Un mundo no lineal

Lorenz abandonó el tiempo y buscó formas incluso más sencillas de producir aquel comportamiento complejo. Encontró una en un sistema de tres ecuaciones únicas. Eran no lineales, o sea, expresaban relaciones no rigurosamente proporcionales. Las lineales pueden indicarse con una línea recta en un gráfico, y no cuesta imaginar sus relaciones: cuantas más, mejor. Son resolubles, lo cual las hace idóneas para los libros de texto. Los sistemas lineales poseen una importante virtud modular: se pueden desmontar y montar de nuevo. Las piezas siempre casan.

Los no lineales generalmente son insolubles e indesmontables. En los sistemas mecánicos y de fluidos, los términos no lineales se exponen a ser pasados por alto, cuando la gente se interesa por una interpretación sencilla y aceptable. La fricción, por ejemplo. Sin ella, una simple ecuación lineal expresa la cantidad de energía que uno requiere para acelerar el puck en un partido de hockey sobre hielo. Con la fricción, la relación se complica, porque la cantidad de cambios de energía depende de la velocidad a que el puck se mueva ya. La no linealidad implica que el acto de jugar a dicho deporte cambia las reglas de algún modo. No se puede asignar importancia constante a la fricción, pues depende de la velocidad. Y ésta, a su vez, de la fricción. Por lo tanto, la mutabilidad intrínseca hace que la no linealidad sea difícil de calcular; pero crea, asimismo, abundantes clases de comportamiento que jamás ocurren en los sistemas lineales. En la dinámica de fluidos, todo estriba en una ecuación canónica, la de Navier-Stokes, de milagrosa brevedad, referente a la velocidad, presión, densidad y viscosidad; pero es no lineal. Por ello, resulta a menudo imposible precisar la índole de esas relaciones. El análisis del comportamiento de una ecuación no lineal como la de Navier-Stokes es como recorrer un laberinto cuyas paredes cambien de posición a medida que se avanza. El propio Von Neumann dijo:

—El carácter de la ecuación… se altera simultáneamente en todos los aspectos importantes: se modifican tanto el orden como el grado. De aquí que haya que esperar graves dificultades matemáticas.

El mundo sería distinto —y la ciencia no necesitaría el caos— si la ecuación de Navier-Stokes no albergase el demonio de la no linealidad.

Una especie de movimiento de fluido inspiró las tres ecuaciones de Lorenz: el de un gas o líquido caliente, lo que se llama convección. Agota en la atmósfera el aire calentado por la tierra caldeada por el sol; y temblorosas ondas conectivas aparecen como fantasmas sobre el alquitrán y los radiadores calientes. Lorenz charló placenteramente de la que existe en una taza de café recién hecho. La describió como uno de los innumerables procesos hidrodinámicos de nuestro universo, cuya conducta futura desearíamos predecir. ¿Cómo calcularemos la velocidad a que se enfriará el café? Si está tibio, su calor se disipará sin movimiento hidrodinámico. Permanece en estado estable. Pero, si tiene elevada temperatura, el trastorno conectivo llevará el café caliente del fondo de la taza a la superficie más fría. Ello se comprueba cuando se vierten en él unas gotitas de leche. Los remolinos llegan a ser complicados. Pero es evidente el fin del sistema a largo plazo. El movimiento se detiene inevitablemente, porque el calor se disipa y porque la fricción retiene al fluido en movimiento. Lorenz aseguró con sequedad en una reunión de científicos:

—Quizá nos cueste pronosticar la temperatura del café con un minuto de anticipación; en cambio, no acontecerá lo mismo si lo hacemos una hora antes.

Las ecuaciones del movimiento de una taza de café que se enfría deben reflejar el destino del sistema. Han de ser disipativas. La temperatura tiene que orientarse hacia la de la habitación, y la velocidad hacia cero.

Lorenz despojó hasta los huesos una serie de ecuaciones sobre la convección, prescindiendo de todo lo que pudiera ser ajeno a ellas y dándoles una simplicidad irreal. No quedó casi nada del modelo original, pero respetó la no linealidad. A ojos de un físico, las ecuaciones parecían fáciles. Bastaba una mirada —muchos científicos lo hicieron en años posteriores— para atreverse a afirmar: Yo puedo resolver eso.

—Sí, hay la tendencia a pensar de ese modo al verlas —dijo Lorenz tranquilamente—. Contienen algunos términos no lineales, pero uno cree que se dará con la forma de salvarlos. Sin embargo, no se puede.

Adolph E. Brotman

UN FLUIDO GIRATORIO. Si se calienta por debajo, el líquido o gas tiende a organizarse en giros cilíndricos (izquierda). El fluido caliente se eleva por un lado, pierde temperatura y desciende por el lado opuesto. Es el proceso de la convección. Si se intensifica el calor (derecha), aparece la inestabilidad, y los giros exhiben un temblor que recorre adelante y atrás la longitud de los cilindros. A temperaturas aún más elevadas, la corriente se desordena y se hace turbulenta.

La convección menos complicada, la que presentan los libros de texto, sucede en una celdilla de fluido, caja de fondo liso que puede calentarse y una tapa, también lisa, que puede enfriarse. Dirige la corriente la diferencia térmica entre la base cálida y la porción superior fría. Si la desigualdad es pequeña, el sistema permanece quieto. El calor va hacia arriba por conducción, como a lo largo de una barra metálica, sin vencer la propensión natural del fluido a la inmovilidad. Además, el sistema es estable. Todo movimiento casual que pueda recibir cuando, por ejemplo, un estudiante graduado golpea el aparato con los nudillos, tenderá a extinguirse, y el sistema volverá a su estado estable.

Sobreviene otro comportamiento en cuanto se calienta. El fluido, caldeado en la parte inferior, se expande y, por ello, se vuelve menos denso. La pérdida de densidad lo hace más ligero, lo bastante para vencer la fricción, y sube hacia la superficie. En una caja bien diseñada, se desarrolla un cilindro, un rollo, en el que el fluido caliente asciende por un lado, y el frío desciende por el otro. Visto lateralmente, el movimiento traza un círculo continuo. La naturaleza, lejos de los laboratorios, crea a menudo sus propias celdillas de convección. Por ejemplo, cuando el sol caldea la superficie de un desierto, el aire rodante llega a formar espectrales pautas en las nubes o en la arena.

Al avivar el calor, el comportamiento se complica. Los rollos empiezan a temblar. Las esquilmadas ecuaciones de Lorenz fueron demasiado simples para modelar aquel género de complejidad. Abstraían sólo un rasgo de la convección tal como se produce en el mundo: el movimiento circular del fluido caliente, que ascendía y volteaba como una noria en un parque de atracciones. Las ecuaciones tuvieron en cuenta la velocidad de aquel movimiento y la transferencia del calor, procesos físicos que se influían recíprocamente. Cualquier pizca cálida que se remontaba por el círculo encontraba fluido más frío y, por consiguiente, comenzaba a perder calor. Si el círculo se movía con suficiente rapidez, la pizca no perdía todo el exceso de calor cuando llegaba a lo alto, y principiaba a deslizarse por el otro lado del rollo, de manera que empezaba a resistir el impulso del resto del fluido cálido que ascendía detrás de ella.

Aunque no cumpliese punto por punto el modelo de la convección, el sistema de Lorenz tuvo analogías precisas con los reales. Por ejemplo, sus ecuaciones describen con exactitud una antigua dínamo eléctrica, antepasada de los actuales generadores, en los que la corriente circula a través de un disco, el cual gira en un campo magnético. Cumpliéndose determinadas condiciones, la dínamo puede invertir su movimiento. Y algunos científicos, así que las ecuaciones de Lorenz se conocieron mejor, insinuaron que el comportamiento de la dínamo quizá proporcionase una explicación de otros fenómenos peculiares de inversión, como el del campo magnético terrestre. Se sabe que la «geodínamo» ha dado muchos saltos mortales durante la historia de la Tierra, a intervalos que se antojan excéntricos e inexplicables. Los teorizadores, ante tal irregularidad, buscan típicamente justificaciones fuera del sistema y proponen causas tales como el impacto de los meteoritos. Pero tal vez la geodínamo posea caos propio.

Otro sistema descrito con precisión por las ecuaciones de Lorenz es la rueda de agua o noria, analogía mecánica del círculo rotante de la convección. El agua cae, en la porción superior, continuamente en cangilones situados en el borde de la rueda. Cada uno se vacía por un agujerito. Si la corriente de agua es lenta, los más elevados nunca se llenan con la prontitud necesaria para vencer la fricción; cuando es rápida, el peso empieza a voltear la rueda. La rotación tiene la posibilidad de hacerse continua. O, si el caudal es tan veloz que los pesados cangilones dan la vuelta hasta el fondo y se remontan por el lado contrario, la rueda llega a menearse despacio, hasta detenerse e invertir su rotación, yendo primero en un sentido y después en otro.

Adolph E. Brotman

LA RUEDA DE AGUA O NORIA DE LORENZ. El primero y célebre sistema caótico que descubrió Lorenz corresponde a un ingenio mecánico: la rueda de agua. Un aparato tan sencillo es capaz de un comportamiento sorprendentemente complicado.

La rotación de la noria comparte propiedades de los cilindros giratorios de un fluido en el proceso de la convección. Equivale a una sección vertical de ellos. Los dos sistemas reciben impulso continuo —el del agua o el calor—, y ambos disipan energía. El fluido pierde calor; la rueda, agua de los cangilones. Y en uno y otro el comportamiento a largo plazo depende de la intensidad de la energía.

El agua cae a velocidad uniforme. Si su afluencia es lenta, el cangilón superior nunca se llena lo suficiente para vencer la fricción, y la noria no gira. (De la misma manera, en el fluido, si el calor es tan débil que no vence la viscosidad, no lo pondrá en movimiento).

Si la corriente es rápida, el peso del cangilón hace que la rueda se mueva (izquierda). El aparato puede adquirir una rotación que persiste a velocidad uniforme (centro).

Si la corriente es más rápida todavía (derecha), la rotación puede convertirse en caótica a causa de los elementos no lineales introducidos en el sistema. A medida que pasan por debajo del agua en movimiento, los cangilones se llenan más o menos según sea la velocidad de los giros. Si la rueda los describe de prisa, los cangilones disponen de poco tiempo para llenarse. (Igualmente, el fluido que se halla en un cilindro de convección, que voltee con gran rapidez, tiene escaso tiempo para absorber calor). Asimismo, si la noria gira con velocidad, los cangilones quizá emprendan la ascensión por el lado opuesto antes de haberse vaciado. De ello resultará que los cangilones pesados del lado que sube tal vez frenen el giro y lo inviertan.

Lorenz descubrió que, de hecho, durante períodos largos, el giro puede invertirse en muchas ocasiones, sin jamás adoptar velocidad estable y sin jamás repetirse conforme a una pauta predecible.

Su intuición de un sistema mecánico tan poco complicado —su intuición precaótica— informa al físico de que, a largo plazo, si la corriente de agua no varía, se creará un estado estable. La noria girará con regularidad u oscilará regularmente adelante y atrás, primero en una dirección y después en otra a intervalos constantes. Lorenz discrepó de ello en razón de sus hallazgos.

Tres ecuaciones, con otras tantas variables, describían todo el movimiento de este sistema. El ordenador de Lorenz imprimió los valores cambiantes de las tres variables: 0-10-0; 4-12-0; 9-20-0; 16-36-2; 30-66-7; 54-115-24; 93-192-74. Los tres números ascendían y descendían como intervalos marcados por un reloj imaginario, cinco, cien, mil espacios temporales.

Con el objeto de obtener una imagen con aquellos datos, Lorenz empleó cada serie de tres números como coordenadas que especificasen la situación de un punto en un espacio tridimensional. Así, la secuencia numérica produjo una de puntos que trazaba una trayectoria continua, registro del comportamiento del sistema. La trayectoria avanzaría hasta un lugar en el que se detendría, indicando que el sistema había llegado al estado estable, en el que ya no se mudarían las variables de velocidad y temperatura; o formaría una curva que giraría a la redonda demostrando que el sistema había adoptado una pauta de conducta que se repetiría de manera periódica.

Pero en el caso de Lorenz no sucedió de tal suerte. En vez de ello, el diagrama manifestó una complejidad infinita. Permanecía siempre dentro de ciertos límites, sin jamás salir del papel, pero sin nunca repetirse. Reveló una configuración extraña, característica, algo por el estilo de una espiral doble en tres dimensiones, como una mariposa con su par de alas. La figura denotó desorden puro, puesto que ningún punto, o pauta de ellos, se repetía jamás. A pesar de todo, señaló una nueva clase de orden.

James P. Crutchfield / Adolph E. Brotman

LOS ATRACTORES DE LORENZ. Esta imagen mágica, similar a la cara de una lechuza o a las alas de una mariposa, se convirtió en emblema de los primeros exploradores del caos. Reveló la sutil estructura que escondía una serie desordenada de datos. Según la tradición, los valores cambiantes de cualquier variable podían mostrarse en la serie temporal (arriba). Para evidenciar las relaciones mutables entre tres variables se requiere una técnica diferente. En un instante dado, las tres señalan la situación de un punto en un espacio tridimensional; así que el sistema cambia, el movimiento del punto representa las variables que se modifican continuamente.

Como el sistema nunca se repite de modo exacto, la trayectoria jamás se corta a sí misma. En lugar de ello, describe curvas una y otra vez, para siempre. El movimiento del atractor es abstracto, pero comunica la esencia del movimiento del sistema real. Por ejemplo, el traslado de un ala del atractor a otra corresponde a una inversión de la dirección del giro en la noria o en el fluido que experimenta convección.