Una teoría universal

La inspiración llegó ofreciendo algo plástico, la imagen mental de dos pequeñas formas onduladas y una grande. Aquello fue todo: una imagen brillante y clara grabada en su cerebro, tal vez sólo la punta visible de un colosal iceberg de trabajo mental, efectuado por debajo de la línea de flotación de la consciencia. Tenía que ver con las escalas. Y brindó a Feigenbaum el camino que necesitaba.

Estudió los atractores. El equilibrio estable de sus gráficas era un punto fijo que atraía a los demás. Fuese cual fuere la que despuntara, la «población» saltó indefectiblemente hacia el atractor. Después, con el primer período de duplicación, el atractor se partió en dos como una célula que se divide. Al pronto, aquellos dos puntos estuvieron casi juntos; luego, al aumentar el parámetro, flotaron aparte. Más tarde, hubo otro período de duplicación: cada punto del atractor se dividió de nuevo, en el mismo momento. Su número permitió a Feigenbaum predecir cuándo sucedería el período de duplicación. Descubrió entonces que podía también vaticinar los valores precisos de cada punto en aquel atractor, cada vez más complejo: dos puntos, cuatro, ocho… Le era posible adivinar las poblaciones que aparecían en las oscilaciones de un año a otro. Había otra convergencia geométrica. Aquellas cifras obedecían también a una ley escalar.

Feigenbaum exploraba un campo intermedio olvidado entre las matemáticas y la física. ¿Cómo definir su trabajo? No se trataba de ciencias exactas, pues no demostraba nada. Desde luego, exploraba números, pero los números son para el matemático lo que una bolsa de monedas para el banquero dedicado a las inversiones: en principio, la sustancia de su profesión, pero, en realidad, demasiado engorrosos y especiales para gastar tiempo en ellos. Las ideas son las monedas en curso de los matemáticos. Feigenbaum cumplía un programa de física y, por extraño que fuese, era casi una faceta de la física experimental.

Los números y funciones representaban el objeto de su estudio, en vez de mesones y quarks. Poseían trayectorias y órbitas. Había de penetrar en su comportamiento. Necesitaba —la expresión llegaría a ser un tópico de la nueva ciencia— crear intuición. El ordenador era su acelerador y su cámara de niebla. Forjaba una metodología al mismo tiempo que una teoría. Por lo común, quien empleaba un ordenador planteaba un problema, lo alimentaba con él y guardaba a que la máquina calculase la solución: un problema, una solución. Feigenbaum y los investigadores del caos que le siguieron exigían más. Tenían que hacer lo mismo que Lorenz, a saber, formar universos en miniatura y observar su evolución. Podían modificar este o aquel rasgo, y ver qué caminos distintos resultarían. Estaban convencidos de que, los cambios imperceptibles de ciertos rasgos llevaban a alteraciones de bulto del comportamiento general.

Feigenbaum averiguó en seguida lo inconveniente del equipo de ordenadores de Los Álamos para la clase de cálculo que deseaba efectuar. No obstante la enormidad de sus recursos, muy superiores a los de casi todas las universidades, Los Álamos disponía de escasos terminales capaces de mostrar gráficas e imágenes, y ésos pertenecían a la Sección de Armamento. Feigenbaum quería representar los números como puntos en un mapa. Tuvo que recurrir al método más primitivo: largos rollos de papel con líneas marcadas por hileras de espacios de la impresora, seguidas de un asterisco o del símbolo de la suma. La creencia oficial de Los Álamos pretendía que un ordenador grande valía más que muchos pequeños, creencia que andaba del brazo con la tradición de un problema, una solución. Se desaprobaban los ordenadores pequeños. Por otra parte, cualquier compra divisional de uno habría chocado con rigurosas normas gubernamentales y una inspección formal. Sólo más tarde, con la complicidad presupuestaria de la Sección Teórica, Feigenbaum recibió un «ordenador de mesa» de veinte mil dólares. Con él modificó sus ecuaciones e imágenes sobre la marcha, retocándolas y afinándolas, como si el ordenador fuera un instrumento musical. Por entonces, los únicos terminales idóneos para realizar gráficas importantes se hallaban en lugares de alta seguridad, detrás de la valla, como se decía en Los Álamos. A causa de ello hubo de emplear un terminal conectado por línea telefónica con un ordenador central.

Trabajar de aquella forma impedía apreciar en toda su extensión la potencia neta de la máquina situada al otro extremo del cable. Hasta las operaciones más sencillas tardaban minutos en verificarse. Editar una línea de un programa obligaba a oprimir la tecla de Retorno o Nueva línea, y a esperar, mientras el terminal zumbaba incesantemente y el ordenador central atendía a las peticiones de otros usuarios del laboratorio.

Feigenbaum pensaba mientras usaba el ordenador. ¿Qué expresión matemática adoptarían las múltiples pautas escalares que observaba? Algo en aquellas funciones debía de ser recurrente, se dijo, debía de autorrelacionarse, el comportamiento de una guiarse por el comportamiento de otra, oculta en su interior. La imagen ondulada que había tenido en un instante de inspiración manifestaba algo sobre cómo una función podía disponerse en una escala para ajustarse a otra. Aplicó el procedimiento matemático de la teoría de renormalización de grupo, que recurre a las escalas para reducir los infinitos a cantidades manejables. En la primavera de 1976, su existencia adquirió intensidad superior a la que había conocido hasta entonces. Se concentraba como si estuviera en trance, programaba con furia, garabateaba con el lápiz y volvía a programar. No tenía el recurso de telefonear a la Sección C, porque habría tenido que interrumpir el funcionamiento del ordenador para emplear el teléfono, y el restablecimiento de la conexión era incierto. Si se detenía a pensar más de cinco minutos, el ordenador desconectaría automáticamente su línea. De todas suertes, hacía alto con relativa frecuencia, lo que le dejaba temblando a causa de la sobrecarga de adrenalina. Se esforzó sin respiro durante dos meses. Su jornada era de veintidós horas. Intentaba dormir como si fuera una pausa breve, y se despertaba ciento veinte minutos más tarde con los pensamientos esperándole exactamente donde los había interrumpido. Su dieta estricta consistía en café. (En ocasiones más saludables y apacibles, Feigenbaum se nutría sólo de carne muy poco hecha, café y vino tinto. Sus amigos sospechaban que obtenía vitaminas de los cigarrillos).

Por último, un médico cortó por lo sano aquel régimen de vida. Le recetó moderadas dosis de válium y vacaciones. Pero Feigenbaum ya había creado una teoría universal.