V
AGRESIÓN: LA ESTABILIDAD
Y LA MÁQUINA EGOÍSTA

El presente capítulo abordará, en su mayor parte, el tópico con tanta frecuencia mal entendido de la agresión. Continuaremos tratando al individuo como a una máquina egoísta, programada para realizar cualquier cosa que sea mejor para sus genes considerados en su conjunto. Éste es el lenguaje de la conveniencia. Al finalizar el capítulo retornaremos al lenguaje de los genes individuales.

Para una máquina de supervivencia, otra máquina de supervivencia (que no sea su propio hijo u otro pariente cercano) constituye una parte de su entorno, al igual que una roca, un río o un bocado de alimento. Es algo que obstruye el camino que puede ser utilizado. Difiere de una roca o un río en un aspecto importante: tiene tendencia a devolver el golpe. Ello se debe a que también es una máquina que guarda sus genes inmortales en administración para el futuro, y al igual que la primera máquina de supervivencia no se detendrá ante nada para preservarlos. La selección natural favorece a los genes que controlan a sus máquinas de supervivencia de tal manera que hacen el mejor uso posible de su entorno. Ello incluye el hacer el mejor uso de otras máquinas de supervivencia, ya sea de la misma especie o de especies diferentes.

En algunos casos las máquinas de supervivencia parecen casi no interferir en las vidas de unas y otras. Por ejemplo, los topos y los mirlos no se comen entre sí, no forman parejas o compiten por el espacio vital. Aun así, no debemos considerarlos como aislados totalmente. Pueden competir por algo, quizá por los gusanos de tierra. Ello no significa que alguna vez se vea a un topo y a un mirlo tirando de los extremos opuestos de un gusano; en realidad, es probable que un mirlo ni siquiera pose sus ojos sobre un topo en toda su vida. Pero si se eliminara a la población de topos, el efecto sobre los mirlos sería dramático, aun cuando no me atrevo a predecir sus detalles, ni por cuáles rutas indirectas y tortuosas podría ejercerse dicha influencia.

Las máquinas de supervivencia de diferentes especies se influyen unas a otras en una variedad de formas. Pueden ser predadores o víctimas, parásitos o huéspedes competidores por algún recurso escaso. Pueden ser explotados de maneras especiales, como por ejemplo cuando las abejas son utilizadas, como portadoras del polen, por las flores.

Las máquinas de supervivencia pertenecientes a las mismas especies tienden a intervenir más directamente en la vida de las demás. Ello se debe a diversas razones. Una de ellas es que la mitad de la población de la propia especie son compañeros potenciales, así como también padres potenciales y trabajadores explotables para sus hijos. Otra razón es que los miembros de la misma especie, al ser muy similares entre sí, siendo máquinas para preservar genes en el mismo tipo de lugar, con la misma forma de vida, son, especialmente, competidores directos de todos los recursos necesarios para la vida. Para un mirlo, un topo puede ser un competidor, pero no es ni remotamente tan importante como otro mirlo. Los topos y los mirlos pueden competir por los gusanos, pero los mirlos entre sí compiten por los gusanos y todo lo demás. Si son miembros del mismo sexo, pueden también competir por sus parejas sexuales. Por razones que veremos más adelante, normalmente los machos son los que compiten entre sí por las hembras. Ello significa que un macho puede beneficiar a sus propios genes si efectúa algo dañino a otro macho con el cual se encuentra compitiendo.

La política lógica para una máquina de supervivencia podría ser, en apariencia, asesinar a sus rivales y luego, de manera preferente, comérselos. Aun cuando el asesinato y el canibalismo ocurren en la naturaleza, no son tan comunes como una interpretación ingenua de la teoría relativa al egoísmo de los genes podría predecir. En realidad, Konrad Lorenz, en su libro Sobre la agresión, subraya el carácter restringido y caballeroso de la lucha animal. Para él el hecho notable de las luchas entre animales es que son torneos formales reñidos según reglas precisas, como las que rigen en el boxeo o en la esgrima. Los animales pelean con los puños enguantados y con los floretes despuntados. Las amenazas y la fanfarronada reemplazan a la intensidad mortal. Los gestos de rendición son reconocidos por los vencedores, quienes se abstienen de asestar el golpe o el mordisco mortal que nuestra ingenua teoría podría esperar.

Esta interpretación de la agresión animal, de cualidades restringidas y formales, puede ser discutida. En especial, es ciertamente un error condenar al pobre Homo sapiens como perteneciente a la única especie que mata a sus propios congéneres, como el único heredero de la marca de Caín, y otros cargos similares melodramáticos. El hecho de que un naturalista acentúe la violencia o la moderación en las agresiones animales depende, en cierta medida, de las especies de animales que él suele observar, y en parte, de las ideas preconcebidas que tenga sobre la evolución —Lorenz, después de todo, es partidario de la teoría del «bien de las especies». Aun si ha sido exagerado, el punto de vista de las luchas entre animales con los puños enguantados parece implicar, por lo menos, algo de verdad. Superficialmente aparenta ser un tipo de altruismo. La teoría del gen egoísta debe afrontar la difícil tarea de dar una explicación. ¿A qué se debe que los animales no intenten matar a los miembros rivales en todas las oportunidades posibles?

La respuesta general a este problema es que existen costos, así como beneficios, derivados de una belicosidad declarada, para no considerar sólo los costos obvios en tiempo y energía. Por ejemplo, supongamos que tanto B como C son mis rivales, y, por casualidad, me encuentro con B. Podría parecer un acto prudente de mi parte, en mi calidad de individuo egoísta, tratar de matar a B. Pero, pensemos un momento. También C es mi rival, y C es también el rival de B. Al matar a B le estoy haciendo, potencialmente, un favor a C ya que elimino a uno de sus rivales. Quizá sería mejor dejar a B con vida, pues entonces él podría competir o luchar con C beneficiándome a mí indirectamente. La moraleja que se desprende de este simple e hipotético ejemplo es que no existe un mérito obvio en tratar de matar, de forma indiscriminada, a los rivales. En un amplio y complejo sistema de rivalidades, eliminar a un rival de la escena no representa, necesariamente, un beneficio: es posible que otros rivales se beneficien con su muerte más que uno mismo. Este es el tipo de dura lección que han tenido que aprender los funcionarios encargados del control de las plagas. Se presenta una plaga agrícola seria, se descubre una buena forma de exterminarla y alegremente se actúa en concordancia, sólo para descubrir que otra plaga se beneficia con la exterminación más que el agricultor, quien termina peor que antes.

Por otra parte, podría parecer una buena idea matar o al menos luchar contra ciertos rivales de una manera preferente. Si B es un elefante marino que posee un gran harén de hembras, y yo soy otro elefante marino que puedo apoderarme de su harén matándolo, podría sentirme tentado a intentarlo. Pero existen costos y riesgos aun en la belicosidad selectiva. Obra en ventaja de B el hecho de luchar a la defensiva, tratando de resguardar su valiosa propiedad. Si yo inicio una lucha, tengo tantas posibilidades de terminar muerto como las tiene él. Quizá más aún. Él posee un recurso valioso, y por ello deseo luchar contra él. Pero ¿por qué posee dicho recurso? Quizá lo ganó en un combate. Probablemente haya derrotado a otros retadores antes de luchar conmigo. Probablemente sea un buen luchador. Aun si gano la pelea y obtengo el harén, tal vez quede tan magullado que no pueda gozar de los beneficios. También la lucha requiere tiempo y energía. Quizá sea mejor conservarlas por el momento. Si me concentro en alimentarme y procuro quedar al margen de los problemas durante algún tiempo, creceré y me pondré más fuerte. Lucharé contra él por el harén al fin, pero puedo tener una mejor oportunidad de ganar más tarde si espero, en vez de precipitarme ahora.

Este soliloquio subjetivo es sólo una manera de señalar que una decisión para emprender o no una batalla debería ir precedida, idealmente, por un cálculo complejo, si bien inconsciente, de los «costos-beneficios». Los beneficios potenciales no aparecen todos a favor de la lucha, aunque indudablemente algunos sí lo están. De manera similar, durante la pelea, cada decisión táctica sobre si es aconsejable seguir la escalada e intensificarla o enfriarla implica costos y beneficios que debieran ser, en principio, analizados. Los etólogos han apreciado este problema desde hace mucho tiempo, pero de una forma imprecisa, lo que ha inducido a J. Maynard Smith, no considerado normalmente como un etólogo, a expresar la idea enérgica y claramente. En colaboración con G. R. Price y G. A. Parker, emplea la rama de las matemáticas conocida como técnica de la ley de probabilidades. Sus refinadas ideas pueden ser expresadas en palabras corrientes sin utilizar símbolos matemáticos, si bien es cierto que ello afecta, en parte, al rigor.

El concepto esencial que introduce Maynard Smith se refiere a la estrategia evolutivamente estable, idea que él reconstruye a partir de W. D. Hamilton y R. H. MacArthur. Una «estrategia» es una política de comportamiento preprogramada. Un ejemplo de estrategia sería: «Atacar al adversario; si huye, perseguirlo; si contraataca, huir.» Es importante tener en cuenta que no nos estamos refiriendo a una estrategia conscientemente ideada por el individuo. Es necesario recordar que estamos representando al animal como una máquina de supervivencia robot provista de una computadora preprogramada que controla los músculos. Representar la estrategia como un juego de simples instrucciones en nuestro idioma es sólo una forma conveniente para que nosotros podamos considerarla. Por algún mecanismo no especificado, el animal se comporta como si estuviese siguiendo dichas instrucciones.

Una estrategia evolutivamente estable o EEE es definida como una estrategia que, si la mayoría de la población la adopta, no puede ser mejorada por una estrategia alternativa.[21] Es una idea sutil e importante. Otra manera de expresarlo sería decir que la mejor estrategia a seguir por un individuo depende de lo que la mayoría de la población esté haciendo. Ya que el resto de la población consiste en individuos, cada uno de los cuales trata de potenciar al máximo su propio éxito, la única estrategia que persista será la que, una vez evolucionada, no pueda ser mejorada por ningún individuo que difiera de ella. A un cambio ambiental considerable puede seguir un breve período de inestabilidad evolutiva, quizá se produzca una fluctuación entre la población. Pero una vez que se logra una EEE, ésta permanecerá; la selección penalizará cualquier desviación respecto de ella.

Con el fin de aplicar esta idea a la agresión, consideremos uno de los casos hipotéticos más simples de Maynard Smith. Supongamos que existen dos tipos de estrategia de lucha en una población de especies determinadas, llamadas halcones y palomas. (Los nombres se refieren a su uso convencional por parte de los seres humanos y no guardan relación con los hábitos de los pájaros de los cuales se han derivado los nombres; las palomas son, en realidad, pájaros bastante agresivos.) Todo individuo de nuestra población hipotética está clasificado ya sea como halcón o como paloma. Los halcones lucharán siempre tan dura y desenfrenadamente como les sea posible, replegándose sólo cuando se encuentren gravemente heridos. Las palomas se limitarán a amenazar de una forma digna y convencional, sin dañar jamás a nadie. Si un halcón ataca a una paloma, ésta se alejará rápidamente y así no resultará dañada. Si un halcón ataca a otro halcón, continuarán la lucha hasta que uno de ellos resulte muerto o gravemente herido. Si una paloma se enfrenta a otra paloma nadie saldrá lesionado; se limitarán a asumir una postura, una frente a la otra, durante un largo tiempo hasta que una de ellas se canse o decida no molestarse más y, por lo tanto, ceda. Por el momento, asumiremos que no hay forma de que un individuo pueda saber, por adelantado, si un rival determinado es un halcón o una paloma. Sólo lo descubre al iniciarse la lucha, y no guarda memoria de pasadas luchas con otros individuos por las cuales guiarse.

Ahora, como una convención puramente arbitraria, asignaremos «puntos» a los contendientes. Digamos 50 puntos por ganar o por perder -100 puntos por resultar gravemente herido, y -10 por perder el tiempo en una larga disputa. Puede considerarse que dichos puntos son directamente convertibles en la moneda de supervivencia de los genes. Un individuo cuya puntuación sea alta, que tenga un alto promedio de «pago», es un individuo que deja tras de sí muchos genes en el acervo génico. Dentro de amplios límites, los valores numéricos no cuentan para el análisis, pero nos ayudan a pensar acerca del problema.

El aspecto importante es que no estamos interesados en si los halcones derrotarán a las palomas cuando peleen con ellas. Ya sabemos la respuesta: los halcones siempre ganarán. Lo que nos interesa saber es si los halcones o las palomas constituyen una estrategia evolutivamente estable. Si una de ellas es una EEE y la otra no lo es, hemos de esperar que la que es una EEE evolucionará. Teóricamente es posible que haya dos EEE. Ello sería cierto si, cualquiera que fuese la estrategia mayoritaria de la población, ya sea la del halcón o la de la paloma, la mejor estrategia para un individuo fuera atenerse a ella. En este caso, la población tendería a seguir cualquiera de los dos estados estables que se produjese primero. Sin embargo, como ahora veremos, ninguna de estas dos estrategias, halcón o paloma, podrían ser evolutivamente estables por sí solas y, por lo tanto, no deberíamos esperar que ninguna de ellas evolucionara. Para demostrarlo debemos calcular el promedio de los resultados finales.

Supongamos que tenemos una población consistente enteramente en palomas. Siempre que se pelean, nadie resulta herido. Los enfrentamientos consisten en torneos rituales y prolongados, duelos llamativos quizá, que no finalizan hasta que un rival cede. El ganador obtiene entonces 50 puntos por conseguir una ventaja en la disputa, pero paga una sanción de -10 por perder el tiempo en una larga contienda de miradas fijas, de manera que consigue 40 puntos en total. El perdedor también sufre una penalización de -10 puntos por perder el tiempo. Como promedio, cualquier paloma individual puede ganar la mitad de sus disputas y perder otras tantas. Por lo tanto, su resultado final por contienda es el promedio de +40 y -10, lo que equivale a +15. Considerando lo anteriormente expuesto, cada paloma individual en una población de palomas parece desempeñarse bastante bien.

Pero supongamos ahora que en la población surge un halcón mutante. Ya que él es el único halcón que se encuentra por los alrededores, todas sus luchas serán contra una paloma. Los halcones siempre vencen a las palomas, de tal manera que él obtiene +50 por cada pelea y es éste su resultado final. Goza de una enorme ventaja sobre las palomas cuyo promedio de puntos logrado sólo alcanza a +15. Como resultado de ello, los genes de los halcones se esparcirán rápidamente a través de la población. Producto de esta nueva situación, cada halcón ya no puede contar con que cada rival que tenga enfrente será una paloma. Para tomar un ejemplo extremo: si los genes de los halcones se esparcieran tan prósperamente que toda la población estuviese formada por halcones, todas las peleas serían entre halcones. Las cosas serían ahora muy diferentes. Cuando un halcón se enfrenta a otro, uno de ellos resulta seriamente herido y obtiene una puntuación de -100, mientras que el ganador logra +50 puntos. Cada halcón, en una población de halcones, puede esperar ganar la mitad de sus batallas. Su promedio de puntos por pelea se encontraría, por lo tanto, entre +50 y -100, lo que da un resultado de -25. Consideremos ahora una sola paloma en una población de halcones. Seguramente perderá todas sus peleas, pero, por otra parte, nunca resultará dañada. Su promedio de puntos obtenidos será de 0 en una población, de halcones, mientras que el promedio logrado por un halcón en una población de halcones es de -25. Los genes de las palomas, por consiguiente, tenderán a esparcirse a través de la población.

De la forma en que he narrado la historia parece ser que se provocará una continua oscilación en la población. Los genes de los halcones impondrán su influjo creciente; luego y como consecuencia de la mayoría de halcones, las palomas obtendrán ventaja y aumentarán su número hasta que, una vez más, los genes de los halcones comiencen a prosperar, y así sucesivamente. Sin embargo, no tiene por qué provocarse una oscilación como la descrita. Existe una relación estable entre halcones y palomas. Para el sistema especial de puntos arbitrarios que estamos empleando, la relación estable, si se deduce, (5/12) palomas a (7/12) halcones.

Cuando se alcanza esta relación estable, el resultado promedio de los halcones es exactamente igual al resultado promedio de las palomas. Por ende, la selección no favorece a uno más que a otro. Si el número de halcones en una población empezara a elevarse de tal manera que la relación dejara de ser de (7/12), las palomas empezarían a lograr una ventaja adicional, y la relación volvería a situarse en su estado estable. Así como encontraremos que la relación estable en el sexo es de 50:50, de igual manera la relación estable entre halcones y palomas, en este hipotético caso, es de 7:5. En cada caso, si hay oscilaciones en torno al punto estable éstas no son, necesariamente, considerables.

Superficialmente, parece como si nos estuviésemos refiriendo un poco a la selección de grupo, pero en realidad no se trata de nada por el estilo. Parece selección de grupo porque nos permite pensar en una población poseedora de un equilibrio estable, al cual tiende a retornar cuando éste es perturbado. Pero la EEE es un concepto bastante más sutil que la selección de grupo. No tiene relación alguna con el hecho de que algunos grupos tengan más éxito que otros. Ello puede quedar muy bien explicado si empleamos el arbitrario sistema de puntos de nuestro hipotético ejemplo.

Un individuo obtiene como promedio un resultado final de 6·(7/12) en una población estable consistente en (7/12) de halcones y (5/12) de palomas. Este resultado es válido tanto si el individuo es un halcón como si es una paloma. Bien, 6·(1/4) es un promedio bastante más bajo que el resultado final obtenido por una paloma en una población de palomas (15). Solamente si todos estuviesen de acuerdo en ser una paloma, todos los individuos resultarían beneficiados. Por medio de una simple selección de grupo, tendríamos que cualquier grupo en el cual todos los individuos estuviesen mutuamente de acuerdo para ser palomas tendría mucho más éxito que un grupo rival situado en relación a la EEE. (En realidad, una concentración integrada sólo por palomas, no constituiría el grupo con mayores posibilidades de éxito. Un grupo consistente en (1/6) de halcones y (5/6) de palomas obtendrá un resultado promedio por contienda de 16·(2/3). Ésta sería la formación con mayor posibilidad de éxito, pero considerando nuestros actuales objetivos, podemos ignorarla. Una concentración más simple, constituida por palomas exclusivamente, con su promedio final, por individuo, de 15, presenta un resultado individual bastante mejor que el dado por la EEE.) Así, la teoría de la selección de grupo pronosticaría una tendencia hacia la evolución que favorecería a una concentración de palomas exclusivamente, ya que un grupo que contuviese una proporción (7/12) de halcones resultaría menos próspero. Pero el problema que plantean estas concentraciones, aun aquellas que resultan, a largo plazo, en beneficio de todos, es que son propensas a que se cometan abusos en su seno. Es un hecho cierto que es más beneficioso para todos los miembros el pertenecer a un grupo de palomas que a un grupo de EEE. Por desgracia, en los grupos de palomas la intromisión de un solo halcón supone un éxito tan rotundo que nada puede impedir la evolución de los halcones. La concentración está, por lo tanto, destinada a ser disuelta por la traición desde dentro. Una EEE es estable, no porque sea especialmente buena para los individuos que en ella participan, sino simplemente porque es inmune a este tipo de traición.

Es posible que los seres humanos participen en pactos o conspiraciones que resulten en beneficio de cada uno de los individuos implicados, aun cuando ellos no sean estables en el sentido de la EEE. Ello es posible sólo por el hecho de que cada individuo emplea su previsión consciente y es capaz de comprender que favorece a sus propios intereses, a largo plazo, si obedece las reglas del pacto. Aun en los pactos formulados por seres humanos existe el peligro constante de que los individuos, al estar en condiciones de ganar mucho en un plazo breve, caigan en la abrumadora tentación de romperlo. Quizá el mejor ejemplo lo constituya la fijación de precios. Si se uniforman los precios de la gasolina a un determinado valor artificialmente alto, ello beneficiará, a largo plazo, a todos los dueños de garajes. La regulación de precios basada en estimaciones conscientes, considerando los mejores intereses a largo plazo, puede ser válida durante largos períodos. Una que otra vez, no obstante, un individuo cede a la tentación de reducir sus precios. Inmediatamente, sus vecinos siguen el ejemplo y una ola de reducción de precios se extiende sobre el país. Desgraciadamente para el resto de nosotros, la previsión consciente de los dueños de garajes se reafirma y formulan un nuevo pacto de fijación de precios. De tal manera, aun en el hombre, especie que posee el don de la previsión consciente, los pactos o conjuras basados en intereses a largo plazo oscilan, constantemente, al borde del colapso debido a la traición que se produce en su seno. En los animales salvajes, controlados por los genes en lucha, es todavía más difícil determinar formas en que podrían evolucionar estrategias de conspiración o en beneficio de los grupos. Esperemos encontrar estrategias evolutivas estables por todas partes.

En nuestro ejemplo hipotético formulamos la simple conjetura de que todo individuo era o paloma o halcón. Finalizamos estableciendo una relación evolutivamente estable entre halcones y palomas. En la práctica, ello significa que existe una proporción estable entre los genes de los halcones y los genes de las palomas en el acervo génico. El término técnico genético para definir este estado es polimorfismo estable. En cuanto a las matemáticas concierne, un equivalente exacto de la EEE puede lograrse sin polimorfismo de la siguiente manera: si cada individuo es capaz de comportarse ya sea como un halcón o una paloma en cada contienda particular, puede lograrse una EEE en la cual todos los individuos tienen las mismas posibilidades de comportarse como un halcón, es decir (7/12) según nuestro ejemplo particular. En la práctica ello significaría que cada individuo participa en cada enfrentamiento habiendo tomado una decisión al azar sobre si comportarse en esa ocasión como un halcón o como una paloma; al azar, pero con una propensión de 7:5 en favor del halcón. Es muy importante que las decisiones, aun inclinadas hacia el comportamiento propio de un halcón, se tomarían al azar en el sentido de que un rival no tiene manera de averiguar cómo se comportará su adversario en una contienda dada. No sirve, por ejemplo, interpretar el papel del halcón durante siete luchas seguidas, luego el de la paloma durante las cinco luchas siguientes, y así sucesivamente en su comportamiento. Si un individuo adoptara tan simple secuencia, su rival pronto se daría cuenta de ella y sacaría ventaja de su conocimiento. La forma de obtener ventaja de un estratega que adopta una secuencia simple es representar el papel del halcón sólo cuando se sabe que él va a interpretar el papel de la paloma.

La historia de los halcones y las palomas es, por supuesto, ingenuamente sencilla. Es un «modelo», algo que realmente no sucede en la naturaleza, pero que nos ayuda a comprender lo que sí sucede en ella. Los modelos pueden ser muy simples, como el que acabamos de presentar, y aun así ser útiles para entender un punto o captar una idea. Los modelos simples pueden ser elaborados y gradualmente tornarse más complejos. Si todo marcha bien, a medida que se vuelven más complejos se asemejan más al mundo real. Una manera por la cual podemos empezar a desarrollar el modelo de los halcones y las palomas es mediante la introducción de algunas estrategias más. Los halcones y las palomas no son las únicas posibilidades. Una estrategia más compleja presentada por Maynard Smith y Price es denominada El vengador.

Un vengador interpreta el papel de la paloma en el inicio de cada pelea. Ello quiere decir, que no monta un ataque salvaje y total como lo haría un halcón, sino que lleva a cabo un combate convencional, amenazador. Si su adversario lo ataca, retrocede sin embargo. En otras palabras, un vengador se comporta como un halcón cuando es atacado por un halcón y como una paloma cuando se enfrenta a una paloma. Cuando encuentra a otro vengador hace el papel de una paloma. Un vengador es un estratega condicional. Su comportamiento depende del comportamiento de su adversario.

Otro estratega condicional es denominado pendenciero. Un pendenciero va de un sitio a otro comportándose como un halcón hasta que alguien le devuelve los golpes. Reacciona huyendo de inmediato. Otro estratega condicional es el vengador-sonda. Un vengador-sonda es básicamente igual que un vengador, pero, ocasionalmente, intenta una breve escalada experimental en la contienda. Persiste en su comportamiento de halcón si su adversario no responde al ataque. Si, por otra parte, su adversario presenta batalla, regresa a su táctica de amenaza convencional al igual que una paloma. Si es atacado se desquita al igual que un vengador corriente.

Si las cinco estrategias que he mencionado se deja que actúen libremente en una simulación en una computadora, sólo una de ellas, la del vengador, surge como evolutivamente estable.[22] El vengador-sonda es casi estable. La paloma no lo es debido a que una población de palomas podría ser invadida por halcones y pendencieros. El halcón no es estable porque una población de halcones podría ser invadida por palomas y pendencieros. Los pendencieros tampoco lo son, ya que una población de pendencieros podría ser invadida por halcones. Una población de vengadores no sería invadida por ninguna otra estrategia, ya que no hay otra que dé un mejor resultado que la de los mismos vengadores. No obstante, las palomas obtienen un resultado igualmente bueno en una población de vengadores. Ello significa que, siendo los demás factores iguales, el número de las palomas se puede incrementar lentamente. Ahora bien, si el número de las palomas se elevase hasta alcanzar una cifra significativa, los vengadores-sonda (e, incidentalmente, los halcones y los pendencieros) empezarían a lograr una ventaja, ya que logran un resultado mejor que los vengadores cuando luchan contra las palomas. Los mismos vengadores sonda, a diferencia de los halcones y los pendencieros, constituyen casi una EEE, en el sentido de que, en una población de vengadores-sonda, sólo una estrategia diferente de la suya, formada por los vengadores, obtiene un mejor resultado, pero sólo levemente superior. Podemos suponer, por lo tanto, que una mezcla de vengadores y vengadores-sonda podría tender a predominar, quizá con cierta oscilación en el tamaño de una pequeña minoría de palomas. Una vez más, no tenemos por qué pensar en términos de un polimorfismo en el cual cada individuo interprete siempre una u otra estrategia. Cada individuo podría representar una mezcla compleja entre un vengador, un vengador-sonda y una paloma. Dicha conclusión teórica no se encuentra muy alejada de lo que realmente sucede en la mayoría de los animales salvajes. Hemos explicado, en cierto sentido, el aspecto relativo a los «puños enguantados» en la agresión animal. Los detalles dependen, por supuesto, del exacto número de puntos asignados al ganador, al que resulta lastimado, al que pierde el tiempo, etc. En los elefantes marinos, el premio por obtener una victoria puede estar cercano a obtener derechos casi monopolistas sobre un numeroso harén de hembras. El resultado final por el triunfo debe estar, en consecuencia, calificado bastante alto. No es de extrañar que las luchas sean crueles y las probabilidades de que los combatientes resulten lesionados, muy altas. El costo de perder el tiempo debiera, presumiblemente, ser considerado pequeño en comparación con el costo de resultar herido y del beneficio al obtener la victoria. El costo de perder el tiempo para un pájaro pequeño en un clima frío, por otra parte, puede ser gigantesco. Un gran paro, cuando se encuentra alimentando a sus polluelos necesita atrapar una presa cada treinta segundos por término medio. Cada segundo de luz diurna es precioso. Aun el período relativamente corto que se emplea en una lucha de un halcón contra otro halcón podría ser, quizá, considerado como de una importancia mayor que el riesgo de resultar herido que tiene ese pájaro. Sabemos demasiado poco en la actualidad, desgraciadamente, para asignar cifras realistas a los costos y beneficios de las diversas consecuencias que resultan de los diversos actos en la naturaleza.[23] Debemos ser cuidadosos y no extraer conclusiones que resulten, simplemente, de nuestra arbitraria elección de puntuaciones. Las conclusiones generales importantes son: las estrategias evolutivamente estables tenderán a evolucionar; una EEE no significa lo mismo que la estrategia óptima que pueda lograr la concentración de un grupo; por último, el sentido común puede ser engañoso.

Otro tipo de juego bélico que Maynard Smith ha considerado, es la «guerra de desgaste». Puede suponerse que ésta surge en especies que nunca se enzarzan en combates serios, quizás en especies muy bien protegidas, en las cuales son muy improbables las heridas. En estas especies todas las disputas se solucionan asumiendo posturas convencionales. Una contienda siempre finaliza cuando un rival u otro cede. Con el fin de ganar, todo lo que se debe hacer es permanecer firme en su posición y mirar airadamente al adversario hasta que éste, al fin, se aleje. Obviamente, ningún animal puede permitirse el gastar un tiempo infinito amenazando; hay otras cosas importantes que hacer en otro lugar. El recurso por el cual él está compitiendo es valioso, pero no infinitamente valioso. Sólo vale un determinado tiempo y, al igual que en una sala de remate, cada individuo está dispuesto a gastar una determinada cantidad. El tiempo es la moneda en esta subasta en la que sólo participan dos licitadores.

Supongamos que todos los individuos calculan, por anticipado, exactamente cuánto tiempo piensan que vale un determinado tipo de recurso, digamos una hembra. Un individuo mutante que esté dispuesto a permanecer un poco más, ganará siempre. De tal manera que la estrategia de mantener un límite fijo de puja es inestable. Aun si el valor del recurso puede ser estimado de manera bastante precisa, y todos los individuos ofrecen exactamente el valor correcto, la estrategia es inestable. Si dos individuos licitan de acuerdo a esta estrategia de una oferta máxima, cederán exactamente en el mismo instante y ninguno obtendrá el recurso. Sería entonces más conveniente para un individuo ceder al comienzo y no perder el tiempo en las contiendas. La diferencia importante entre una guerra de desgaste y una subasta verdadera es, después de todo, que en una guerra de desgaste ambos competidores pagan el precio, pero sólo uno de ellos obtiene la mercancía. En una población de licitadores dispuestos a pagar el máximo, por lo tanto, una estrategia de renunciar al principio de la contienda sería ventajosa y se esparciría a través de la población. Como consecuencia de ello, algún beneficio empezaría a acumularse para aquellos individuos que no cedieran inmediatamente, sino que esperasen unos cuantos segundos antes de renunciar. Esta estrategia daría buenos resultados cuando se empleara contra aquellos que se retiraran inmediatamente y que, en ese momento, predominarían en la población. La selección favorecería, entonces, una ampliación progresiva del tiempo límite antes de ceder hasta que, una vez más, se acercara al máximo permitido por el verdadero valor económico del recurso en disputa.

Una vez más, nos hemos dejado llevar por las palabras para presentar un cuadro de oscilación en una población. Una vez más, el análisis matemático nos demuestra que ello no es necesario. Existe una estrategia evolutivamente estable, que puede ser expresada como una fórmula matemática, pero en palabras sólo puede ser expresada así: cada individuo persevera durante un tiempo impredecible. Es decir, imposible de predecir en una ocasión particular, pero promediando el verdadero valor del recurso. Por ejemplo, supongamos que el recurso vale realmente cinco minutos de exhibición. En la EEE, cualquier individuo particular puede continuar durante más de cinco minutos o puede limitarse a menos de cinco minutos, o incluso puede elegir exactamente dicho período de tiempo. Lo importante es que su adversario no tiene medios de saber durante cuánto tiempo está dispuesto a persistir en este caso concreto.

Obviamente, en este tipo de guerra de desgaste es de vital importancia que los individuos no den indicio alguno de cuándo van a ceder. Cualquiera que traicione, aunque sea por mover los bigotes, que está empezando a pensar en darse por vencido se encontrará, instantáneamente, en desventaja. Si, por ejemplo, el hecho de mover los bigotes fuese un signo fiable de que la retirada se producirá en el plazo de un minuto, habría una estrategia muy simple para obtener la victoria: «Si tu adversario mueve sus bigotes espera un minuto sin tomar en consideración tus propios planes en cuanto a cuándo debes ceder. Si tu adversario aún no lo ha hecho y tú te encuentras a un minuto del plazo que te has fijado, cede inmediatamente y no pierdas más tiempo. Nunca muevas tus bigotes.» De esta manera, la selección natural penalizaría rápidamente el hecho de mover los bigotes y todos los signos análogos que traicionasen el futuro comportamiento. El rostro impávido o impasible evolucionaría.

¿Por qué el rostro impasible, en vez de mentiras declaradas? Una vez más, porque mentir no es estable. Supongamos que la mayoría de los individuos erizasen sus pelos sólo cuando tuviesen la firme intención de continuar durante un largo período la guerra de desgaste. La obvia contratreta evolucionaría: los individuos cederían inmediatamente cuando un oponente erizara sus pelos. Ahora bien, los mentirosos podrían empezar a evolucionar. Los individuos que realmente no tuviesen intenciones de continuar durante mucho tiempo erizarían sus pelos en todas las ocasiones y cosecharían los beneficios de una victoria rápida y fácil. De esta manera los genes de los mentirosos se esparcirían. Cuando los mentirosos constituyeran la mayoría, la selección favorecería a los individuos que desenmascarasen al farsante. Por lo tanto, los mentirosos decrecerían en número nuevamente. En la guerra de desgaste, el hecho de mentir no es más evolutivamente estable que el decir la verdad. El rostro inmutable es evolutivamente estable. La rendición, cuando finalmente suceda, será repentina e imprevista.

Hasta ahora sólo hemos considerado lo que Maynard Smith denominó contiendas «simétricas». Ello significa que hemos supuesto que los contrincantes son idénticos en todos los aspectos excepto en su estrategia de lucha. Hemos supuesto que los halcones y las palomas son igualmente fuertes, se encuentran igualmente equipados en cuanto a armas y armaduras y que ambos obtendrían un premio igual al ganar. Ésta es una hipótesis conveniente al hacer un modelo, pero no es muy realista. Parker y Maynard Smith avanzaron y consideraron contiendas asimétricas. Por ejemplo, si los individuos varían en tamaño y habilidad de lucha y cada individuo es capaz de estimar el tamaño de un rival en comparación con el propio, ¿afectará ello a la estrategia evolutivamente estable que entonces surja? Ciertamente sí.

Parece haber tres fuentes principales de asimetría. La primera la acabamos de enunciar: los individuos pueden diferir en su tamaño o en su equipo de combate. Segundo, los individuos pueden diferir en cuánto puedan obtener como ganancia de la lucha. Por ejemplo, un macho viejo, al que no le queda mucho tiempo de vida, puede tener menos que perder si resulta herido que un joven macho con el peso de su vida reproductiva por delante.

Tercero, es una extraña consecuencia de la teoría el que una mera asimetría arbitraria y aparentemente irrelevante pueda dar origen a una EEE, ya que puede ser utilizada para arreglar rápidamente las contiendas. Pongamos un ejemplo: se dará a menudo el caso de que un contendiente llegue primero al lugar de la contienda que el otro. Denominémoslos «residente» e «intruso», respectivamente. En bien del razonamiento, asumo que no existe una ventaja general implícita en el hecho de ser un residente o un intruso. Como podremos apreciar, existen razones prácticas de por qué esta hipótesis puede no ser valedera, pero ello no afecta a nuestro argumento. Lo importante es que si no hubiese razones generales para suponer que los residentes poseen ventajas sobre los intrusos, una EEE que dependiese de la asimetría misma tendría posibilidades de evolucionar. Una analogía simple sería la de los seres humanos que solucionan una disputa rápidamente y sin violencia, lanzando al aire una moneda.

La estrategia condicional: «Si eres un residente, ataca; si eres un intruso, retírate», podría ser una EEE. Desde el momento que se asume que la asimetría podría ser arbitraria, la estrategia contraria: «Si eres residente, retírate y si eres intruso, ataca», podría también ser estable. La estrategia que se adopte en una población determinada dependerá de cuál de las dos alcance una mayoría primero. Una vez que una mayoría de individuos adopta una de estas dos estrategias condicionales, los que se desvíen de ella serán penalizados. Por lo tanto y por definición, es una EEE.

Presentemos un ejemplo: supongamos que todos los individuos representen «el residente gana, el intruso huye». Ello significaría que ganarían la mitad de sus batallas y perderían el resto. Nunca resultarían heridos y nunca perderían el tiempo, ya que todas las disputas quedarían inmediatamente zanjadas por una convención arbitraria. Consideremos ahora a un nuevo mutante rebelde. Supongamos que él juega la estrategia del halcón, siempre atacando y nunca retirándose. Ganará cuando su adversario sea un intruso. Cuando su adversario sea un residente, correrá un grave riesgo de resultar herido. Como promedio obtendrá un resultado menor que los individuos que aceptan las reglas arbitrarias de la EEE. Un rebelde que intente el sistema inverso, «si eres residente huye y si eres intruso ataca», tendrá una actuación aún peor. No sólo resultará dañado con frecuencia, sino que, además, rara vez ganará una contienda. Supongamos, a pesar de ello, que por algunos acontecimientos casuales, aquellos individuos que aplican esta convención inversa logran convertirse en la mayoría. En este caso, su estrategia llegará a ser la norma establecida y las desviaciones de ella serán penalizadas. Es de imaginar que si observásemos una población durante muchas generaciones, veríamos una serie de saltos ocasionales de una forma estable a otra.

Sin embargo, en la vida real, las asimetrías verdaderamente arbitrarias tal vez no existan. Por ejemplo, los residentes tenderán a tener una ventaja práctica sobre los intrusos. Tendrán un mejor conocimiento del terreno. Un intruso quizá tenga más posibilidades de estar sin resuello, ya que es él quien se trasladó al campo de batalla, mientras que el residente ya se encontraba allí cuando él llegó. Existe una razón más abstracta por la cual, de los dos estados estables, el definido como «el residente gana, el intruso se retira» es más probable que se dé en la naturaleza. Ello se debe a que la estrategia inversa, «el intruso gana, el residente se retira», implica una tendencia inherente a la autodestrucción —es lo que Maynard Smith llamaría una estrategia paradójica. En cualquier población en la que prevaleciera esta paradójica EEE, los individuos lucharían permanentemente para nunca ser sorprendidos como residentes: siempre intentarían ser los intrusos en cualquier encuentro. Sólo lo lograrían por un movimiento incesante y, por otra parte, sin sentido. Aparte los costos en tiempo y energía que ello implicaría, esta tendencia evolutiva tendería, como consecuencia de su aplicación, a que la categoría de «residente» cesara de existir. En una población en que reinara el otro estado estable, «el residente gana, el intruso se retira», la selección natural favorecería a los individuos que luchasen por ser residentes. Para cada individuo, ello significaría aferrarse a un determinado pedazo de tierra, abandonarlo lo menos posible y aparecer para «defenderlo». Como hoy es bien sabido, tal comportamiento se observa comúnmente en la naturaleza y se le denomina «defensa territorial».

La demostración más evidente que conozco de esta forma de comportamiento asimétrico fue aportada por el gran etólogo Niko Tinbergen en un experimento de ingeniosa simplicidad característica.[24] Tenía un estanque para peces que contenía dos peces espinosos machos. Ambos machos habían construido nidos en los extremos opuestos del tanque y cada uno de ellos «defendía» el territorio que rodeaba su propio nido. Tinbergen puso cada uno de los dos machos en grandes tubos de vidrio, sostuvo los dos tubos cerca uno de otro y observó que los dos machos intentaban atacarse a través del vidrio. Ahora viene el resultado interesante. Cuando acercó los dos tubos a las proximidades del nido del pez A, el macho A asumió una posición de ataque y el macho B intentó retirarse. Pero cuando situó ambos tubos dentro del territorio de B, los papeles se cambiaron. Moviendo simplemente los tubos de un extremo del tanque al otro, Tinbergen fue capaz de determinar qué macho debía atacar y cuál retroceder. Ambos machos, evidentemente, representaban la simple estrategia convencional de: «si eres residente, ataca; si eres intruso, retírate».

Los biólogos a menudo se preguntan cuáles son las «ventajas» del comportamiento territorial. Se han planteado numerosas hipótesis, algunas de las cuales serán mencionadas más adelante en el presente libro. Podemos apreciar, desde ya, que la sola interrogante puede ser superflua. La «defensa» territorial puede ser, simplemente, una EEE que surge debido a la asimetría en cuanto al tiempo de llegada que a menudo caracteriza las relaciones entre dos individuos y un pedazo de tierra.

Es de presumir que el tipo más importante de asimetría no arbitraria radique en el tamaño y en la habilidad de lucha. El gran tamaño no constituye siempre y de manera inevitable, la cualidad primordial para ganar las contiendas, pero probablemente sea un requisito importante. Si el contendiente de mayor tamaño gana siempre y si cada individuo sabe con entera seguridad si es más grande o más pequeño que su adversario, sólo una estrategia tendrá sentido: «Si tu adversario te supera en tamaño, huye; provoca peleas con gente más pequeña que tú». Las cosas se complican más si la importancia atribuida al tamaño es menos cierta. Si el tamaño grande confiere sólo una pequeña ventaja, la estrategia que he mencionado es aún estable. Pero si el riesgo de resultar lesionado es serio, puede haber una segunda «estrategia paradójica». A saber: «Busca peleas con individuos que te superen en tamaño y huye de aquellos que sean más pequeños que tú.» Su sentido paradójico es obvio. Parece ser del todo contrario al sentido común. La razón por la cual puede ser estable es la siguiente: en una población compuesta en su totalidad por estrategas paradójicos, nadie resulta nunca lastimado. Ello se debe a que en cada enfrentamiento uno de los participantes, el más grande, siempre huye. Un mutante de tamaño mediano que empleara la estrategia «razonable» de escoger adversarios más pequeños se vería envuelto en una grave lucha escalonada con la mitad de la población que encontrara. La razón de ello es la siguiente: si se enfrenta a alguien más pequeño que él, lo atacará; el individuo más pequeño responderá al ataque de manera feroz, ya que está empleando una estrategia paradójica; aun cuando el estratega razonable tiene más posibilidades de ganar que el paradójico, corre, no obstante, el riesgo sustancial de perder o de resultar seriamente herido. Desde el momento en que la mitad de la población actúa en sentido paradójico, un estratega razonable tiene mayores probabilidades de resultar herido que cualquier estratega paradójico.

Aun cuando una estrategia paradójica puede ser estable, probablemente su interés sea sólo académico. Los combatientes paradójicos tendrán un resultado promedio más elevado únicamente en el caso de que sobrepasen, en gran medida, el número de los razonables. En primer lugar, es difícil imaginar cómo este estado podría surgir alguna vez. Aun si así fuese, la relación entre los razonables y los paradójicos en una población, necesitaría tan sólo desviarse en una pequeña medida hacia el lado de los razonables para alcanzar la «zona de atracción» de la otra EEE, es decir la de los razonables. La zona de atracción es la relación proporcional de la población en la cual, en el presente caso, los estrategas razonables poseen una ventaja: una vez que la población alcanza dicha zona, será absorbida, inevitablemente, hacia el punto estable razonable. Sería emocionante descubrir, en la naturaleza, una EEE paradójica, pero dudo que realmente podamos esperar encontrarla. (Me adelanté demasiado al hacer esta última observación. Después de haber escrito esta última frase, el profesor Maynard Smith llamó mi atención hacia la siguiente descripción del comportamiento de la araña gregaria Oecobius civitas, hecha por J. W. Burgess: «Si una araña es perturbada y obligada a abandonar su refugio, se mueve rápidamente por la roca y si no encuentra una grieta en la cual esconderse, suele buscar refugio en el escondrijo de otra araña de la misma especie. Si la otra araña se encuentra en su residencia cuando entra la intrusa, no la ataca sino que sale rápidamente y busca un nuevo refugio para ella. Por lo tanto, una vez que la primera araña es molestada, el proceso de desplazamientos consecutivos de una telaraña a otra puede prolongarse durante varios segundos, y a menudo provoca que la mayoría de las arañas que forman el conjunto se cambien de sus propios refugios a otros extraños» [Las arañas gregarias, Scientific American, marzo 1976]. Este comportamiento es paradójico en el sentido apuntado anteriormente.)[25]

¿Qué pasaría si los individuos conservaran algunos recuerdos de pasadas luchas? Ello depende de si la memoria es específica o general. Los grillos poseen una memoria general de lo que sucedió en luchas pasadas. Un grillo que recientemente haya ganado un considerable número de peleas se torna más partidario de ellas. Un grillo que ha sufrido una reciente serie de derrotas se torna más pacífico. El comportamiento del primero se asemeja más al del halcón, y el del segundo, más al de la paloma. Ello quedó claramente demostrado por R. D. Alexander. Utilizó un modelo de grillo para derrotar a los verdaderos grillos. Después de sufrir dicho tratamiento, los verdaderos grillos quedaban más expuestos a perder las batallas contra otros grillos reales. Se puede pensar que cada grillo pone al día, constantemente, su propia estimación en cuanto a su habilidad de lucha, relativa a la de un individuo promedio de su población. Si los animales, tales como los grillos, que trabajan con una memoria general de pasadas luchas se mantienen juntos en un grupo cerrado durante algún tiempo, es probable que se desarrolle un tipo de jerarquía dominante[26]. Un observador puede clasificar a los individuos en orden. Los individuos que se encuentran en un orden más bajo tienden a ceder ante aquellos que se encuentran en un orden superior. No es necesario suponer que los individuos se reconozcan unos a otros. Lo que sucede es que los individuos que están acostumbrados a ganar tienden a tener aún más posibilidades de ganar, mientras que aquellos individuos que están acostumbrados a perder se tornan cada vez más propicios a perder. Aun si el individuo empezó por ganar o perder totalmente al azar, tenderá a clasificarse en un orden jerárquico. Ello tiene, en fin, el efecto de que el número de luchas serias que se provoquen en el grupo disminuya gradualmente.

Debo emplear la frase «tipo de jerarquía dominante», pues mucha gente emplea el término jerarquía dominante para aquellos casos en que el reconocimiento individual va involucrado. En estos casos el recuerdo de las luchas pasadas es más bien específico que general. Los grillos no se reconocen unos a otros como individuos, inversamente a lo que sucede con las gallinas y los monos. Si se trata de un mono, otro mono que lo haya derrotado en el pasado, es probable que lo derrote nuevamente en el futuro. La mejor estrategia a adoptar para un individuo es ser relativamente pasivo hacia un individuo que lo ha derrotado previamente. Si unas cuantas gallinas que nunca se habían visto unas a otras se ponen juntas, normalmente se producen bastantes peleas. Luego de transcurrido algún tiempo, éstas cesan. Aunque no por la misma razón que lo que sucede con los grillos. En el caso de las gallinas, se debe a que cada individuo «aprende su lugar» en relación a los demás individuos. Hecho que es, sea dicho de paso, beneficioso para el grupo considerado en su conjunto. Como un indicador de esta última aseveración, se ha notado que en los grupos establecidos de gallinas, donde las peleas feroces son infrecuentes, la producción de huevos es más alta que en los grupos de gallinas cuyos miembros son cambiados continuamente y donde, por lo tanto, las luchas ocurren con mayor frecuencia.

Los biólogos hablan, a menudo, de la ventaja biológica o «función» de las jerarquías dominantes que estarían destinadas a reducir la agresión abierta en el grupo. Sin embargo, ésta es una manera errónea de expresarlo. Una jerarquía dominante per se no puede decirse que tenga una «función» en el sentido evolutivo, ya que es una propiedad de un grupo, no de un individuo. Los patrones de comportamiento individual que se manifiestan a sí mismos en la forma de jerarquías dominantes cuando son considerados a nivel de grupo, podrá decirse que posean funciones. Es mejor, no obstante, abandonar totalmente la palabra «función», y pensar en términos de EEE en las contiendas asimétricas cuando existe reconocimiento individual y memoria.

Hemos estado aludiendo a contiendas entre miembros de la misma especie. ¿Qué sucede con las contiendas entre miembros de especies distintas? Como vimos anteriormente, los miembros de especies diferentes son competidores menos directos que los miembros de la misma especie. Por esta misma razón debemos esperar un menor número de disputas entre ellos por los recursos, y nuestras expectativas se ven confirmadas. Por ejemplo, los petirrojos defienden su territorio contra otros petirrojos, pero no contra los grandes paros. Se podría dibujar un mapa de los territorios, señalando los lugares donde se encuentran los diferentes petirrojos individuales en un bosque, y se podría superponer un mapa que señalase los territorios de los grandes paros. Ambos territorios se traslapan de una forma totalmente indiscriminada. Bien podría tratarse de mapas de diferentes planetas.

Pero existen otras formas en que los intereses de los individuos de distintas especies afrontan muy agudos conflictos. Por ejemplo, un león desea comer el cuerpo de un antílope, pero el antílope tiene diferentes planes respecto a su cuerpo. Ello no se considera, normalmente, como una contienda por un recurso, pero, desde un punto de vista lógico, es difícil comprender por qué no se puede considerar así. El recurso en cuestión es la carne. Los genes del león «quieren» la carne como alimento para su máquina de supervivencia. Los genes del antílope quieren la carne como músculos trabajadores y órganos para su máquina de supervivencia. Estos dos usos que se le puede dar a la carne son mutuamente incompatibles; por lo tanto, hay conflicto de intereses.

Los miembros de la propia especie también están hechos de carne. ¿A qué se debe que el canibalismo se dé sólo raras veces? Como vimos en el caso de las gaviotas de cabeza negra, los adultos comen en ocasiones a los jóvenes de su propia especie. Sin embargo, nunca se puede observar a carnívoros adultos persiguiendo activamente a otros adultos de su propia especie con miras a comérselos. ¿Por qué ello no sucede? Estamos, aún, tan acostumbrados a pensar en términos del «bien de las especies» al considerar la evolución, que a menudo nos olvidamos de formular preguntas perfectamente razonables tales como: ¿Por qué los leones no cazan a otros leones? «Otra pregunta de un tipo que rara vez se hace es la siguiente»: ¿Por qué los antílopes huyen de los leones en vez de responder al ataque?

La razón por la cual los leones no cazan leones es que de tal comportamiento no resultaría una buena EEE. Una estrategia de tipo caníbal sería inestable por la misma razón que la estrategia del halcón lo era en nuestro anterior ejemplo. Existe un gran peligro de represalia, hecho que tiene menores posibilidades de suceder en contiendas entre miembros de diferentes especies, y a ello se debe que muchos animales de presa huyan en vez de responder al ataque. Su origen, probablemente, se deba a que en la acción recíproca de dos animales de diferentes especies existe una asimetría inherente mayor que entre los miembros de una misma especie. Siempre que se dé una marcada asimetría en una contienda, las EEE tienden a ser estrategias condicionales dependientes de dicha asimetría. Tipos de estrategias análogas a: «si eres más pequeño, huye; si eres más grande, ataca» tienen muchas posibilidades de evolucionar en contiendas entre miembros de especies diferentes, ya que son tantas las asimetrías que se pueden presentar entre las diversas especies. Los leones y los antílopes han alcanzado un tipo de estabilidad por divergencia evolutiva, lo que ha contribuido a acentuar, cada vez más, la asimetría original de la contienda. Tanto los leones como los antílopes se han vuelto altamente eficientes en el arte de cazar y huir, respectivamente. Un antílope mutante que adoptara una estrategia de «detente y lucha» contra los leones, tendría menos éxito que los antílopes rivales que desaparecen en el horizonte.

Tengo el presentimiento de que podrá llegar el momento en que consideremos la invención del concepto de la estrategia evolutivamente estable como uno de los avances más importantes en la teoría evolutiva desde Darwin [27]. Es aplicable siempre que encontremos un conflicto de intereses, y ello quiere decir casi en todas partes. Los estudiosos del comportamiento animal han adquirido el hábito de hablar de algo denominado «organización social». Demasiado a menudo la organización social de una especie es tratada como una entidad por derecho propio, con su propia «ventaja» biológica. Un ejemplo que ya he presentado es el de la «jerarquía dominante». Pienso que es posible discernir las hipótesis ocultas de los partidarios de la selección de grupos, tras un número considerable de declaraciones hechas por los biólogos respecto a la organización social. El concepto de Maynard Smith sobre la EEE nos permitirá, por primera vez, apreciar claramente cómo un grupo de entidades independientes y egoístas puede parecerse a un todo organizado. Pienso que esta aseveración será valedera no sólo para las organizaciones sociales dentro de las especies, sino también para los «ecosistemas» y «comunidades» de diversas especies. Espero que, a largo plazo, el concepto de las estrategias evolutivamente estables revolucione la ciencia de la ecología.

Podemos aplicarlo, también, a un asunto que quedó pendiente en el capítulo III, y que surgió de la analogía de los remeros en un bote (en representación de los genes en un cuerpo) que precisaba de un buen espíritu de equipo. Los genes son seleccionados, no por ser «buenos» al encontrarse aislados, sino como buenos en oposición a los antecedentes que poseen los demás genes en el acervo génico. Un buen gen debe ser compatible y complementario respecto de los otros genes con los cuales habrá de compartir una larga sucesión de cuerpos. Un gen para dientes trituradores de plantas es un buen gen en el acervo génico de las especies herbívoras, pero un mal gen en el de las especies carnívoras.

Es posible imaginar una combinación compatible de genes en la que éstos hayan sido seleccionados juntos como una unidad. En el caso del mimetismo de las mariposas, ejemplo que dimos en el capítulo III, esto parece ser exactamente lo sucedido. Pero el poder del concepto de la EEE radica en que nos permite apreciar cómo el mismo tipo de resultado podría haberse obtenido por la selección solamente al nivel de gen independiente. Los genes no tienen por qué estar unidos en el mismo cromosoma.

En realidad, la analogía de los remeros no es suficiente para explicar esta idea. Lo más que nos podemos aproximar a ello es de la siguiente manera: supongamos que es importante en una tripulación realmente eficaz, que los remeros coordinen sus actividades por medio del lenguaje. Llevemos más allá nuestra suposición y pensemos que en la agrupación de remeros a disposición del entrenador, algunos hablan exclusivamente inglés y otros sólo alemán. Los ingleses no son mejores ni peores remeros que los alemanes. Debido a la importancia de la comunicación, una tripulación mixta tenderá a ganar menos carreras que una formada exclusivamente por ingleses o una integrada sólo por alemanes.

El entrenador no se da cuenta de ello. Se limita a barajar a sus hombres, para clasificar mejor a los individuos que ocupan los botes ganadores y poner una puntuación menor a los de los botes perdedores. Ahora bien, si sucede que la agrupación de remeros de la cual dispone está dominada por ingleses, los alemanes que se mezclen en la tripulación probablemente sean la causa de que pierdan la carrera, ya que la comunicación se ve afectada. A la inversa, si en la agrupación predominan los remeros alemanes, un inglés tenderá a ser la causa de que el bote en que se encuentre, pierda. La mejor tripulación que surja de todo el conjunto corresponderá a uno de los dos estados estables: integrada sólo por ingleses o exclusivamente por alemanes, pero no mixta. Parecería, superficialmente, que el entrenador estuviese seleccionando grupos de idioma común como unidades. No es eso lo que está haciendo. Está seleccionando a remeros individuales por su aparente habilidad en ganar carreras. Sucede que la tendencia de un individuo a ganar carreras depende de los otros individuos que se encuentran presentes en el conjunto de candidatos. Los candidatos que se encuentran en minoría son automáticamente penalizados, no porque sean malos remeros sino simplemente porque forman una minoría entre los candidatos. De manera similar, el hecho de que los genes sean seleccionados por compatibilidad mutua no significa, necesariamente, que debamos pensar en grupos de genes que han sido seleccionados como unidades, como en el caso de las mariposas. La selección al nivel inferior de gen único puede dar la impresión de una selección a algún nivel más alto.

En el ejemplo que acabamos de exponer, la selección favorece la simple avenencia. Lo que es más interesante, los genes pueden ser seleccionados porque se complementan unos a otros. En términos de la analogía, supongamos que una tripulación idealmente equilibrada consiste en cuatro diestros y cuatro zurdos. Supongamos también que el entrenador, desconocedor de este hecho, selecciona a ciegas, simplemente por el «mérito». Entonces, si el grupo de candidatos está dominado por los diestros, cualquier individuo zurdo tenderá a estar en ventaja: es probable que sea la causa de que cualquier bote en que se encuentre tienda a ganar y, por lo tanto, aparecerá como un buen remero. Inversamente, en un grupo dominado por los zurdos, un remero que emplee su mano derecha tendrá ventaja. Esta situación es similar a la del halcón que obtiene un buen resultado en una población de palomas y la de una paloma que se desempeña bien en una población de halcones. La diferencia radica en que en el último caso estábamos hablando de interacciones entre cuerpos individuales —máquinas egoístas—, mientras que ahora estamos refiriéndonos, por analogía, a las interacciones entre los genes dentro de los cuerpos.

La selección, a ciegas, por parte del entrenador de los «buenos» remeros llevará, al fin, a una tripulación ideal formada por cuatro zurdos y cuatro diestros. Parecerá como si él hubiese seleccionado al conjunto como una unidad completa y equilibrada. Pienso que es más estricto considerar que ha seleccionado a un nivel inferior, el nivel de los candidatos individuales e independientes. El estado evolutivo estable («estrategia» es un término que puede inducir a error en este contexto) de cuatro zurdos y cuatro diestros surgirá, simplemente, como una consecuencia de la selección, a bajo nivel, sobre la base del mérito aparente.

El acervo génico es el medio ambiente, considerado a largo plazo, del gen. Los genes «buenos» son seleccionados a ciegas como aquellos que sobreviven en el acervo génico. Ésta no es una teoría; ni siquiera es un hecho observado: es una tautología. El problema interesante es saber qué hace a un gen bueno. Como una primera aproximación al tema dije que lo que hacía que un gen fuese bueno es la habilidad para construir eficientes máquinas de supervivencia, es decir, cuerpos. Debemos ahora corregir tal aseveración. El acervo génico se tornará un conjunto evolutivamente estable de genes, es decir, un acervo que no puede ser invadido por nuevos genes. La mayoría de los nuevos genes que surjan, ya sea por mutación o reagrupación o inmigración, serán rápidamente penalizados por la selección natural. Ocasionalmente, un nuevo gen tiene éxito al invadir el conjunto: logra extenderse en el acervo génico. Hay un período de inestabilidad transitoria que culmina con un nuevo conjunto evolutivamente estable. Ha ocurrido una pequeña evolución. Por analogía con las estrategias de agresión, una población podría tener más de un punto estable alternativo y podría, ocasionalmente, variar de uno a otro.

La evolución progresiva podría considerarse no ya como una ascensión constante sino más bien como una serie de pasos discontinuos desde una planicie estable a otra planicie estable. [28] Podría dar la impresión de que la población, en su conjunto, se estuviera comportando como una única unidad autorreguladora. Pero esta ilusión es provocada por la selección en su etapa de nivel individual. Los genes son seleccionados de acuerdo a sus «méritos». Pero el mérito es juzgado sobre la base de los logros obtenidos frente al conjunto evolutivamente estable de genes que forman el acervo génico existente.

Maynard Smith, al concentrar su atención en las interacciones agresivas entre los individuos completos, pudo aclarar muy bien las cosas. Es fácil pensar en relaciones estables de cuerpos de halcones y cuerpos de palomas, debido a que los cuerpos son elementos grandes que podemos ver. Pero tales interacciones entre genes situados en cuerpos diferentes constituyen tan sólo la apariencia del problema. La amplia mayoría de interacciones significativas entre los genes en el conjunto evolutivamente estable —el acervo génico— tienen lugar dentro de los cuerpos individuales. Estas interacciones son difíciles de ver, ya que suceden dentro de las células, especialmente en las células de los embriones en desarrollo. Los cuerpos bien integrados existen porque son el producto de un conjunto evolutivamente estable de genes egoístas.

Pero debo retornar al nivel de las interacciones entre animales, que es el tema principal del presente libro. Con el fin de comprender la agresión fue conveniente tratar a los animales individuales como máquinas independientes y egoístas. Este modelo deja de ser valedero cuando los individuos implicados son parientes cercanos —hermanos y hermanas, primos, padres e hijos—. Ello se debe a que los parientes comparten una proporción sustancial de sus genes. Cada gen egoísta, por lo tanto, tiene sus lealtades divididas entre distintos cuerpos; tema que abordaremos en el próximo capítulo.