NI siquiera en nuestros días ha dejado de sonar un tanto a oxímoron la expresión teoría del caos. En la década de 1980, caos y teoría eran palabras que difícilmente habrían podido encontrarse en la misma sala, por no decir ya en la misma frase. Cuando mis amigos supieron que estaba trabajando en un libro sobre el caos —y que tenía que ver con la ciencia—, me miraron inquisitivos y recelosos. Una de ellos me confesó, más tarde, que estaba convencida de que debía de estar escribiendo sobre «gas». Tal como se afirma en el subtítulo, la del caos era una ciencia nueva, extraña y de nombre extravagante, emocionante y difícil de aceptar.
¡Lo que cambian las cosas en un cuarto de siglo! Las ideas vinculadas a esta teoría se han visto adoptadas y asumidas no sólo por la ciencia convencional, sino también por la cultura en general. Aun hoy, sin embargo, sigue habiendo muchos investigadores a los que les parece extraña y de nombre extravagante, emocionante y difícil de aceptar.
En nuestros días, todos hemos oído hablar del caos, aunque sea sólo de pasada.
—No entiendo eso del caos —dice el personaje que interpreta Laura Dern en la película de 1993 Parque Jurásico, basada en la novela de Michael Crichton, y el de Jeff Goldblum, que se presenta como adepto de dicha teoría, puede permitirse así explicarle en tono cautivador:
—Se trata de la imprevisibilidad en sistemas complejos. Se resume en el efecto mariposa. Una mariposa bate las alas en Pekín, y en Nueva York llueve en lugar de hacer sol.
A esas alturas, el efecto mariposa se hallaba a un paso de erigirse en lugar común de la cultura popular. En él, de hecho, se han inspirado al menos dos obras cinematográficas, una entrada del Bartlett’s familiar quotations, un vídeo musical y un millar de páginas y cuadernos de bitácora en Internet (eso sí: los topónimos no han dejado de cambiar, y así, la mariposa aletea en Brasil, el Perú, la China, California, Tahití y Suramérica, y provoca lluvia, un huracán, un tornado o una tormenta en Texas, Florida, Nueva York, Nebraska, Kansas o Central Park). Tras los huracanes sufridos en 2006, la revista Physics Today publicó un artículo, titulado «Battling the butterfly effect» («La lucha contra el efecto mariposa»), que deja volar la fantasía para culpar del desastre a una formación de tales insectos: «De pronto acuden a la mente visiones de campos de entrenamiento para lepidópteros terroristas».
Tanto los expertos modernos en administración empresarial como los autores posmodernos de teoría literaria han recurrido a un aspecto u otro del caos. En los dos ámbitos han resultado de gran utilidad expresiones como la del «desorden ordenado», popular sobre todo en títulos de tesis. A los personajes apasionantes de la literatura, como la Cleopatra de Shakespeare, se les considera «atractores extraños», y a las tendencias de los diagramas de los mercados financieros, también. Por su parte, los pintores y los escultores han hallado inspiración tanto en las imágenes como en los contenidos de la geometría fractal. Yo diría que la encarnación artística más poderosa de estas ideas se da en Arcadia, obra teatral de Tom Stoppard, estrenada en Londres unos meses antes que Parque Jurásico. También en ella aparece un matemático que se deleita en el caos: «Lo estrafalario —asegura— está resultando ser la matemática del mundo natural». El dramaturgo va más allá del desorden ordenado para abordar la tensión que se da entre el jardín inglés formal y una selva; entre lo clásico y lo romántico. Stoppard encauza las voces que pueden escucharse en este libro, y sé que citarlo aquí equivale a enzarzarse en un diálogo de besugos; pero lo cierto es que no puedo evitarlo. El autor capta a la perfección la euforia que provoca a muchos jóvenes el descubrimiento del caos. No ve sólo la puerta abierta, sino también el paisaje que se extiende tras ella.
Esa realidad ordinaria que es nuestra vida, las cosas sobre las que escribe la gente poesía: las nubes, los narcisos, las cascadas o lo que ocurre en una taza de café cuando le echamos crema…; todas estas cosas están cargadas de misterio. Son tan enigmáticas para nosotros como lo era el firmamento para los griegos. El futuro es desorden. Una puerta así sólo se ha entreabierto cinco o seis veces desde que echamos a caminar sobre las patas traseras. ¿Qué mejor momento para estar vivo que éste, en el que casi todo lo que creíamos saber ha resultado estar equivocado?
En realidad, la puerta está más que entreabierta ahora, que contamos con una nueva generación de científicos armada con un conjunto de convicciones más robusto acerca del funcionamiento de la naturaleza. Saben que un sistema dinámico de cierta complejidad puede adoptar formas insólitas, y también que, cuando tal cosa ocurre, no deja de ser posible mirarlo a los ojos y conocer de qué pie cojea. Los encuentros interdisciplinares destinados a compartir metodologías relativas a configuraciones de escala o pautas de redes, si bien siguen sin ser la norma, ya no son, cuando menos, ninguna excepción.
En general, los precursores del caos llegaron salidos de un terreno agreste para hacerse un hueco entre lo más granado de la investigación científica. Después de que lo nombraran profesor emérito del MIT y lo colmaran de honores, Edward Lorenz aún acudía a trabajar a los noventa años a su despacho, situado en las alturas del Edificio 54, desde donde no era difícil verlo observar las condiciones del tiempo. Mitchell Feigenbaum entró a formar parte del claustro de la Universidad Rockefeller y creó allí un laboratorio de física matemática. A Robert May, que presidió la Royal Society y fue asesor jefe científico del Gobierno del Reino Unido, le otorgaron en 2001 el título de barón May de Oxford. Por su parte, Benoît Mandelbrot publicó, en 2006, un «currículo» en su página web de la Universidad de Yale en el que se relacionan 24 premios, menciones y medallas; dos condecoraciones; 19 «diplomas, títulos honoris causa y similares»; su afiliación a 12 sociedades científicas; su pertenencia a 15 consejos y comités editoriales, y toda una variedad de objetos y entidades que llevan su nombre y entre los que se incluyen «un árbol del paseo Nobel» de la ciudad húngara de Balatonfüred, un laboratorio en la China y un asteroide.
Los principios que descubrieron y los conceptos que inventaron todos ellos han seguido evolucionando, y el primer ejemplo de ello lo constituye la propia palabra caos. Ya a mediados de la década de 1980 recibía una definición bastante estricta por parte de los numerosos científicos consagrados a este particular, que la aplicaban a un subconjunto particular de los fenómenos abarcados por expresiones más generales como sistemas complejos. El lector sagaz, sin embargo, habrá podido advertir que un servidor prefería una definición más libre y abarcadora, al estilo de la de Joe Ford: «La dinámica que ha sacudido, al fin, el yugo del orden y lo predecible»; y aunque sigo adherido a ella, lo cierto es que todo evoluciona hacia la especialización, y en un sentido estricto, el caos es, en nuestro tiempo, algo muy preciso. Cuando Yaneer Bar-Yam escribió, en 2003, el manual de casi mil páginas que tituló Dynamics of Complex Systems, abordó el caos propiamente dicho en la primera sección del capítulo inicial («Vale: tengo que reconocer que el capítulo primero tiene trescientas páginas», asevera). A continuación llegaron el proceso estocástico, la simulación de modelos matemáticos, los autómatas celulares, la teorías de computación e información, las escalas, la renormalización y los fractales, las redes neuronales y de atractores, los sistemas homogéneos y los heterogéneos, etc.
Bar-Yam, hijo de un experto en física de partículas, había estudiado física de la materia condensada y, en 1997, tras abandonar la docencia en la Universidad de Boston, fundó el Instituto de Sistemas Complejos de Nueva Inglaterra. Había conocido la obra de Stephen Wolfram sobre autómatas celulares y la de Robert Devaney sobre el caos, y descubrió que los polímeros y superconductores le interesaban menos que las redes neuronales y —según afirma sin ánimo de ostentación— la naturaleza de la civilización humana. «Reflexionar sobre la civilización —asevera— me llevó a pensar en la complejidad en cuanto entidad. ¿Con qué es comparable la civilización? ¿Con el latón?; ¿con una rana? ¿Cómo contestar a esa pregunta? Eso es lo que origina los sistemas complejos».
La respuesta, por si el lector no ha dado con ella, es que se asemeja más a una rana que al latón, por el simple hecho de que evoluciona, y los procesos de adaptación que comporta este hecho son esenciales para el diseño y la creación de algo tan complejo que no puede descomponerse de forma eficaz en piezas independientes. Los sistemas socioeconómicos son como ecosistemas; de hecho, son ecosistemas. Mediante simulación por ordenador, Bar-Yam ha estado estudiando, entre otras cosas, patrones mundiales de violencia étnica, para lo cual ha tratado de aislar los de mezclas de población y de fronteras que suscitan conflictos. Se trata, en lo fundamental, de una investigación de formación de pautas, y la simple circunstancia de que pueda trabajar en este campo ilustra el cambio profundo que se ha producido en las dos últimas décadas en lo tocante a comprensión, por parte del público, de lo que constituye un problema científico legítimo. «Voy, con su permiso, a compendiar el proceso», propone a sus lectores antes de referir la siguiente parábola:
Tenemos un huerto, y gente que trabaja en él para recoger los frutos que ofrecen sus árboles. ¿Vale? Cosechan lo que les dan y lo llevan al mercado, y a continuación toca hacerse con la fruta que se encuentra en las ramas más altas. Resulta más difícil de alcanzar, y tal vez tiene un tamaño menor y un aspecto no tan bueno. Fabricamos escaleras y subimos a lo alto para cogerla, y a continuación recompensamos a quienes han hecho las escaleras.
Yo tengo la sensación de haber hecho lo siguiente: Miro a mi alrededor y veo que hay un seto, y detrás, otro huerto con un montón de árboles cargados de frutas hermosísimas. Y allá que voy: doy con una de ellas y vuelvo al seto para enseñársela a todos, y todos me dicen:
—¡Eso no es fruta!
Ya no la reconocen.
A su entender, en nuestros días ha mejorado mucho la comunicación: las disciplinas de todo el abanico que ofrece la ciencia han aprendido a centrarse en comprender la complejidad, las escalas, los patrones y la conducta colectiva ligada a estas últimas. Todo eso es fruta.
En lo más embriagador de los primeros días, los investigadores describieron el caos como la tercera revolución del siglo en el ámbito de las ciencias físicas, pues llegó detrás de la relatividad y la mecánica cuántica. Lo que no puede negarse hoy es que resulta inseparable de estas dos: física sólo hay una.
Las ecuaciones fundamentales de la relatividad general son de carácter no lineal, y eso, por lo que sabemos, es una señal de que el caos acecha oculto. «No siempre se está bien versado en sus métodos —advierte Janna Levin, astrofísica y cosmóloga de la Universidad de Columbia—. La física teórica en particular está cimentada en la idea de simetrías fundamentales —señala—, y creo que ése es el motivo por el que ha sido tan difícil a los físicos teóricos aceptar semejante cambio de paradigma». Las simetrías y los grupos de simetría tienden a producir ecuaciones solubles, y por eso funcionan tan bien… cuando funcionan.
En cuanto experta en relatividad, Levin aborda las preguntas más abarcadoras que puedan imaginarse, como la de: ¿Es infinito el universo, o sólo inmenso? Sus investigaciones parecen apuntar a que hay que considerarlo inmenso o —si nos ponemos técnicos— compacto desde el punto de vista topológico y multiconectado. Al estudiar su origen, Levin no tuvo más remedio que enfrentarse al caos y topó con no poca resistencia. «Mis investigaciones provocaron reacciones violentísimas la primera vez que las hice públicas», recuerda. En general, se consideraba que la teoría del caos estaba bien para analizar «sistemas complicados y mugrosos, pero no el terreno virtual, puro y sencillo de la física fundamental».
En realidad, estábamos trabajando sobre el caos en la purísima relatividad general, exenta por completo de mugre. Se trataba de una empresa diminuta, muy diminuta. Intentábamos entender el caos en un big bang genérico, en la caída en un agujero negro o en las órbitas que se producen a su alrededor. La gente no piensa que se trate de un mundo fantasmagórico, pero se sorprende de ver que tiene su función en algo tan poco mugroso (sin átomos ni trastos de ningún tipo) como un sistema puramente relativista.
Los astrónomos habían dado ya con la huella del caos en la violencia que se genera en la superficie solar, en los vacíos que se dan en el cinturón de asteroides y en la distribución de las galaxias, y Levin y sus colegas la han hallado también en lo que ocurrió tras el Big Bang y en los agujeros negros. Al decir de sus predicciones, la luz que atrapan éstos puede entrar en órbitas caóticas inestables y verse reemitida, con lo que sería posible contemplar el agujero negro, siquiera un instante. Sí: el caos puede iluminarlo. «Aún quedan por explotar números racionales, conjuntos fractales y toda clase de consecuencias hermosas —asegura—. De modo que todos están aterrados y fascinados a partes iguales». Ella ha introducido el caos en el espacio-tiempo curvado. Einstein estaría orgulloso.
Por lo que a mí respecta, lo cierto es que jamás he vuelto al ámbito del caos, aunque es posible que el lector encuentre en el presente libro las semillas de todos cuantos he escrito tras él. Apenas sabía nada de Richard Feynman, y sin embargo, aparece aquí como invitado (véase el capítulo 5). Isaac Newton tiene un protagonismo mucho mayor: da la impresión de ser el antihéroe del caos, o el dios que debe ser destronado. Con el tiempo, leyendo sus cuadernos y su correspondencia, reparé, sin embargo, en lo equivocado que estaba sobre él. También mi último libro tuvo su origen en éste, y de un modo más concreto, en lo que me reveló Rob Shaw acerca del caos y la teoría de la información. Otra paradoja: el caos es creador de información.