Terremotos en la esquizosfera

El mejor lugar para estudiar los terremotos, en el nordeste de los Estados Unidos, es el Lamont-Doherty Geophysical Observatory (Observatorio Geofísico de Lamont-Doherty), conjunto de edificios poco atractivos escondidos en los bosques del mediodía del estado de Nueva York, justo al oeste del río Hudson. En esa institución, Christopher Scholz, profesor de la Universidad de Columbia y especialista en la forma y la estructura de la tierra sólida, comenzó a reflexionar sobre los fractales.

Los matemáticos y físicos teóricos hacían caso omiso de la obra de Mandelbrot; en cambio, Scholz era un científico pragmático y eficaz y estaba más que dispuesto a empuñar las herramientas de la geometría fractal. Había conocido en la década de 1960 el nombre de Benoît Mandelbrot, cuando éste se dedicaba a la economía, y él, Scholz, era estudiante graduado del MIT, en el que invertía la mayor parte de su tiempo en luchar con una cuestión irreductible acerca de los seísmos. Desde hacía veinte años, se sabía que la distribución de los terremotos, intensos y débiles, obedecía a una especial pauta matemática, la misma precisamente que regía la distribución de las rentas individuales en una economía de mercado libre. Dicha distribución se observaba en todos los lugares terrestres en que los seísmos se registraban y medían. Si se tenía en cuenta cuán irregulares e imprevisibles eran los terremotos, merecía la pena preguntarse qué género de procesos físicos explicaba tal regularidad. O, al menos, así lo creía Scholz. La generalidad de los sismólogos se había contentado con tomar nota del fenómeno sin detenerse en él.

Scholz recordaba el nombre de Mandelbrot. En 1978 compró un libro, muy ilustrado, de erudición extravagante y cuajado de ecuaciones, titulado Fractals: Form, Chance and Dimension (Fractales: Forma, casualidad y dimensión). Mandelbrot había reunido, por lo visto, en un volumen divagador todo lo que sabía o sospechaba del universo. En pocos años tanto aquel libro como su sustituto, ampliado y refinado, The Fractal Geometry of Nature (La geometría fractal de la naturaleza), habían sido más vendidos que cualquier otro de matemáticas superiores. Su estilo era abstruso y exasperante, ya ocurrente, ya literario, ya opaco. El mismo Mandelbrot lo llamaba «manifiesto y registro de casos».

Como contados especialistas en otras disciplinas, en especial científicos que trabajaban en partes materiales de la naturaleza, Scholz había tratado de averiguar durante varios años qué debía resolver sobre aquel volumen. No era cuestión meridiana. Fractals, como expresó Scholz, «no era un libro práctico, sino de magia». No obstante, le interesaban mucho las superficies, y las superficies llenaban la obra. Scholz notó que era incapaz de dejar de meditar sobre la promesa que encerraban las ideas de Mandelbrot. Buscó el modo de emplear los fractales para describir, clasificar y medir lo que atañía a sus intereses científicos.

Pronto descubrió que no estaba solo, a pesar de que transcurriría bastante tiempo antes de que se multiplicaran las conferencias y los seminarios sobre los fractales. Las ideas unificadoras de la nueva geometría apiñaron a hombres de ciencia convencidos de que sus observaciones eran excéntricas, y de que no había método sistemático para entenderlas. Las visiones intuitivas de la geometría fractal ayudaron a los científicos que investigaban cómo se unían las cosas, cómo se ramificaban o cómo se quebraban. Era un procedimiento para examinar la materia: las caras de los metales microscópicamente dentadas, los agujeros y canales minúsculos de la roca petrolífera porosa y los paisajes fragmentados de una comarca asolada por un terremoto.

En opinión de Scholz, los geofísicos debían describir la superficie terrestre, aquella que, por coincidir con los océanos, forma los litorales. Dentro de la parte superior de la tierra sólida hay superficies de otra clase, superficies de hendiduras. Las fallas y fracturas abundan tanto, que se convierten en clave de toda buena descripción, y son más importantes, en conjunto, que la materia que recorren. Atraviesan la corteza terrestre en tres dimensiones, creando lo que Scholz denominó eutrapélicamente «la esquizosfera». Gobiernan el paso de fluidos por el terreno: el del agua, el petróleo y el gas natural. Rigen el comportamiento de los terremotos. Por lo tanto, era esencial entender las superficies, y Scholz creía que su profesión se hallaba en un brete, porque no existía método alguno para hacerlo.

Los geofísicos consideraban las superficies como todo el mundo, a saber, como figuras. Tenían que ser planas. O poseer forma especial. Era posible contemplar la silueta de un «escarabajo» Volkswagen, por ejemplo, y dibujar su superficie como una curva, la cual sería mensurable del modo euclídeo familiar. Se podía adaptar una ecuación a ella. Pero en el criterio de Scholz, se la vería entonces sólo a través de una estrecha banda espectral, lo mismo que si se contemplase el universo por medio de un filtro rojo: se percibiría lo que había en esa particular longitud de onda luminosa, pero no en la de los demás colores, para no mencionar el vasto ámbito de actividades en porciones del espectro correspondiente a la radiación infrarroja o a las ondas de radio. En este símil, el espectro equivalía a la escala. Pensar en la superficie de un Volkswagen, considerando sólo su figura euclídea, era concebirla únicamente a la escala de un observador apostado a diez o a cien metros del coche. ¿Y si estuviera a un kilómetro, o a cien, de distancia? ¿Y si se hallase a un milímetro o a una micra de él?

Supóngase que se traza la superficie terrestre vista desde el espacio, a una distancia de un centenar de kilómetros. La línea sube y baja por los árboles, montes, edificios y —aparcado en algún sitio— un Volkswagen. A esa escala, la superficie no es sino un bulto entre muchos bultos, una pizca de acaso.

O supóngase que se examina el Volkswagen de manera cada vez más contigua, primero con una lupa y después con un microscopio. Al pronto, la superficie parecerá hacerse más lisa, porque la redondez de los parachoques y de la capota desaparecen de los ojos. Mas la superficie microscópica del acero presenta abultamientos caprichosos. Parece caótica.

Scholz comprobó que la geometría fractal suministraba un procedimiento eficacísimo para describir la redondez entrecortada de la superficie de la tierra; y los metalúrgicos pudieron certificar lo mismo en lo referente a la de diferentes clases de acero. La dimensión fractal de la superficie, por ejemplo, suele proporcionar información sobre la fuerza del metal. Y la de la terrestre, indicaciones sobre cualidades importantes. Scholz recordó una formación geológica clásica: un talud en la ladera de un monte. A cierta distancia es una figura euclídea de dos dimensiones. El geólogo, a medida que se aproxima a ella, nota que anda en el talud más que sobre el talud, pues se ha convertido en peñas del tamaño de automóviles. Su dimensión efectiva ha llegado a ser 2,7, puesto que las superficies rocosas se encorvan y rodean, y casi llenan el espacio tridimensional, como la de una esponja.

Las descripciones fractales encontraron aplicación inmediata en problemas relacionados con las propiedades de superficies que están en contacto. El que hay entre la superficie de rodadura de un neumático y el asfalto es uno de esos problemas. Y también las junturas de las máquinas o la conexión eléctrica. Los contactos de superficies tienen propiedades por completo independientes de los materiales que las componen. Hay cualidades que penden de la fractal de las protuberancias, y éstas de otras protuberancias, y así en adelante. Una consecuencia, sencilla, pero poderosa, de la geometría fractal de las superficies es que éstas, cuando se hallan en contacto, no se tocan en todas sus partes. La condición de la protuberancia a todas las escalas lo impide. Hasta en una roca sometida a presión colosal, resulta claro que, a escala pequeña, hay grietas, lo cual permite la circulación del fluido. Era, para Scholz, el efecto de «si te caes, no te levantas». Por ello, dos trozos de una taza rota jamás llegan a unirse, aunque parezcan encajar a gran escala. A una pequeña, los bultos irregulares no coinciden.

Scholz pasó a ser conocido en su especialidad como una de las raras personas que aceptaba las técnicas fractales. Sabía que varios colegas suyos consideraban esperpentos a los componentes del grupito. Si escribía el vocablo fractal en el título de un artículo, sentía que le miraban como si siguiera admirablemente la moda, o como si estuviera —no tan admirablemente— chiflado. Incluso la redacción de artículos imponía decisiones difíciles: hacerlo para un público reducido de aficionados a los fractales, o para uno más nutrido de geofísicos, que necesitarían explicaciones de los conceptos básicos. Pese a ello, Scholz proclamó indispensables los útiles que le daba la nueva geometría.

—Es un modelo único. Nos permite hacer frente a las dimensiones mutables de la Tierra —explicó—. Proporciona instrumentos matemáticos y geométricos para describir y predecir. Una vez se salva la dificultad, y se comprende el paradigma, se consigue medir bien las cosas y pensar en ellas de manera nueva. Se ven de modo distinto. Se tiene una visión desconocida. No es, en absoluto, la antigua, sino mucho más vasta.