Pi

Es la relación entre el perímetro de una circunferencia y su diámetro.

Se denomina Pi desde el siglo XVIII. Su nombre proviene de la letra griega Pi (Π, π), inicial en griego de periferia (περιφέρεια) y perímetro (περίμετρον).

Es un número irracional; es decir, no puede expresarse de forma exacta como cociente de dos números enteros. Por lo tanto, sus decimales son infinitos y no periódicos. Su valor con cinco decimales es: 3,14159…

El empeño en obtener una buena aproximación ha ocupado a lo largo de la historia a muchas de las mentes más brillantes, algunas de las cuales han dedicado su vida en exclusiva al número Pi. Alrededor del año 1800 a. C. el escriba egipcio Ahmes estimó un valor de 3,16[3]. En la Biblia, el Libro de los Reyes narra la construcción del Templo de Salomón, en el siglo X a. C., y menciona una pila circular de bronce con una relación entre diámetro y circunferencia exactamente igual a 3. En Mesopotamia también se le dio el valor de 3, y a veces 3,125.

Arquímedes, en el siglo III a. C., fue el primero en desarrollar un método de cálculo racional con el que llegó a un rango cuyo punto intermedio es 3,14185[4]. El procedimiento de Arquímedes fue utilizado por el matemático chino Liu Hui en el siglo III d. C. y por el astrónomo y matemático indio Aryabhata en el siglo V d. C. Aryabhata logró una buena aproximación hasta el cuarto decimal (3,1416) y Liu Hui hasta el quinto (3,14159).

En la época de Pitágoras, siglos antes de Aryabhata, Liu Hui y Arquímedes, nadie había desarrollado un método de cálculo y no se conocía con certeza ningún decimal de Pi, pero eran conscientes de su importancia. El número Pi es imprescindible para el cálculo de circunferencias, círculos y esferas, y para los pitagóricos la figura más perfecta era el círculo y el sólido más perfecto la esfera. Además, consideraban que los planetas se movían trazando órbitas circulares.

Necesitaban a Pi, pero su cálculo quedaba todavía lejos de su alcance.

Enciclopedia Matemática. Socram Ofisis. 1926.