabello humano crece aproximadamente a razón de 1,6 × 10−8 kilómetros por hora; cada día mueren en la tierra unas 2,5 × 105 personas y cada año se fuman aproximadamente 5 × 1011 cigarrillos en los Estados Unidos. Las expresiones de estos números en notación común son: 0,000000016 kilómetros por hora, 250.000 personas y 500.000.000.000 cigarrillos.
Sangre, montañas y hamburguesas
En una columna sobre anumerismo en Scientific American, el informático Douglas Hofstadter cita el caso de la Ideal Toy Company, que en el envoltorio del cubo de Rubik afirmaba que el cubo admitía más de tres mil millones de configuraciones distintas. Si uno lo calcula, obtiene que las configuraciones posibles son más de 4 × 1019, un 4 seguido de 19 ceros. La frase del envoltorio es cierta, las configuraciones posibles son, en efecto, más de tres mil millones. La subestimación que supone esa cifra es, sin embargo, un síntoma de un omnipresente anumerismo que encaja muy mal en una sociedad tecnológicamente avanzada. Es como si en la entrada del Lincoln Túnel hubiera un rótulo anunciando: Nueva York, más de 6 habitantes; o como si McDonald se vanagloriara de haber vendido más de 120 hamburguesas.
El número de 4 × 1019 no es lo que se dice frecuente, pero sí lo son cifras como diez mil, un millón o un billón. Para poder establecer comparaciones rápidamente, deberíamos disponer de ejemplos de conjuntos que constarán de un millón de elementos, de mil millones, etc. Por ejemplo, saber que un millón de segundos sólo duran aproximadamente once días y medio, mientras que para que pasen mil millones de segundos hay que esperar casi 32 años, nos permite formarnos una idea más clara de la magnitud relativa de dichos números. ¿Y los billones? La edad del homo sapiens moderno es probablemente menor que 10 billones de segundos, y la total desaparición de la variante Neandertal del primitivo homo sapiens ocurrió hace sólo un billón de segundos. La agricultura apareció hace unos 300 mil millones de segundos (diez mil años), la escritura hace unos 150 mil millones de segundos, y tenemos música rock desde hace tan sólo unos mil millones de segundos.
Otras fuentes más comunes de números grandes son el billón de dólares del presupuesto federal y nuestra creciente reserva de armamento. Dado que los Estados Unidos tienen unos 250 millones de habitantes, cada mil millones de dólares del presupuesto federal representa una carga de 4 dólares por cada norteamericano. Por tanto, un presupuesto anual de defensa de casi un tercio de billón de dólares significa aproximadamente 5.000 dólares anuales por cada familia de cuatro personas. ¿En qué se ha invertido este dineral (nuestro y suyo) al cabo de los años? El equivalente de TNT de todas las armas nucleares del mundo es de unos 25.000 megatones, 25 billones de kilos, que significan unos 5.000 kilos por cada persona humana del planeta. (A propósito, medio kilo basta para destruir un coche y matar a todos sus ocupantes). Las armas nucleares que puede llevar un solo submarino Trident tienen un poder explosivo ocho veces mayor que el empleado en toda la segunda guerra mundial.
Pasemos ahora a citar ejemplos más alegres de números pequeños. El modelo que suelo tomar para el humilde millar es una sección del Veterans Stadium de Filadelfia, que sé que tiene 1.008 asientos, y que uno puede representarse fácilmente. La pared norte de un garaje que hay cerca de mi casa tiene casi exactamente diez mil ladrillos. Para cien mil, suelo pensar en el número de palabras de una novela un poco gruesa.
Para hacerse una idea de la magnitud de los números grandes es útil proponer una o dos colecciones como las anteriores para cada potencia de diez, hasta la decimotercera o la decimocuarta. Y cuanto más personales sean, mejor. También es bueno practicar haciendo estimaciones de cualquier cantidad que pueda picarnos la curiosidad: ¿Cuántas pizzas se consumen anualmente en los Estados Unidos? ¿Cuántas palabras lleva uno dichas a lo largo de su vida? ¿Cuántos nombres de persona distintos salen cada año en el New York Times? ¿Cuántas sandías cabrían en el Capitolio?
Calculad aproximadamente cuántos coitos se practican diariamente en el mundo. ¿Varía mucho este número de un día a otro? Estimad el número de seres humanos en potencia, a partir de todos los óvulos y espermatozoides que han existido, y encontraréis que los que han convertido esta potencia en acto son, contra toda probabilidad, increíblemente afortunados.
En general estos cálculos son muy fáciles y a menudo resultan sugerentes. Por ejemplo: ¿cuál es el volumen total de la sangre humana existente en el mundo? El macho adulto medio tiene unos cinco litros de sangre, la hembra adulta un poco menos, y los niños bastante menos. Así, si calculamos que en promedio cada uno de los 5 mil millones de habitantes de la tierra tiene unos cuatro litros de sangre, llegamos a que hay unos 20 mil millones (2 × 1010) de litros de sangre humana. Como en cada metro cúbico caben 1.000 litros, hay aproximadamente 2 × 107 metros cúbicos de sangre. La raíz cúbica de 2 × 107 es 270. Por tanto, ¡toda la sangre del mundo cabría en un cubo de unos 270 metros de largo, un poco más de un dieciseisavo de kilómetro cúbico!
El área del Central Park de Nueva York es de 334 hectáreas, esto es unos 3,34 kilómetros cuadrados. Si lo rodeáramos con una pared, toda la sangre del mundo sólo alcanzaría para llenarlo hasta una altura de unos seis metros. El Mar Muerto, situado en la frontera entre Israel y Jordania, tiene una superficie de unos 1.000 kilómetros cuadrados. Si vertiéramos toda la sangre del mundo en el Mar Muerto, sus aguas sólo subirían dos centímetros. Estas cifras resultan del todo sorprendentes, incluso fuera de su contexto: ¡no hay tanta sangre en el mundo! Si comparamos su volumen con el de toda la hierba, todas las hojas o todas las algas del mundo, queda clarísima la posición marginal del hombre entre las demás formas de vida, por lo menos en lo que a volumen se refiere.
Cambiemos por un momento de dimensiones y consideremos la relación entre la velocidad supersónica del Concorde, que va a unos 3.000 kilómetros por hora, y la del caracol, que se desplaza a unos 7,5 metros por hora, es decir, a 0,0075 kilómetros por hora. La velocidad del Concorde es unas 400.000 veces mayor que la del caracol. Más impresionante aún es la relación entre la velocidad con que un ordenador medio suma diez dígitos y la de un calculador humano. El ordenador lo hace más de un millón de veces más rápido que nosotros, que, con nuestras limitaciones, nos parecemos un poco al caracol. Para los superordenadores la relación es de mil millones.
Y para terminar daremos otro ejemplo de cálculo terrenal que suele usar un asesor científico del MIT para eliminar aspirantes en las entrevistas de selección de personal: pregunta cuánto se tardaría en hacer desaparecer una montaña aislada, como el Fujiyama japonés, por ejemplo, transportándola con camiones. Supóngase que, durante todo el día, llega un camión cada 15 minutos, es cargado instantáneamente de tierra y piedras, y se va sin interrumpir al siguiente camión. Daremos la respuesta más adelante, anticipando que el resultado es un tanto sorprendente.
Los números colosales y los 400 de Forbes
El tema de los cambios de escala ha sido uno de los pilares de la literatura mundial, desde la Biblia hasta los liliputienses de Swift, y desde Paul Bunyan hasta el colosal Gargantúa de Rabelais. Siempre me ha chocado, sin embargo, la inconsistencia que han mostrado los distintos autores en su empleo de los números grandes.
Se dice que el niño Gargantúa se tomaba la leche de 17.913 vacas. De joven fue a estudiar a París montado en una yegua que abultaba como seis elefantes y llevaba colgadas del cuello las campanas de Nôtre Dame a modo de cascabeles. En el camino de vuelta a casa, fue atacado a cañonazos desde un castillo y se sacó las bombas del pelo con un rastrillo de 300 metros de longitud. Para hacerse una ensalada cortaba lechugas del tamaño de un nogal y devoraba media docena de peregrinos que se habían refugiado en la arboleda. ¿Pueden apreciar las inconsistencias internas de este cuento?
El Génesis dice que durante el Diluvio «quedaron cubiertos todos los montes sobre la faz de la tierra». Si se toma esto literalmente, resulta que la capa de agua sobre la tierra tendría entre 5.000 ó 6.000 metros de grosor, lo que equivale a más de 2.500 millones de kilómetros cúbicos de agua. Como según el relato bíblico del Diluvio duró 40 días con sus noches, es decir, sólo 960 horas, la tasa de caída de la lluvia ha de haber sido por lo menos de cinco metros por hora, suficiente para echar a pique un avión y con mayor motivo un arca cargada con miles de animales a bordo.
Darse cuenta de inconsistencias internas como esas es uno de los placeres menores de tener cierta cultura numérica. Lo importante, sin embargo, no es que uno esté analizando permanentemente la consistencia y la plausibilidad de los números, sino que, cuando haga falta, pueda recoger información de los puros datos numéricos, y que pueda refutar afirmaciones, basándose sólo en las cifras que las acompañan. Si la gente estuviera más capacitada para hacer estimaciones y cálculos sencillos, se sacarían (o no) muchas conclusiones obvias, y no se tendrían en consideración tantas opiniones ridículas.
Antes de volver a Rabelais, consideraremos dos alambres colgantes con la misma sección transversal. (Seguro que es la primera vez que se imprime esta frase). Las fuerzas que actúan sobre los alambres son proporcionales a sus masas y estas son proporcionales a sus respectivas longitudes. Como las áreas de las secciones transversales de los alambres son iguales, la tensión de cada uno, la fuerza dividida por el área de la sección transversal, varía en proporción directa a la longitud del alambre. Un alambre diez veces más largo que otro soportará una tensión diez veces mayor. Con un razonamiento análogo se demuestra que de dos puentes geométricamente semejantes, hechos del mismo material, el más débil es necesariamente el mayor.
Por la misma razón, no se puede aumentar de escala un hombre desde unos dos metros hasta diez. Al multiplicar por cinco la altura, su peso aumentará en un factor 53, mientras que su capacidad para sostener peso dada por el área de la sección transversal de sus huesos aumentará sólo en un factor 52. Los elefantes son grandes, a costa de tener unas patas muy gruesas, mientras que las ballenas son relativamente inmunes a este efecto por estar sumergidas en el agua.
Aunque en la mayoría de situaciones los aumentos y disminuciones de escala dan primeras aproximaciones razonablemente buenas, a menudo dan malos resultados, como lo prueban muchos ejemplos mundanos. Que el precio del pan suba un 6% no significa que los yates vayan a subir también un 6 por ciento. Si una empresa crece hasta un tamaño veinte veces mayor que el que tenía al empezar, las proporciones relativas a sus distintos departamentos no tienen por qué seguir siendo las mismas. Si la ingestión de mil gramos de cierta sustancia hace que una de cada cien ratas contraiga cáncer, no podemos concluir inmediatamente que la ingestión de sólo cien gramos hará que lo contraiga una de cada mil ratas.
En cierta ocasión escribí a una minoría importante de los 400 de Forbes, una lista de los cuatrocientos norteamericanos más ricos, pidiéndoles 25.000 dólares como subvención a un proyecto en el que estaba trabajando en aquel tiempo. La fortuna media de las personas con las que me puse en contacto era aproximadamente de unos 400 millones de dólares (4 × 108, un número de dólares verdaderamente colosal) y yo sólo pedía 1/16.000 de esta cantidad. Tenía la esperanza de que la proporcionalidad lineal valdría también en este caso, y me animaba pensando que si algún extraño me escribiera pidiendo una ayuda para un proyecto interesante y me solicitara 25 dólares, mucho más de 1/16.000 de mi propia fortuna, probablemente le contestaría afirmativamente. Pero ¡ay!, aunque recibí bastantes respuestas amables, no conseguí ni cinco.
Arquímedes y los números prácticamente infinitos
La arquimedianidad es una propiedad fundamental de los números (llamada así por el matemático griego Arquímedes), según la cual se puede rebasar cualquier número, por grande que sea, agregando repetidas veces cualquier número menor, por pequeño que este sea. Aunque esta propiedad sea en principio evidente, a veces la gente se resiste a aceptar sus consecuencias, como ese alumno mío que sostenía que el cabello humano no crece a razón de kilómetros por hora. Desgraciadamente, la agregación de los nanosegundos empleados en una operación simple de ordenador provoca largos embotellamientos en los problemas intratables, muchos de los cuales tardarían milenios en ser resueltos. No es sencillo acostumbrarse al hecho de que los tiempos y distancias minúsculos de la microfísica, y también la inmensidad de los fenómenos astronómicos, comparten las dimensiones de nuestro mundo a escala humana.
Está claro, pues, cómo la propiedad anterior llevó a Arquímedes a su famosa afirmación de que si le dieran un punto de apoyo, una palanca lo bastante larga y un lugar donde situarse, podría, él solo, levantar la tierra. La inconsciencia de la aditividad de las pequeñas cantidades es otro defecto de los anuméricos, que por lo visto no se acaban de creer que sus pequeños aerosoles de laca para el cabello puedan atacar en lo más mínimo la capa de ozono de la atmósfera, o que su automóvil particular contribuya al problema de la lluvia ácida.
Por impresionantes que resulten las pirámides, se construyeron piedra a piedra en un tiempo mucho menor que los cinco mil o diez mil años que harían falta para transportar con camiones el Fujiyama con sus 4.000 metros de altura. Se atribuye a Arquímedes un cálculo parecido, aunque más clásico. Calculó el número de granos de arena necesarios para llenar la tierra y los cielos. Aunque no disponía de la notación exponencial, inventó algo similar, y sus cálculos fueron en esencia equivalentes a lo que sigue.
Interpretando «la tierra y los cielos» como una esfera centrada en la tierra, empezamos por observar que el número de granos de arena que harían falta para llenarla depende tanto del radio de la esfera como del grosor de la arena. Suponiendo que quepan quince granos por pulgada lineal, cabrán 15 × 15 granos por pulgada cuadrada y 153 granos por pulgada cúbica. Como un pie son 12 pulgadas, hay 123 pulgadas en cada pie cúbico y por tanto habrá 153 × 123 granos en cada pie cúbico. Del mismo modo, habrá 153 × 123 × 5.2803 granos por milla cúbica. Teniendo ahora en cuenta la fórmula del volumen de la esfera: 4/3 × p × el radio al cubo, veremos que el número de granos de arena necesarios para llenar una esfera de un billón de millas de radio (más o menos la estimación hecha por Arquímedes) es 4/3 × p × 1000.000.0003 × 153 × 123 × 5.2803, que da aproximadamente 1054 granos de arena.
Esos cálculos llevan aparejada una sensación de poder que resulta difícil de explicar y que implica, en cierto modo, abarcar mentalmente el mundo. Una versión más moderna del problema es el cálculo del número aproximado de bits subatómicos necesarios para llenar el universo. Este número juega el papel del «infinito práctico» de los problemas de ordenador que se pueden resolver sólo teóricamente.
El universo es, siendo un poco generosos, una esfera de unos 40 mil millones de años luz de diámetro. A fin de simplificar el cálculo, seremos aún más generosos y supondremos que es un cubo de 40 mil millones de años luz de arista. El diámetro de los protones y neutrones es de unos 10−12 centímetros. La pregunta arquimediana que plantea el informático Donald Knuth es: ¿Cuántos cubitos de 10−13 centímetros de diámetro (una décima parte del diámetro de estos nucleones) cabrían en el universo? Un cálculo sencillo da que el resultado es menor que 10125. Así pues, un ordenador del tamaño del universo cuyas componentes elementales fueran menores que los nucleones constaría de menos de 10125 componentes. Los cálculos de problemas que precisaran de un número mayor de componentes serían imposibles. Aunque pueda parecer sorprendente, hay muchos de tales problemas, algunos de ellos son comunes y, además, tienen interés práctico.
Una unidad de tiempo comparablemente pequeña es el tiempo empleado por la luz, que va a 300.000 kilómetros por segundo, en recorrer los 10−13 centímetros de arista de uno de esos cubitos. Suponiendo que la edad del universo sea de 15 mil millones de años, tenemos que han pasado menos de 1042 de tales unidades desde el principio de los tiempos. Así pues, cualquier cálculo de ordenador que requiera más de 1042 pasos (y seguro que cada uno de ellos tardará más que una de esas pequeñas unidades de tiempo) ocupará en realizarse un tiempo mayor que la edad actual de este universo. Como antes, hay muchos problemas así.
Suponiendo que un ser humano tenga forma esférica y más o menos un metro de diámetro (piénsese en una persona en cuclillas), acabaremos con unas cuantas comparaciones biológicamente reveladoras que son más fáciles de imaginar. El tamaño de una célula es al de una persona como el de esta al de Rhode Island. Del mismo modo, un virus es a una persona como una persona a la tierra; un átomo es a una persona como esta a la órbita de la tierra alrededor del sol, y un protón es a una persona como una persona a la distancia a Alfa Centauro.
La regla del producto y los valses de Mozart
Este es quizás un buen momento para insistir en lo que dije al principio, que el lector anumérico puede saltarse tranquilamente los trozos más difíciles que vaya encontrando de vez en cuando. En las siguientes secciones puede que haya algunos. Del mismo modo, el lector anumérico puede saltarse tranquilamente los trozos triviales con que se encuentre. (Claro que cualquiera puede saltarse tranquilamente cualquier parte del libro, pero preferiría que esto sólo ocurriera con párrafos aislados).
La llamada regla del producto es engañosamente simple y muy importante. Según este principio, si una elección tiene M alternativas posibles y otra elección distinta tiene N, entonces la realización de ambas elecciones, una tras otra, admite M × N alternativas distintas. Así, si una mujer tiene cinco blusas y tres faldas, puede vestirse de 5 × 3 = 15 maneras distintas, pues puede llevar cualquier de sus cinco blusas (B1, B2, B3, B4, B5) con cualquiera de sus tres faldas (F1, F2, F3), para obtener una de las quince combinaciones siguientes: B1, F1; B1, F2; B1, F3; B2, F1; B2, F2; B2, F3; B3, F1; B3, F2; B3, F3; B4, F1; B4, F2; B4, F3; B5, F1; B5, F2; B5, F3. A partir de un menú de cuatro entrantes, siete segundos platos y tres postres, un comensal puede elegir 4 × 7 × 3 = 84 comidas distintas, siempre que pida los tres platos.
Análogamente, el número de resultados posibles al lanzar dos dados es 6 × 6 = 36; cualquiera de los seis números del primer dado se puede combinar con cualquiera de los seis del segundo. El número de resultados posibles con la condición de que el segundo dado no marque lo mismo que el primero es 6 × 5 = 30; cualquiera de los seis números del primer dado se puede combinar con cualquiera de los cinco números restantes del segundo. El número de resultados posibles al tirar tres dados es 6 × 6 × 6 = 216. Y el número de resultados posibles, con la condición de que los tres dados señalen un número diferente, es 6 × 5 × 4 = 120.
Este principio es sumamente útil para el cálculo de grandes números, como el número total de teléfonos con que se puede comunicar sin necesidad de marcar prefijo, aproximadamente 8 × 106. En primer lugar se puede marcar cualquiera de los ocho dígitos distintos de 0 ó 1 (que rara vez se usan en primera posición), en segundo lugar se puede elegir un dígito cualquiera entre los diez posibles, y así sucesivamente hasta marcar siete dígitos. (En realidad habría que tener en cuenta otras restricciones sobre los números y los lugares que pueden ocupar, y esto rebajaría el resultado a algo menos de los 8 millones). Del mismo modo, el número de matrículas de automóvil de una provincia que se pueden formar combinando dos letras seguidas de cuatro cifras es 262 × 104. Si se descartan las repeticiones, entonces el número posible de matrículas es 26 × 25 × 10 × 9 × 8 × 7.
Cuando los máximos dirigentes de ocho países occidentales celebran una reunión en la cumbre y posan juntos para una foto, pueden alinearse, de 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 40.320 maneras distintas. ¿Por qué? ¿En cuántas de estas 40.320 fotos posibles aparecerán juntos el presidente Reagan y la primera ministra Margaret Thatcher? Para contestar a esta pregunta, supóngase que Reagan y Thatcher están metidos en un gran saco de arpillera. Los siete objetos de que disponemos (los seis dirigentes restantes y el saco) se pueden alinear de 7 × 6 × 5 × 4 × 3 × 2 × 1 = 5.040 maneras (hemos vuelto a usar la regla del producto). Este número hay que multiplicarlo luego por dos, pues cuando saquemos a Reagan y a Thatcher del saco les podremos ordenar de dos maneras distintas. Hay pues 10.080 posibles fotos distintas en las que Reagan y Thatcher salen juntos. Por tanto, si los ocho dirigentes se alinean al azar, la probabilidad de que estos dos salgan el uno junto a la otra es 10.080/40.320 = 1/4.
En cierta ocasión Mozart compuso un vals en el que especificaba once posibilidades distintas para catorce de los dieciséis compases y dos posibilidades para uno de los dos restantes. De este modo el vals admitía 2 × 1114 variaciones, de las cuales sólo se ha interpretado una ínfima parte. En una tesitura parecida, el poeta francés Raymond Queneau escribió un libro titulado Cent mille milliards de poèmes que tenía diez páginas, con un soneto en cada una. Las páginas del libro estaban cortadas de modo que se pudiera tomar un verso de cada soneto. Así, una vez escogido el primer verso, se podía elegir independientemente el segundo verso, luego el tercero, etc. Queneau decía que absolutamente todos los 1014 sonetos resultantes tenían sentido, aunque lo más probable es que nadie se haya entretenido en comprobarlo.
En general la gente no se hace idea del tamaño que pueden llegar a tener estas colecciones tan aparentemente ordenadas. En cierta ocasión un informador deportivo sugirió en un artículo a un entrenador de béisbol que probara cada una de las posibles combinaciones de los veinticinco jugadores que formaban su equipo hasta dar con el 9 ideal. La sugerencia admite muchas interpretaciones, pero en cualquier caso el número de partidos que habría que jugar es tan grande que los jugadores habrían muerto mucho antes de que se hubieran jugado todos.
Los helados de tres sabores y el truco de Von Neumann
Las heladerías Baskin-Robbins anuncian helados de treinta y un sabores distintos. El número de helados posibles de tres sabores distintos es por tanto 31 × 30 × 29 = 26.970; cualquiera de los treinta y un sabores puede estar encima, cualquiera de los treinta restantes puede estar en el centro y cualquiera de los veintinueve restantes debajo. Si no nos importa el orden en que están los sabores del helado, sino que sólo nos interesa saber cuántos posibles helados de tres sabores hay, dividiremos 26.970 entre 6, con los que obtendremos 4.495 helados distintos. El motivo de esta división es que hay 6 = 3 × 2 × 1 maneras distintas de ordenar los tres sabores en un helado de, por ejemplo, fresa, vainilla y chocolate: FVC, FCV, VFC, VCF, CVF y CFV. Como la misma ley vale para todos los helados de tres sabores, el número de estos es: (31 × 30 × 29)/(3 × 2 × 1) = 4.495.
Un ejemplo menos engordante lo tenemos en las muchas loterías del tipo loto en las que para ganar hay que acertar una posible combinación de seis números elegidos entre cuarenta. Si el orden en que se eligen los números es importante, hay (40 × 39 × 38 × 37 × 36 × 35) = 2.763.633.600 maneras distintas de escogerlos. Por el contrario, si sólo nos interesa la colección de seis números y no el orden en que se han escogido (como ocurre en esas loterías), entonces hemos de dividir 2.763.633.600 por 720 para determinar el número de apuestas distintas, y obtenemos 3.838.380. Es necesario dividir, pues hay 720 = 6 × 5 × 4 × 3 × 2 × 1 maneras de ordenar los seis números que forman cada apuesta.
Otro ejemplo, de importancia considerable para los jugadores de cartas, lo tenemos en el número de posibles manos de póker a cinco cartas. Si el orden de las cartas es importante, hay 52 × 51 × 50 × 49 × 48 posibles maneras de tener cinco cartas. Como en el juego no importa el orden, dividiremos el producto por (5 × 4 × 3 × 2 × 1) y obtenemos que hay 2.598.960 manos posibles. Conociendo este número podemos calcular varias probabilidades interesantes. La de tener cuatro ases, por ejemplo, es 48/2.598.960 (aproximadamente 1 entre 50.000) pues hay 48 manos distintas con cuatro ases, debido a que la quinta carta puede ser cualquiera de las 48 restantes en el mazo.
Obsérvese que los números obtenidos en los tres ejemplos tienen la misma forma: (32 × 30 × 29)/(3 × 2 × 1) helados distintos de tres sabores, (40 × 39 × 38 × 37 × 36 × 35)/(6 × 5 × 4 × 3 × 2 × 1) maneras diferentes de escoger seis números de entre cuarenta, y (52 × 51 × 50 × 49 × 48)/(5 × 4 × 3 × 2 × 1) manos de póker distintas. Las cantidades obtenidas de este modo se llaman números combinatorios. Salen siempre que queremos calcular el número de posibles colecciones de R elementos escogidos de entre N dados, sin importar el orden en que hagamos la selección.
En el cálculo de probabilidades se puede emplear una variante de la regla del producto. Si dos acontecimientos son independientes, en el sentido de que el resultado de uno de ellos no influye en el del otro, la probabilidad de que ocurran ambos a la vez se calcula multiplicando las probabilidades de que ocurra cada uno de ellos por separado.
Por ejemplo, la probabilidad de que salgan dos caras al lanzar dos veces una moneda es 1/2 × 1/2 = 1/4, pues de los cuatro resultados igualmente probables: (cruz, cruz), (cruz, cara), (cara, cruz) y (cara, cara), uno de ellos es «dos caras». Por la misma regla, la probabilidad de que al lanzar cinco veces una moneda salgan sólo caras es (1/2)5 = 1/32, pues uno de los treinta y dos resultados posibles e igualmente probables es que salgan cinco caras consecutivas.
Como la probabilidad de que una ruleta se pare en rojo es 18/38, y como las distintas tiradas de una ruleta son independientes, la probabilidad de que salga rojo cinco veces seguidas es (18/38)5 (esto es, 0,024 ó 2,4 %). Del mismo modo, dado que la probabilidad de que alguien escogido al azar no haya nacido en julio es 11/12, y que los cumpleaños de las personas son independientes, la probabilidad de que de entre doce personas elegidas al azar ninguna haya nacido en julio es (11/12)12 (es decir 0,352 ó 35,2%). El concepto de independencia de los acontecimientos juega un papel muy importante en la teoría de la probabilidad, y cuando se da, la regla del producto simplifica considerablemente los cálculos.
El jugador Antoine De Gambaud, Chevalier de Mère, planteó al filósofo y matemático francés Pascal uno de los problemas más antiguos de la teoría de la probabilidad. De Gambaud quería saber cuál de los dos casos siguientes es más probable: sacar por lo menos un 6 al tirar cuatro veces un solo dado, o sacar un 12 en veinticuatro tiradas con dos dados. La regla del producto aplicada a las probabilidades basta para hallar el resultado si se tiene en cuenta también la probabilidad de que no se dé un caso es igual a 1 menos la probabilidad de que sí ocurra (si el riesgo de lluvia es de un 20%, la probabilidad de que no llueva es del 80%).
Como la probabilidad de que no salga ningún 6 en una tirada del dado es 5/6, la probabilidad de que no salga en ninguna de las cuatro tiradas es (5/6)4. Restando este número de 1 tendremos la probabilidad de que este caso (ningún 6) no ocurra, es decir, de que salga por lo menos un 6 : 1 − (5/6)4 = 0,52. Análogamente, la probabilidad de que por lo menos salga un 12 en veinticuatro tiradas de un par de dados resulta ser 1 − (35/36)24 = 0,49.
Un ejemplo más contemporáneo del mismo tipo de cálculo lo tenemos en la probabilidad de contraer el SIDA por vía heterosexual. Se estima que el riesgo de contraer esta enfermedad en un solo contacto heterosexual sin protección con un compañero afectado del SIDA es aproximadamente de uno entre quinientos (esta es la media de los resultados de cierto número de estudios). Por tanto, la probabilidad de no contraerlo en un solo contacto es 499/500. Si, como muchos suponen, los riesgos son independientes, entonces la probabilidad de no ser víctima al cabo de dos contactos es (499/500)2, y después de N encuentros es (499/500)N. Como (499/500)346 es 1/2, el riesgo de contraer el SIDA llega a ser aproximadamente del 50% al cabo de un año de coitos heterosexuales diarios sin protección, con un portador de la enfermedad.
Si se usa condón, el riesgo de ser contagiado en un coito heterosexual con un portador reconocido de la enfermedad disminuye a uno sobre cinco mil, y una relación sexual diaria durante diez años con esa persona enferma (suponiendo que este sobreviva durante todo este tiempo) comportaría un riesgo del 50% de contagio. Si no se conoce el estado de salud del compañero (o compañera), pero se sabe que no está en ningún grupo de riesgo conocido, la probabilidad de contagio en un solo coito es de uno sobre cinco millones sin usar preservativo, y de uno sobre cincuenta millones en caso contrario. Es mayor el riesgo de morir en accidente de automóvil al volver a casa después de la cita.
A menudo dos partes contrarias deciden un resultado lanzando una moneda al aire. Cualquiera de las dos partes, o ambas, podrían sospechar que la moneda está cargada. Aplicando la regla del producto, el matemático John von Neumann ideó un truco que permite que los contendientes usen una moneda cargada y sin embargo se obtengan resultados limpios.
Se tira dos veces la moneda. Si salen dos caras o dos cruces, se vuelve a tirar otras dos veces. Si sale cara-cruz, gana la primera parte, y si sale cruz-cara, gana la segunda. La probabilidad de ambos resultados es la misma, aun si la moneda está cargada. Por ejemplo, si sale cara el 60 por ciento de las veces y cruz el 40 por ciento restante, la secuencia cruz-cara tiene una probabilidad de salir de 0,4 × 0,6 = 0,24, y la secuencia cara-cruz, una probabilidad de 0,6 × 0,4 = 0,24. Así pues, ambas partes pueden estar seguras de la limpieza del resultado, a pesar de que la moneda sea defectuosa (a no ser que se hagan otro tipo de trampas).
Un instrumento importante, íntimamente relacionado con la regla del producto y los números combinatorios, es la distribución binomial de probabilidad. Aparece siempre que consideramos una prueba o procedimiento que admite dos resultados, llamémosles «positivo» y «negativo», y pretendemos conocer la probabilidad de que al cabo de una serie de N intentos se obtenga «positivo» en R de ellos. Si el 20 por ciento de todos los refrescos servidos por una máquina expendedora se derraman del vaso, ¿cuál es la probabilidad de que en las próximas diez ventas se derramen exactamente tres? ¿Y tres como máximo? ¿Cuál es la probabilidad de que en una familia de cinco hijos exactamente tres sean chicas? Si una décima parte de las personas tienen cierto grupo sanguíneo, ¿cuál es la probabilidad de que entre cien personas escogidas al azar exactamente ocho de ellas pertenezcan a este grupo sanguíneo? ¿Y ocho como máximo?
Pasemos a resolver el problema de la máquina expendedora de refrescos que derrama líquido en el 20 por ciento de los vasos que sirve. La probabilidad de que el vaso se desborde en los tres primeros refrescos y no en los siete restantes es, aplicando la regla del producto para la probabilidad: (0,2)3 × (0,8)7. Pero hay muchas maneras de que sean exactamente tres los vasos derramados en diez ventas, y la probabilidad de cada una de ellas es precisamente (0,2)3 × (0,8)7. Podría ser que sólo se vertieran los tres últimos, o sólo el cuarto, el quinto y el noveno, etc. Por tanto, como hay (10 × 9 × 8)/(3 × 2 × 1) = 120 maneras distintas de elegir tres vasos de entre diez (número combinatorio), la probabilidad de que algún conjunto de tres vasos se vierta es 120 × (0,3)3 × (0,8)7.
Para determinar la probabilidad de que se derramen tres vasos como máximo, se calcula primero la probabilidad de que se derramen exactamente tres, cosa que ya hemos hecho, y se le suman las probabilidades de que se derramen dos, uno y cero, respectivamente. Estas probabilidades se determinan por el mismo procedimiento. Afortunadamente disponemos de tablas y de buenas aproximaciones que nos sirven para acortar este tipo de cálculos.
Julio César y tú
Para terminar, daremos otras dos aplicaciones de la regla del producto, la primera un tanto deprimente y la segunda, esperanzadora. La primera es la probabilidad de no sufrir ninguna enfermedad, accidente u otra desgracia de cierta lista que enumeraré. No morir en un accidente de automóvil es seguro en un 99 por ciento, mientras que un 98 por ciento de nosotros se salvará de morir en un accidente doméstico. Tenemos una probabilidad del 95 por ciento de librarnos de una enfermedad pulmonar; un 90 por ciento de la locura; un 80 por ciento del cáncer, y un 75 por ciento de una enfermedad del corazón. He tomado sólo estas cifras a modo de ejemplo, pero se pueden hacer estimaciones muy precisas para una amplia gama de posibles calamidades. Y aunque la probabilidad de librarse de cada una de estas enfermedades o accidentes por separado es alentadora, la de salvarse de todas no lo es. Si suponemos que, en general, estas desgracias son independientes, y multiplicamos todas las probabilidades citadas, el producto se hace en seguida inquietantemente pequeño: la probabilidad de no padecer ninguna desgracia de esta corta lista que he citado es menor del 50 por ciento. Resulta pues preocupante que algo tan inofensivo como la regla del producto pueda intensificar en tal medida nuestra mortalidad.
El segundo ejemplo, más esperanzador, trata de una especie de persistencia inmortal. Primero, apreciado lector, inspira profundamente. Supongamos que el relato de Shakespeare es exacto y que César dijo «Tú también, Bruto» antes de expirar. ¿Cuál es la probabilidad de que hayas inhalado por lo menos una de las moléculas que exhaló César en su último suspiro? La respuesta es sorprendentemente alta: más del 99 por ciento.
Por si no me crees, he supuesto que al cabo de más de dos mil años esas moléculas se han repartido uniformemente por el mundo y que la mayoría aún están libres en la atmósfera. Una vez aceptadas estas hipótesis tan razonables, el cálculo de la probabilidad que nos interesa es inmediato. Si hay N moléculas de aire en la atmósfera, de las cuales A fueron exhaladas por César, la probabilidad de que hayas inhalado una de estas últimas molécula es A/N. Por el contrario, la probabilidad de que cualquier molécula que hayas inhalado no proceda de César es 1 − A/N. Por la regla del producto, si inhalas tres moléculas, la probabilidad de que ninguna de ellas venga de César es [1 − A/N]3. Análogamente, si inhalas B moléculas, la probabilidad de que ninguna proceda de César es aproximadamente [1 − A/N]B. Por tanto, la probabilidad del caso complementario, que hayas inhalado al menos una de las moléculas que se exhaló, es 1 − [1 − A/N]B. A, B (valen 1/30-ésimo de litro, o sea 2,2 × 1022 moléculas) y N (aproximadamente 1044 moléculas) tienen valores que hacen que esta probabilidad sea mayor que 0,99. Es fascinante que a la larga hayamos de ser los unos parte de los otros, al menos en el sentido mínimo de este ejemplo.