La turbulencia era un problema linajudo. Todos los grandes físicos habían pensado en ella, formal o informalmente. Una corriente uniforme se rompe en espirales y remolinos. Pautas anómalas quebrantan la frontera de lo fluido con lo sólido. La energía se achica raudamente de los movimientos grandes a los pequeños. ¿Por qué? Las mejores ideas surgieron entre los matemáticos; para la mayor parte de los físicos, la turbulencia era demasiado espinosa para invertir tiempo en su estudio. Parecía casi imposible conocerla. Se cuenta sobre Werner Heisenberg, teórico de los cuanta, que, en el lecho de muerte, murmuró que preguntaría dos cosas a Dios: por qué la relatividad y por qué la turbulencia.
—Creo que tendrá una contestación para la primera pregunta —dijo.
La física teórica había llegado a una especie de armisticio con el fenómeno de la turbulencia. En efecto, había trazado una raya en el suelo y declarado: No podemos ir más allá. En el lado de acá de la línea, donde los fluidos se portan de manera ordenada, se podía trabajar mucho. Por suerte, un fluido que se mueve con regularidad no actúa como si poseyera un número casi infinito de moléculas independientes, cada una capaz de actividad libérrima. En lugar de ello, pizcas que están contiguas tienden a seguir juntas, como caballos uncidos al carro. Los ingenieros disponen de técnicas eficientes para calcular la corriente, con tal que no se encrespe. Utilizan una suma de conocimientos que se remonta al siglo XIX, cuando la comprensión de los movimientos de los líquidos y gases se situó en la vanguardia de la física.
En la época actual, ya no la ocupaba. Para los teóricos, la dinámica de los fluidos no encerraba misterios, salvo uno, inabordable incluso en el cielo. Lo práctico se entendía tan bien, que podía cederse a los técnicos. Los físicos decían que aquella dinámica no formaba ya parte de su ciencia. Era ingeniería corriente y moliente. Los peritos en dinámica de los fluidos solían hallarse en los departamentos universitarios, donde se enseñaba a los futuros ingenieros. Siempre ha ocupado el primer plano el interés práctico por la turbulencia y ese interés acostumbra ser unilateral: el de librarse de ella. Es deseable en algunas aplicaciones, como en el interior de un motor de retropropulsión, en el cual la combustión eficaz depende de la rapidez de la mezcla. En otros casos, la turbulencia equivale a desastre. La de una corriente aérea en un ala destruye el impulso de elevación. Un flujo turbulento origina en un oleoducto un estorbo asombroso. Enormes cantidades de dinero gubernamental y de las industrias se invierten en el diseño de aviones, turbomotores, hélices, cascos de submarinos y otras formas que se mueven a través de fluidos. Los investigadores se preocupan de la circulación en los vasos sanguíneos y válvulas cardíacas. Por la manifestación y la evolución de las explosiones. Por los vórtices y torbellinos, llamas y ondas de impacto. La bomba atómica de la segunda guerra mundial fue, en teoría, un problema de física nuclear. No obstante, éste había sido resuelto en su mayor parte antes de que se iniciara el proyecto, y lo que atosigó a los científicos reunidos en Los Álamos fue una cuestión de dinámica de los fluidos.
Entonces, ¿qué es la turbulencia? Un cúmulo de desorden a todas las escalas, torbellinos pequeños dentro de otros mayores. Inestable. Y sumamente disipativo, lo cual significa que consume energía y engendra trabas. Es movimiento metamorfoseado en azar. Pero ¿cómo pasa la corriente de uniforme a alborotada? Supóngase que uno tiene una cañería perfectamente lisa y un suministro de agua perfectamente regular y protegido de las vibraciones: ¿Cómo llega a crear semejante flujo algo fortuito?
Todas las reglas parecen fallar. Si la corriente es uniforme, o laminar, los pequeños trastornos se extinguen. Pero, declarada la turbulencia, las perturbaciones crecen de modo catastrófico. Esa declaración —esa transición— se elevó a misterio crucial en la ciencia. El canal que hay debajo de una roca, en un riachuelo, se transforma en remolino, que crece, se ramifica y da vueltas aguas abajo. El humo de cigarrillo se remonta suavemente desde el cenicero, se acelera hasta que sobrepasa una velocidad crítica y se divide en torbellinos desordenados. La irrupción de la turbulencia se percibe y puede medirse en los experimentos de laboratorio; puede estudiarse experimentalmente en el caso de alas o hélices en el túnel de pruebas. Pero su naturaleza continúa siendo elusiva. El conocimiento obtenido ha sido siempre particular, no universal. La investigación por tanteo del ala de un Boeing 707 no aporta nada a la investigación por tanteo del ala de un caza F-16. Hasta los superordenadores caen en la impotencia cuando se quiere estudiar el movimiento irregular de un fluido.
Algo agita a éste, lo excita. Es viscoso, pegajoso, y por ello pierde energía; y si se cesara de agitarlo, se posaría. Cuando se le mueve, se añade energía a baja frecuencia, o a gran longitud de onda, y lo primero que se observa es que las ondas largas se descomponen en cortas. Aparecen remolinos, que encierran otros más pequeños, y cada uno disipa la energía del fluido y produce un ritmo característico. En los años treinta, A. N. Kolmogorov propuso una descripción matemática que dio cierta idea de cómo actúan esos torbellinos. Imaginó la cascada de la energía total recorriendo escalas cada vez más reducidas, hasta que se llegaba a un límite en que los remolinos eran tan minúsculos, que se imponían los efectos, relativamente grandes, de la viscosidad.
En pro de la claridad de la descripción, Kolmogorov concibió que los torbellinos llenaban todos los espacios del fluido, haciendo que fuese igual en todas partes. Este supuesto, el de homogeneidad, es equivocado, y Poincaré lo supo cuarenta años antes, pues había visto, en la superficie agitada de un río, que los remolinos se mezclan siempre con parcelas de deslizamiento liso. La calidad de torbellino es limitada. La energía se disipa, en realidad, sólo en una porción del espacio. En cada escala, mientras se observa a fondo una turbulencia, surgen nuevas parcelas en calma. Por lo tanto, el supuesto de homogeneidad cede ante el de intermitencia. Cuando se la idealiza, la imagen intermitente adquiere un aspecto sumamente fractal, con lugares en que lo escabroso se confunde con lo suave, a escalas que van de lo grande a lo pequeño. También esta imagen se aparta algo de lo real.
Emparentada con ello, aunque fuese muy distinta, había la cuestión de qué sucede cuando se inicia la turbulencia. ¿Cómo salva una corriente la frontera que separa lo uniforme de lo turbulento? ¿Qué estados intermedios existen antes de que la turbulencia se imponga? Había sobre ello una teoría algo más consistente. Este paradigma ortodoxo se debió a Lev D. Landau, preclaro científico ruso cuya obra sobre la dinámica de los fluidos es aún fundamental. El cuadro que Landau traza es el de una acumulación de ritmos competidores. Cuando entra más energía en un sistema —conjeturó—, empiezan, una tras otra, nuevas frecuencias, incompatible cada una con la anterior, de la misma forma que una cuerda de violín responde a una mayor presión del arco, vibrando en un segundo tono disonante, y luego en un tercero y un cuarto, hasta que el sonido se trueca en cacofonía incomprensible.
Cualquier líquido o gas es un conjunto de pedazos individuales, tantos que muy bien pudieran ser infinitos. Si cada uno se moviera con independencia, el fluido tendría otras posibilidades infinitas, otros infinitos «grados de libertad», como se dice en la jerga especializada, y las ecuaciones que describen el movimiento habrían de tratar con otras variables infinitas. Pero cada partícula no se mueve con independencia: su movimiento depende del de sus vecinas, y en uno uniforme, los grados de libertad llegan a ser escasos. Los movimientos potencialmente complejos siguen acoplados. Los fragmentos continúan próximos o se apartan de modo lineal uniforme, que produce líneas concretas en las imágenes del túnel de pruebas. Las partículas de una columna de humo de cigarrillo se remontan, durante un rato, como si fuesen una sola.
Después, se manifiesta la confusión, una cohorte de movimientos desordenados y misteriosos. Algunos tienen nombres: oscilatorio, varicosis sesgada, transversal, nudo o zigzag. En opinión de Landau, estos movimientos inestables no hacen sino acumularse, uno encima de otro, y crean ritmos de velocidades y dimensiones traslapadas. Desde el punto de vista conceptual, esta idea ortodoxa de la turbulencia parecía convenir a los hechos, y era cuestión de mala suerte que la teoría resultara matemáticamente inútil, lo que, en efecto, ocurría. El paradigma de Landau permitía perder todo, salvo el honor.
El agua recorre una cañería, o gira en torno de un cilindro, emitiendo un siseo débil. Se aumenta la presión, mentalmente. Empieza un ritmo, atrás y adelante. Topa despacio, como una ola, contra la cañería. Ábrase de nuevo el grifo. Procedente de alguna parte, entra una segunda frecuencia, que no sincroniza con la primera. Los ritmos se mezclan, competen y chocan. Crean un movimiento tan complicado, en el que las ondas embisten las paredes, que apenas puede seguirse. Ábrase otra vez el grifo. Penetra una tercera frecuencia, una cuarta, una quinta, una sexta, todas inconmensurables. La corriente se hace extremadamente complicada. Quizá sea esto una turbulencia. Los físicos aceptaron este cuadro, pero ninguno tuvo noción de cómo predecir cuándo un incremento de energía produciría una frecuencia distinta, o cómo sería ésta. Nadie había visto tales frecuencias, que sobrevenían de manera arcana durante un experimento, porque nadie había comprobado la teoría de Landau sobre el inicio de la turbulencia.