El invento de la herradura

Smale se equivocó en su conjetura. Propuso en los términos más rigurosamente matemáticos que casi todos, por no decir todos, los sistemas dinámicos se inclinaban casi siempre a adoptar un comportamiento no muy extraño. Pronto averiguó que las cosas no eran tan sencillas.

Era un matemático que no sólo resolvía problemas, sino también preparaba programas de ellos para que los solucionaran otros. Su conocimiento de la historia y su intuición de la naturaleza se resumían en la habilidad de anunciar, sin alardes, que un área intacta aún merecía la atención de los matemáticos. Como un próspero hombre de negocios, calculaba los riesgos y planeaba fríamente su estrategia, y, además, disfrutaba de un encanto semejante al del flautista de Hamelin. Muchos iban en la dirección que él tomaba. Su reputación no se reducía a las ciencias exactas. En los primeros momentos de la guerra de Vietnam, organizó con Jerry Rubin «Días Internacionales de Protesta» y patrocinó los esfuerzos destinados a impedir que los trenes con soldados cruzaran California. En 1966, mientras el Comité de Actividades Antiamericanas del Congreso trataba de convocarle para que declarase, viajó a Moscú para asistir al Congreso Internacional de Matemáticos. En aquella ciudad recibió la Medalla Fields, el galardón más grande de su profesión.

Lo ocurrido en Moscú en aquel verano se transformó en parte indeleble de la leyenda de Smale. Se habían congregado cinco mil matemáticos agitados y agitadores. Las tensiones políticas eran intensas. Circulaban las peticiones. Se avecinaba el fin del congreso, cuando Smale, a petición de un periodista del Vietnam del Norte, dio una conferencia de prensa en la amplia escalinata de la Universidad de Moscú. Empezó condenando la intervención estadounidense en Vietnam; pero, en el instante en que los anfitriones principiaban a sonreír, condenó asimismo la invasión soviética de Hungría y la falta de libertad política en la URSS. En cuanto hubo pronunciado la última palabra, le metieron en un santiamén en un auto para que los policías soviéticos le interrogasen. De vuelta a California, la National Science Foundation (Fundación Nacional para la Ciencia ) anuló su subvención.

La Medalla Fields que recibió Smale premiaba un famoso trabajo suyo sobre topología, rama de las matemáticas que ha florecido en el siglo XX y que tuvo particular apogeo en el decenio de 1950. Estudia las propiedades que siguen inalteradas cuando las formas se desfiguran por torsión, extensión o compresión. No se interesa en si la forma es cuadrada o redonda, grande o pequeña, porque la deformación cambia tales atributos. Los topólogos se preocupan de si está acoplada, tiene agujeros o está anudada o enredada. Conciben las superficies, no en los universos euclídeos unidimensional, bidimensional y tridimensional, sino en espacios de dimensiones múltiples, imposibles de imaginar de manera visible. La topología es la geometría en trozos de goma. Se preocupa de lo cualitativo más que de lo cuantitativo. Se pregunta qué puede decirse de la estructura total, cuando se ignoran las medidas. Smale había solventado uno de los problemas históricos, sobresalientes, de la topología, la conjetura de Poincaré sobre espacios de cinco o más dimensiones, y al hacerlo se convirtió en un personaje en la especialidad. A pesar de ello, en la década de 1960, renunció a la topología por un territorio inexplorado. Se puso a estudiar los sistemas dinámicos.

La topología y dichos sistemas se remontan a Henri Poincaré, que los tenía por las dos caras de la misma moneda. A fines del siglo pasado, fue el último gran matemático que aportó imaginación geométrica para tratar las leyes del movimiento en el mundo físico. Fue el primero en darse cuenta de la posibilidad del caos; sus escritos insinuaron una especie de impredecibilidad casi tan acusada como la que Lorenz había descubierto. Muerto Poincaré, floreció la topología y se atrofiaron los sistemas dinámicos. Hasta el nombre cayó en desuso; la materia a la que Smale se encaminó nominalmente eran las ecuaciones diferenciales, las cuales describen cómo cambian los sistemas de modo continuo a lo largo del tiempo. Por tradición, tales cosas se buscaban de manera local, por lo que ha de entenderse que los ingenieros y físicos consideraban sólo un grupo de posibilidades tras otro. Smale, como Poincaré, quería comprenderlas en su totalidad, quería comprender todo el reino de posibilidades sin distingos.

Cualquier conjunto de ecuaciones que describa un sistema dinámico —el de Lorenz, por ejemplo— permite establecer al principio ciertos parámetros. En el caso de la convección térmica, uno concierne a la viscosidad del fluido. Grandes cambios en los parámetros pueden implicar importantes diferencias en un sistema, como, por ejemplo, la que hay entre llegar a un estado estable y oscilar periódicamente. Los físicos daban por sentado que cambios pequeñísimos introducirían sólo pequeñísimas diferencias en las cifras, y no alteraciones cualitativas en el comportamiento.

Relacionando la topología y los sistemas dinámicos, cabe la posibilidad de usar una forma que ayude a visualizar toda la esfera de comportamientos de un sistema. Uno sencillo puede representarse con algún género de superficie curva; uno complicado, con una pluridimensional. Un punto único en tal clase de superficie indica el estado de un sistema en un instante quieto en el tiempo. A medida que el sistema progresa temporalmente, el punto se mueve, trazando una órbita en tal superficie. El hecho de curvar un poco la forma equivale a cambiar los parámetros del sistema, haciendo un fluido más viscoso o meneando un péndulo con fuerza algo mayor. Las formas que se parecen de manera amplia tienen, en sentido lato, un comportamiento similar. Si se consigue visualizar la fuerza, se entiende el sistema.

En las fechas en que Smale se encaró con los sistemas dinámicos, la topología, como la mayor parte de las matemáticas puras, se ejercitaba con manifiesto desdén de las aplicaciones mundanales. Sus orígenes habían sido cercanos a la física, pero los matemáticos se olvidaron de tal circunstancia y las formas se estudiaron por sí mismas. Smale creía firmemente en la bondad de este proceder —era el más puro de los puros—; pero tenía la idea de que el desarrollo abstracto, esotérico, de la topología tal vez aportase algo a la física, como Poincaré lo había entendido hacía ya muchos años.

Sin embargo, una de sus primeras contribuciones fue una conjetura deficiente. Propuso en términos físicos una ley natural del jaez siguiente: Un sistema puede portarse de modo irregular, pero ese comportamiento variable no será estable. La estabilidad —«estabilidad en la acepción de Smale», decían en ocasiones los matemáticos— era una propiedad crucial. El comportamiento estable era aquel que no desaparecía cuando un número se modificaba un pelillo. Todo sistema podía albergar las conductas estable e inestable. Las ecuaciones referentes a un lápiz que se mantiene de pie sobre la punta logran buena solución matemática, si el centro de gravedad está directamente sobre dicho extremo; pero no se consigue colocar el lápiz de ese modo, porque la solución es inestable. La menor perturbación aleja el sistema de ella. Por otro lado, una canica permanece en el fondo de una taza, porque, si se la mueve un poco, rueda y nada más. Los físicos imaginaron estable todo comportamiento que observaban dotado de regularidad, pues son inevitables en los sistemas reales minúsculas perturbaciones e incertidumbres. Jamás se saben los parámetros con exactitud. Razonaron que, si se quiere un modelo físicamente realista y sólido frente a leves alteraciones, ha de buscarse uno estable.

Las malas noticias llegaron por correo, algo después de la Navidad de 1959. Entonces, Smale vivía en un piso de Río de Janeiro con su esposa, dos hijos de corta edad y una inundación de pañales. Su conjetura había definido una clase de ecuaciones diferenciales que, sin excepción, eran estables desde el punto de vista estructural. Cualquier sistema caótico, aseguraba, podía representarse por uno de su clase. No era así. Un colega le informó por carta que muchos sistemas no eran tan fáciles como él había imaginado, y describía como ejemplo contradictorio uno que encerraba en su seno la estabilidad y el caos. Era sólido. Si se le perturbaba un poquillo, como todo sistema natural lo es constantemente por el ruido, su rareza no desaparecía. Sólido y raro. Smale leyó la carta con una incredulidad que se disipó poco a poco.

El caos y la inestabilidad, conceptos que entonces empezaban a tener definiciones precisas, no eran lo mismo. Un sistema caótico sería estable si un linaje particular de irregularidad persistía frente a pequeñas perturbaciones. El de Lorenz era uno de ellos, aunque transcurrirían años antes de que Smale oyese hablar del meteorologista. El caos que éste había descubierto, a pesar de su impredecibilidad, era tan estable como la canica en la taza. Se le podía añadir ruido, sacudirlo, agitarlo e interferir en su movimiento, y cuando todo hubiese cesado, y lo transitorio se amortiguase como los ecos en una serranía, recuperaría la misma pauta de irregularidad. En suma, era localmente impredecible y globalmente estable. Los sistemas dinámicos reales se atenían a una porción más complicada de reglas de lo que había imaginado. El ejemplo que el colega de Smale describió en su carta era otro sistema sencillo, descubierto hacía más de una generación y del todo olvidado. Quiso la casualidad que fuese un péndulo disfrazado: un circuito electrónico oscilante. Era no lineal y se le compelía de manera periódica, como un niño en un columpio.

Irving R. Epstein

RETRATOS EN EL ESPACIO DE FASES. Las series temporales, tradicionales (arriba), y las trayectorias en el espacio de fases (abajo), son dos formas de poner de manifiesto los mismos datos y de conseguir una imagen del comportamiento a largo plazo de un sistema. El primer sistema (izquierda) converge en un estado estable, un punto en el espacio de fases. El segundo se repite de forma periódica, formando una órbita cíclica. El tercero se reitera en un ritmo de vals más complejo, un ciclo de «período tres». El cuarto es caótico.

H. Bruce Stewart y J. M. Thompson

LA HERRADURA DE SMALE. Esta transformación topológica proporcionó una base para comprender las propiedades caóticas de los sistemas dinámicos. Expuesta de modo elemental: Un espacio se estira en una dirección, se aprieta en otra y se dobla. Cuando se repite, el procedimiento produce una especie de mezcla estructurada, que reconocerá quien haya heñido una masa de harina. Dos puntos que acaban por estar contiguos acaso estuvieron muy separados al principio.

Nos referimos a un tubo de vacío, que el ingeniero eléctrico holandés Balthasar Van der Pol había investigado en la década de 1920. Un estudiante moderno de física exploraría la conducta de semejante oscilador, observando la línea trazada en la pantalla de un osciloscopio. Van der Pol, que no poseía tal aparato, tuvo que controlar el circuito escuchando los cambios de tono con un microteléfono. Le complació percibir regularidades mientras cambiaba la corriente que lo alimentaba. El tono saltaba de frecuencia a frecuencia como si subiera una escalera, abandonando una y enlazando sin vacilación con la siguiente. No obstante, de tarde en tarde, Van der Pol notaba algo incongruente. Había una irregularidad acústica que no lograba explicar. Aquello no le preocupó, dadas las circunstancias. «A menudo se percibe en el teléfono un sonido anómalo, antes de que la frecuencia pase al siguiente valor inferior», escribió en una carta a Nature. «Por lo demás, se trata de un fenómeno subsidiario». Fue uno de los muchos científicos que vislumbraron el caos y que carecieron de lenguaje para entenderlo. El enlace de frecuencias importaba mucho a las personas que intentaban construir tubos de vacío. En cambio, para la gente que procuraba entender la naturaleza de la complejidad, el comportamiento más interesante era el «sonido anómalo», fruto de la influencia contraria de una frecuencia más alta y otra más baja.

A despecho de ser errónea, su conjetura puso a Smale directamente en el camino de un nuevo modo de concebir la entera complejidad de los sistemas dinámicos. Varios matemáticos habían revisado las posibilidades del oscilador de Van der Pol. Smale trasladó su trabajo a un terreno distinto. Su única pantalla osciloscópica se hallaba en su mente, pero ésta había sido modelada por años de exploración del universo topológico. Imaginó todo el ámbito de posibilidades del oscilador, el entero espacio de fases, como lo denominaban los físicos. Cualquier estado del sistema parado durante un instante se representaba como un punto en el espacio mencionado; toda la información sobre su posición o velocidad existía en las coordenadas de aquel punto. Cuando el sistema cambiaba, el punto se movía a otra posición del espacio de fases. Y si se modificaba sin tregua, trazaba una trayectoria.

En un sistema sencillo como el péndulo, el espacio de fases podía ser un rectángulo: el ángulo del péndulo en un momento dado determinaría la posición este-oeste de un punto, y su velocidad, la norte-sur. En uno que se balanceara con regularidad, la trayectoria en el espacio de fases sería un lazo, de un lado a otro, mientras el sistema iterase la misma serie de posiciones.

Smale, en lugar de fijarse en cualquier trayectoria, se concentró en el comportamiento de todo el espacio durante el cambio del sistema, cuando, por ejemplo, se le agregaba más energía impulsora. Su intuición brincó de la esencia física a una especie nueva de esencia geométrica. Como instrumentos empleó transformaciones topológicas de formas en el espacio de fases, tales como estiramientos y compresiones. Tales modificaciones tenían a veces significado físico evidente. La disipación en un sistema, la pérdida de energía a causa de la fricción, implicaba que la figura en el espacio de fases se contraería como el globo que pierde aire, hasta que, finalmente, se transformaría en un punto, en el instante en que el sistema se parase del todo. Para representar la complejidad total del oscilador de Van der Pol, el espacio de fases —pensó— habría de experimentar un género, nuevo y complicado, de combinación de transformaciones. En seguida convirtió su idea de la visualización del comportamiento total en una distinta clase de modelo. Su innovación —duradera imagen del caos en años venideros— fue una estructura que se conoció con el nombre de herradura.

Una versión simple de ésta se obtiene con un rectángulo, cuya parte superior e inferior se aprietan hasta tener una barra horizontal. Un extremo de ésta se estira y curva para crear una C, como una herradura. Se imagina luego la herradura encajada en otro rectángulo, que se desfigura de la misma manera: reduciendo, doblando y estirando.

El proceso remeda el funcionamiento de la máquina que confecciona el azúcar hilado o algodón de azúcar, en la que brazos giratorios estiran de la masa, la doblan, la vuelven a estirar y doblar hasta que se convierte en una especie de algodón, muy largo, muy delgado y muy enredado. Smale sometió la herradura a variedad de andaduras topológicas y, dejando de lado el aspecto matemático, la herradura proporcionó una elegante analogía visual de la dependencia sensitiva de las condiciones iniciales, que Lorenz descubriría en la atmósfera pocos años después. Escójanse dos puntos próximos en el espacio original, y jamás se sabrá dónde terminarán. Los apartarán arbitrariamente los plegados y estiramientos. Más tarde, dos puntos que están juntos habrán empezado, también arbitrariamente, muy apartados.

Al principio, Smale había esperado explicar todos los sistemas dinámicos por medio de alargamientos y presiones, sin plegamientos, al menos no con aquellos que minasen de modo drástico la estabilidad de un sistema. Pero lo suprimido resultó imprescindible, y la plegadura permitió que hubiera cambios tajantes en la conducta dinámica. La herradura de Smale fue la primera de muchas formas geométricas nuevas que ofrecieron a matemáticos y físicos una intuición desconocida de las posibilidades del movimiento. En algunos aspectos, era demasiado artificial para tener utilidad, y en exceso criatura de la topología matemática para que atrayese a los físicos. Pero sirvió de punto de partida. Durante el decenio de 1960, Smale formó en Berkeley un grupo de matemáticos jóvenes que compartían su entusiasmo por la labor sobre los sistemas dinámicos. Transcurrirían diez años antes de que sus trabajos cautivasen la atención de ciencias menos puras; pero cuando ocurrió, los físicos advirtieron que Smale había devuelto toda una rama de las matemáticas al mundo real. Era una edad de oro, dijeron.

—Es el cambio paradigmático de los cambios paradigmáticos —exclamó Ralph Abraham, colega de Smale, que llegó a ser profesor de matemáticas en la Universidad de California, en Santa Cruz—. Cuando empecé mi trabajo profesional en 1960, de lo que no hace tanto tiempo, la matemática contemporánea sin excepción —sin excepción— era rechazada por los físicos, incluso por los que ocupaban las avanzadillas de la física matemática. Por lo tanto, la dinámica diferenciable, el análisis global, los proyectos múltiples, la geometría diferencial, a saber, todo lo que tenía un par de años más que lo que Einstein había usado, fue rechazado sin contemplaciones. El noviazgo de los matemáticos con los físicos acabó en ruptura en los años treinta. Los antiguos enamorados dejaron de dirigirse la palabra. Se despreciaban mutuamente, y nada más. Los físicos matemáticos negaron a los estudiantes graduados el permiso de ampliar conocimientos en los cursos de sus despreciados compañeros antiguos: Estudie matemáticas con nosotros. Le enseñaremos lo que necesita saber. Los matemáticos se han entregado a una horrible orgía de ego y destrozarán su mente. Eso sucedía en 1960. Hacia 1968 la situación había cambiado por completo.

Por fin, todos los físicos, astrónomos y biólogos sabían que tenían que escuchar las noticias.