Sus admiradores se complacen en asegurar que el conjunto de Mandelbrot es el objeto más complicado de las ciencias exactas. La eternidad no bastaría para verlo de manera total: sus discos, erizados de púas espinosas, y sus espirales y filamentos, que se encorvan al exterior y se ensortijan, soportando moléculas bulbosas que cuelgan, infinitamente abigarradas, como racimos del viñedo particular de Dios. Examinado en color, a través de la ventanilla ajustable de la pantalla de un ordenador, el conjunto de Mandelbrot parece más fractal que los fractales, a causa de su rica complicación a lo largo de las escalas. Exigiría una infinidad de información el intento de catalogar las imágenes diferentes que contiene, o el de establecer una descripción numérica de su perfil. Pero he aquí la paradoja: para enviar una descripción total del conjunto por una línea de transmisión, se necesitan sólo pocas docenas de caracteres del código. Un programa conciso de ordenador posee la información suficiente para reproducirlo por completo. Los primeros en entender cómo se mezclaban en él lo complejo y lo simple fueron cogidos desapercibidos, incluido Mandelbrot. El conjunto de éste se transformó en una especie de emblema público del caos, apareció en las satinadas portadas de los folletos de conferencias y de revistas trimestrales de ingeniería, y fue la pieza más importante de una exposición de arte informático que recorrió las naciones en 1985 y 1986. Se captaba con facilidad su belleza en aquellas imágenes; en cambio, costó mucho más captar su significado a los matemáticos, que lo iban comprendiendo paso por paso.
Pueden formarse muchas figuras en el plano complejo con procedimientos iterativos, pero el conjunto de Mandelbrot es único. Surgió vago, espectral, cuando su descubridor se propuso establecer una generalización sobre las formas llamadas conjuntos de Julia. Los inventaron y estudiaron, durante la primera guerra mundial, los matemáticos franceses Gaston Julia y Pierre Fatou, que trabajaron sin las imágenes que ahora proporciona el ordenador. Mandelbrot había visto sus modestos dibujos y su obra —ya caída en la oscuridad— a la edad de veinte años. Los conjuntos de Julia, de aspecto variable, eran los objetos que intrigaban a Barnsley. Algunos parecen círculos, pinchados y deformados en muchos sitios, para proporcionarles estructura fractal. Otros se rompen en regiones y otros son polvos irrelacionados. Los vocablos y conceptos de la geometría euclídea no servían para describirlos. El matemático francés Adrien Douady dijo: «Se obtiene una variedad increíble de conjuntos de Julia. Unos son como nubes gordezuelas, otros como zarza sarmentosa y otros como chispas que flotan en el aire, tras el estallido de un fuego de artificio. Uno ostenta la figura de conejo, y muchos poseen colas de caballo de mar».
Mandelbrot descubrió, en 1979, que podía crear, en el plano complejo, una imagen útil como catálogo de los conjuntos de Julia, como guía de todos y cada uno. Exploró la iteración de procesos complicados, ecuaciones que incluían raíces cuadradas, senos y cosenos. Como había edificado su vida intelectual sobre la hipótesis de que lo sencillo engendra lo complejo, no advirtió inmediatamente cuán extraordinario era el objeto que se cernía fuera del campo visual de la pantalla de su ordenador en la IBM y en Harvard. Apretó sin piedad a los programadores para que precisaran los detalles, y ellos sudaron sangre para reservar en la memoria, ya forzada, espacio para interpolar puntos de un ordenador IBM principal, con un tubo elemental de representación visual en blanco y negro. La situación empeoró porque los programadores debieron estar constantemente alerta para hacer frente a un escollo común en la exploración con ordenador, la producción de «artefactos», apariciones debidas sólo a una rareza de la máquina y que desaparecían cuando el programa se escribía de modo distinto.
Heinz-Otto Peitgen, Peter H. Richter
COLECCIÓN DE CONJUNTOS DE JULIA.
A continuación, Mandelbrot se concentró en la confección de un diagrama que podía programarse sin esfuerzo. Aparecieron los primeros contornos de discos en una cuadrícula tosca, con un programa que repetía pocas veces el bucle de realimentación. Unos cuantos cálculos con lápiz y papel evidenciaron que los discos eran matemáticamente reales, y no fruto de un capricho en la computación. Surgieron indicios de otras figuras a la derecha y la izquierda de los discos principales. Su mente vio más, dijo Mandelbrot más tarde: una jerarquía de formas, átomos de los que brotaban otros más pequeños ad infinitum. Y donde el conjunto cortaba la línea real, sus discos, cada vez más diminutos, descendían la escala con una regularidad geométrica que habrían reconocido los especialistas en dinámica: la secuencia de las bifurcaciones de Feigenbaum.
Aquello le animó a seguir adelante, refinando las imágenes burdas. Pronto encontró polvo que desordenaba el perfil de los discos y se cernía en el espacio circunstante. Mientras procuraba refinar los detalles, pensó que la buena suerte le había abandonado. Las imágenes se hicieron más confusas en lugar de más claras. Regresó al centro de investigaciones de la IBM, en el condado de Westchester, en busca de una potencia de ordenador con la que Harvard no podía rivalizar. Le asombró comprobar que la confusión era síntoma de algo real. Los brotes y zarcillos salían lánguidamente de la isla principal. Contempló cómo un límite, continuo a todas luces, se transformaba en una cadena de espirales semejantes a colas de caballo de mar. Lo irracional fecundaba lo racional.
El conjunto de Mandelbrot es una colección de puntos. Cada uno, en el plano complejo —o sea cada número complejo—, está en el conjunto o fuera de él. Una manera de definirlo consiste en examinar los puntos uno tras otro, lo que sólo exige una sencilla aritmética iterativa. Para efectuarlo se toma el número complejo; se eleva al cuadrado; se suma el número original; se obtiene el cuadrado del resultado; se suma el número original; se obtiene el cuadrado del resultado, y así en adelante. Si el total tiende al infinito, el punto no está en el conjunto de Mandelbrot. Se halla en él si el total se atiene a lo finito (pudiera estar en una curva cerrada, repetitiva, o vagar caóticamente).
APARECE EL CONJUNTO DE MANDELBROT. En las primeras y toscas impresiones de ordenador que obtuvo Mandelbrot, apareció una estructura imperfecta, que se fue detallando así que mejoró la calidad de la computación. ¿Eran islas aisladas las «moléculas» flotantes semejantes a pulgones? ¿O estaban unidas al cuerpo principal con filamentos tan sutiles que no podían observarse? Fue imposible precisarlo.
La repetición indefinida de un proceso y la pregunta de si el resultado es infinito se parece a los procesos de realimentación del mundo cotidiano. Supóngase que se montan un micrófono, amplificador y altavoces en un auditorio, y que preocupa el agudo pitido de la realimentación acústica. Si el micrófono recoge un ruido bastante fuerte, el sonido ampliado de los altavoces volverá al micrófono en un bucle interminable, cada vez más intenso. Si es bastante reducido, el ruido acabará en la nada. Para hacer con números el modelo de este proceso de realimentación, puede adoptarse uno de partida, multiplicarlo por sí mismo, multiplicar el producto por sí mismo, etc. Se comprobará que las cifras grandes conducen inmediatamente al infinito: 10, 100, 10.000… Pero las pequeñas llevan a cero: 1/2, 1/4, 1/16… Para crear una figura geométrica, se define una colección de cuantos puntos, introducidos en esta ecuación, que no se escapan hacia el infinito. Considérense los de una recta desde el cero en adelante, hacia arriba. Si un punto emite un pitido de realimentación, désele color blanco. De lo contrario, el color será negro. No se tardará en tener una figura que consiste en una línea negra de 0 a 1.
Nadie necesitaba recurrir a la experimentación en el caso de un proceso unidimensional. No cuesta comprender que los números mayores que uno llevan al infinito y que el resto no lo hace. Pero, en las dos dimensiones del plano complejo, no suele bastar, conociendo la ecuación, la deducción de una forma definida por un proceso iterativo. El conjunto de Mandelbrot no admite atajos, a diferencia de las figuras geométricas tradicionales, como las circunferencias, elipses y parábolas. El único método de saber qué clase de figura corresponde a una ecuación determinada es proceder por tanteo, y este procedimiento puso a los exploradores de aquel terreno ignorado más cerca espiritualmente de Magallanes que de Euclides.
La unión del mundo de las formas con el de los números, así realizada, representó una ruptura con el pasado. Las nuevas geometrías nacen siempre que alguien cambia una regla básica. Supongamos que el espacio es curvo en lugar de plano, propone un geómetra, y el resultado será una fantástica parodia curva de Euclides que ofrece el marco preciso para la teoría general de la relatividad. Supongamos que el espacio tiene cuatro dimensiones, o cinco, o seis. Supongamos que el número que expresa una dimensión sea una fracción. Supongamos que las figuras pueden retorcerse, estirarse, anudarse. O, ahora, supongamos que las formas se definen iterando una ecuación en un bucle de realimentación, y no resolviéndola una sola vez.
Julia, Fatou, Hubbard, Barnsley y Mandelbrot… Estos matemáticos modificaron las reglas sobre la confección de las figuras geométricas. Los métodos euclídeo y cartesiano para convertir ecuaciones en curvas son conocidos por quien haya estudiado geometría en la segunda enseñanza, o encontrado un sitio en un mapa por medio de dos coordenadas. La geometría clásica, ante una ecuación, busca la serie de números que la satisfagan. Las soluciones de una como x2 + y2 = 1 producen una figura que, en este caso, es una circunferencia. Otras sencillas motivan figuras distintas, las elipses, parábolas e hipérbolas de secciones cónicas, o las más complicadas debidas a ecuaciones diferenciales en el espacio de fases. Pero cuando el geómetra la itera, en vez de resolverla, la ecuación se transforma en un proceso —y no en una descripción—, dinámico en lugar de estático. Si entra un número en ella, otro sale, y aquél permanece, etc. Los puntos saltan de un sitio a otro. Un punto se marca cuando causa cierta clase de comportamiento, pero no cuando satisface la ecuación. Como comportamientos existen el estado estable, la convergencia de una repetición periódica de los estados y la carrera desenfrenada, incontenible, hacia el infinito.
En la era precedente a los ordenadores, hasta Julia y Fatou, que comprendieron las posibilidades de la nueva creación de imágenes, carecieron de los medios para transformarla en ciencia. Los ordenadores posibilitaron la geometría de tanteo. Hubbard analizó el método de Newton, calculando el comportamiento de un punto tras otro, y Mandelbrot encontró su conjunto de la misma guisa, o sea mediante un ordenador que recorriera, uno tras otro, los puntos del plano. No todos, claro está. Los cálculos recurrieron a una rejilla de puntos, pues tanto el tiempo como los ordenadores son finitos. Una rejilla más fina rinde una imagen más precisa, mas a costa de operaciones más largas. Los cálculos sobre el conjunto de Mandelbrot eran sencillos, porque el proceso también lo era: la iteración en el plano complejo de z → z2 + c. Tómese un número, multiplíquese por él mismo y súmese el número inicial.
Así que se habituó a la actividad de explorar las figuras con ordenador, Hubbard introdujo un estilo matemático innovador, aplicando los métodos del análisis combinatorio, sección de las matemáticas que no se había utilizado aún en los sistemas dinámicos. Pensó que todo se unía. Disciplinas separadas de las ciencias exactas se juntaban en una encrucijada. Sabía que no le bastaría ver el conjunto de Mandelbrot; no se daría por vencido hasta que lo entendiera, y, al fin, aseveró que lo había logrado.
Si el límite era sólo fractal, en el sentido de los monstruos de Mandelbrot, de comienzos de siglo, una imagen se parecería más o menos a la anterior. El principio de la autosemejanza a escalas distintas permitiría predecir lo que el microscopio electrónico vería en el siguiente nivel de ampliación. En cambio, cada incursión más profunda en el conjunto daba sorpresas. Mandelbrot se preocupó porque había dado una definición demasiado reducida de fractal; ansiaba que el vocablo abarcara también aquel objeto. Con la ampliación necesaria, se apreció que el conjunto contenía torpes copias de sí mismo, cosas minúsculas, parecidas a bichitos, que se separaban del cuerpo principal. La ampliación aún mayor mostró que ninguna de aquellas moléculas era igual a las demás. Había siempre clases diversas de caballos de mar, especies distintas de individuos rizosos. En suma, ninguna parte del conjunto era idéntica, fuese cual fuere la ampliación.
El descubrimiento de moléculas flotantes suscitó un problema inmediato. ¿Se componía el conjunto de Mandelbrot de un continente con penínsulas muy alargadas? ¿O era polvo, un cuerpo principal rodeado de islas diminutas? No estaba claro. De nada servía el conocimiento de los conjuntos de Julia, que tenían ambas manifestaciones: figuras enteras y polvos, según los casos. Los últimos, por ser fractales, tienen la característica peculiar de que no hay en ellos dos partes «juntas» —cada porción está separada de las restantes por una región vacía—; pero ningún fragmento está «solo»: uno siempre se halla arbitrariamente cerca de un grupo de ellos. Mandelbrot, al observar las imágenes, comprendió que el experimento con ordenador no despejaba aquella cuestión fundamental. Se concentró sobre todo en las motas que revoloteaban en torno del cuerpo principal. Unas desaparecieron, y otras se trocaron casi en claras réplicas de ellas. Parecían independientes, pero acaso estuviesen enlazadas por líneas tan finas que continuaban burlando la rejilla de puntos computados.
Douady y Hubbard recurrieron a una brillante cadena de matemáticas novísimas para probar que cada molécula flotante pende de una filigrana que la une al resto, delicada red salida de ínfimos abultamientos del conjunto principal, «polímero del demonio», de acuerdo con la expresión de Mandelbrot. Los matemáticos demostraron que cualquier segmento —fueran cuales fueran su situación y su tamaño—, cuando el «microscopio» del ordenador lo ampliase, revelaría más moléculas, todas semejantes, pero no idénticas al conjunto general. Todas estarían rodeadas de espirales y proyecciones propias, semejantes a llamas, las cuales, inevitablemente, mostrarían moléculas más minúsculas, siempre similares y jamás iguales, en cumplimiento de un precepto de infinita variedad, de un milagro de miniaturización, en el que cada detalle estaba seguro de ser en sí un universo, sin par y cabal.