El misterio del universo compareció por primera vez ante Mitchell Feigenbaum a los cuatro años de edad, poco después de la segunda guerra mundial, mediante una radio Silverstone. El aparato se hallaba en la sala de estar paterna, en el barrio de Flatbush de Brooklyn. Le intrigó que la música sonase sin causa tangible. Le parecía, por otro lado, que entendía el fonógrafo. Su abuela le había otorgado licencia especial para poner discos de setenta y ocho revoluciones.
Su padre estuvo empleado como químico en la junta directiva del puerto neoyorquino y luego en Clairol. Su madre era maestra en las escuelas públicas de la ciudad. Mitchell se propuso al principio ser ingeniero eléctrico, profesión que gozaba fama en Brooklyn de ser muy remuneradora. Se hizo cargo después de que la física le informaría mejor de las cosas que quería saber acerca de la radio. Perteneció a una generación de científicos, educados en los distritos externos de Nueva York, que se encaminaron a un futuro espléndido gracias a los grandes centros públicos de segunda enseñanza —en su caso, el Samuel I. Tilden— y el City College.
Crecer despabilado en Brooklyn era hasta cierto punto consecuencia de seguir un rumbo incierto entre el mundo de la mente y el de las personas. En los primeros tiempos de su vida fue inmensamente sociable, cualidad que consideró esencial para no sufrir malos tragos. Pero algo se iluminó en su interior cuando advirtió su capacidad para aprender cosas. Se apartó paulatinamente de sus amigos. Las conversaciones corrientes no atraían su interés. Durante el último curso en el colegio, pensó que había malgastado su adolescencia, y decidió de manera deliberada recobrar el contacto con sus semejantes. Sentado en la cafetería, escuchaba la charla de los estudiantes sobre el arte de afeitarse o sobre la comida, y poco a poco reaprendió la ciencia de conversar con la gente.
Se graduó en 1964 e ingresó en el Massachusetts Institute of Technology, en el que se doctoró, en 1970, en la especialidad de las partículas elementales. Luego pasó cuatro años estériles en Cornell y en el Virginia Polytechnic Institute (Instituto Politécnico de Virginia), es decir, estériles en cuanto a la publicación regular de trabajos sobre problemas útiles, lo cual es imprescindible para un joven científico universitario. Se daba por sentado que los posdoctorados debían publicar artículos. A veces un asesor le preguntaba qué había sucedido en el caso de un problema y él respondía: «¡Oh! Ya lo he entendido».
Carruthers, científico formidable por derecho propio, recién instalado en Los Álamos, presumía de su tino para descubrir individuos talentudos. No buscaba inteligencia, sino la creatividad especial que parecía segregar una glándula mágica. Siempre recordaba el ejemplo de Kenneth Wilson, otro físico de habla suave de Cornell, que, en apariencia, no producía absolutamente nada. Quienquiera que hablase con él el tiempo necesario descubría su notable capacidad para contemplar las entrañas de la física. Por estas dos razones el puesto de Wilson motivó un grave debate. Se impusieron los colegas dispuestos a apostar por sus facultades indemostradas…, y fue como si un dique hubiera reventado. No un artículo, sino una catarata de ellos brotó de los cajones del escritorio de Wilson, y entre ellos un trabajo que mereció el Premio Nobel en 1982.
La gran contribución de Wilson a la física, y la de otros dos especialistas en ella, Leo Kadanoff y Michael Fisher, fue el principal antecesor de la teoría del caos. Con independencia total, pensaron de modo distinto sobre lo que ocurría en las transiciones de fase. Estudiaron el comportamiento de la materia en la inmediación del punto en que cambia de un estado a otro: de líquida a gaseosa, o de inmagnetizada a magnética. Como límites singulares entre dos reinos de la existencia, las transiciones de fase propenden en matemáticas a ser altamente no lineales. El comportamiento constante y predecible de la materia en una fase tiende a ser inútil para entender las transiciones. El agua de un cazo puesto al fuego se calienta hasta que alcanza el punto de ebullición. Entonces se interrumpe el cambio de temperatura y sobreviene algo muy interesante en la superficie molecular de contacto que media entre el líquido y el gas.
Tal como Kadanoff consideró el problema en la década de 1960, las transiciones de fase componen un rompecabezas intelectual. Un bloque de metal se magnetiza. Ha de tomar una decisión a medida que llega a un estado desordenado. El imán puede orientarse en esta o en aquella dirección. Es libre de escoger. Pero cada fragmentito de metal tiene que hacer la misma elección. ¿Cómo?
De alguna forma, en el proceso de elegir, los átomos metálicos deben de traspasarse información. La intuición de Kadanoff fue que la comunicación se describe con mucha sencillez en términos de escalas. Para ello, imaginó que dividía el metal en cajas. Cada una comunica con sus vecinas inmediatas. Esa comunicación se describe de la misma forma que la de los átomos con sus vecinos. He aquí la utilidad de las escalas: la mejor manera de pensar en el metal es la de un modelo análogo a los fractales, con cajas de distinto tamaño.
Se necesitaba intenso análisis matemático y muchas experiencias con los sistemas reales para sentar la eficacia de la idea escalar. Kadanoff tuvo la sensación de haber captado algo difícil de manejar y creado un mundo autónomo y de belleza extrema. En parte, la belleza consistía en su universalidad. Su idea dio consistencia al hecho más extraordinario de los fenómenos críticos, el de que tales transiciones, en apariencia carentes de relación —la ebullición de líquidos, la imantación de metales—, siguen las mismas reglas.
Después Wilson llevó a cabo la actividad que unió todo bajo la denominación de teoría de renormalización de grupo, con lo que proporcionó un método poderoso para efectuar cálculos reales sobre sistemas reales. La renormalización había entrado en la física en los años cuarenta como parte de la teoría cuántica, que posibilitó calcular las interacciones de electrones y fotones. Un engorro de aquellos cálculos, como los que preocupaban a Wilson y Kadanoff, fue que algunos elementos parecían requerir que se los tratase como cantidades infinitas, cosa por demás complicada y desagradable. Los infinitos desaparecieron con la renormalización del sistema con procedimientos debidos a Richard Feynman, Julian Schwinger, Freeman Dyson y otros físicos.
Sólo mucho después, en el decenio de 1960, Wilson excavó hasta los cimientos ocultos del éxito de la renormalización. Pensó, como Kadanoff, en los principios escalares. Algunas cantidades, tales como la masa de una partícula, siempre se habían considerado fijas, como la de cualquier objeto de la experiencia cotidiana. El atajo de la renormalización alcanzó su propósito, obrando como si una cantidad como la de la masa no fuera fija. Cantidades como aquéllas parecían flotar arriba o abajo, según la escala a que se concibiesen. Era absurdo. Sin embargo, respondía exactamente a lo que Benoît Mandelbrot percibía sobre las figuras geométricas y el litoral inglés. Su longitud no podía medirse sin tener en cuenta la escala. Era una especie de relatividad en que la posición del observador, cercana o lejana, en la playa o en una astronave, afectaba a la medida. Como había visto también Mandelbrot, la variación a lo largo de las escalas no era arbitraria; obedecía a reglas. La variabilidad en las mediciones corrientes de masa o longitud implicaba que permanecía inalterable una especie diferente de cantidad. En el caso de los fractales, era la dimensión fraccional, constante que podía calcularse y emplearse como instrumento en cálculos posteriores. Permitiendo que la masa variara conforme a la escala, los matemáticos podrían reconocer lo similar en todas las escalas.
Así, pues, en cuanto al duro trabajo de calcular, la teoría de la renormalización de grupo de Wilson fraguaba una ruta distinta para problemas muy densos. Hasta entonces la única que daba acceso a los no lineales muy complicados había sido el recurso denominado teoría de la perturbación. Con fines de cálculo, se supone que el problema no lineal está razonablemente próximo a uno lineal resoluble, a una levísima perturbación de distancia. Se resuelve el lineal y se efectúa una artimaña, bastante complicada, con la porción sobrante, ampliándola en lo que se llama diagramas de Feynman. Cuanta mayor exactitud se desee, tantos más diagramas de ese género torturante hay que producir. La suerte mediante, los cálculos convergen hacia una solución. No obstante, la suerte tiene el don especial de esfumarse siempre que un problema encierra mucho interés. Feigenbaum, como todos los jóvenes físicos de partículas de los años sesenta, se encontró haciendo interminables diagramas de Feynman. Acabó convencido de que la teoría de la perturbación era tediosa, nada esclarecedora y estúpida. Por ello, se enamoró de la nueva teoría de la renormalización de grupo de Wilson. El reconocimiento de la autosemejanza proporcionaba un método para sacar lo complejo, estrato tras estrato.
En la práctica, la renormalización de grupo no era tan segura como prometía. Reclamaba mucho ingenio para elegir los cálculos que captasen la autosemejanza. Con todo, daba buenos resultados con la frecuencia suficiente para inspirar a algunos físicos, incluido Feigenbaum, el propósito de acometer con ella la cuestión de la turbulencia. En el fondo, la autosemejanza aparentaba ser la característica de lo turbulento, fluctuaciones dentro de fluctuaciones, espirales dentro de espirales. Pero ¿qué había del principio de la turbulencia, del instante misterioso en que un sistema ordenado se volvía caótico? No existían pruebas de que la renormalización de grupo fuese capaz de decir algo sobre aquella transición. No las había, por ejemplo, de que la transición obedeciera a las leyes de la escala.