Las máquinas de supervivencia empezaron como receptáculos pasivos de genes. Sólo podían otorgar algo más que una membrana para protegerlos de la guerra química desatada por sus rivales y contra la devastación provocada por un bombardeo molecular accidental. En aquellos tempranos días se «alimentaban» de moléculas orgánicas que se encontraban a libre disposición en el caldo. Esta vida fácil llegó a su término cuando el alimento orgánico que se encontraba en el caldo, que se había formado lentamente bajo la influencia energética de siglos de rayos solares, fue utilizado en su totalidad. Una rama mayor de dichas máquinas de supervivencia, hoy denominadas plantas, empezó a utilizar directamente la luz solar con el fin de construir complejas moléculas a partir de moléculas simples, realizando nuevamente, a una velocidad mucho mayor, el proceso sintético del caldo original. Otra rama, hoy conocida con el nombre de animales, «descubrió» cómo explotar los trabajos químicos realizados por las plantas, ya sea comiéndoselas o comiendo a otros animales. Ambas ramas principales de máquinas de supervivencia perfeccionaron, más y más, ingeniosos trucos destinados a aumentar su eficiencia en sus diversos tipos de vida, dando así origen a continuas formas de vida. De tal forma evolucionaron sub-ramas y sub-subramas, cada una de las cuales se distinguía por una manera particularmente especializada de ganarse la vida: en el mar, sobre la tierra, en el aire, bajo tierra, sobre los árboles, dentro de otros cuerpos vivientes. Esta división en subramas ha dado origen a la inmensa diversidad de animales y plantas que hoy tanto nos impresiona.
Tanto los animales como las plantas evolucionaron hasta tener cuerpos formados por muchas células, copias completas de todos los genes que fueron distribuidos a cada célula. Ignoramos cuándo, por qué o cuántas veces sucedió este proceso de forma independiente. Algunas personas utilizan la metáfora de una colonia, al describir el cuerpo como una colonia de células. Yo prefiero pensar en el cuerpo como una colonia de genes y en la célula como una unidad que opera convenientemente para las industrias químicas de los genes.
Los cuerpos pueden ser colonias de genes, pero en cuanto a su comportamiento se refiere han adquirido, indudablemente, una individualidad propia. Un animal se mueve como un conjunto coordenado, como una unidad. Subjetivamente, yo me siento como una unidad, no como una colonia. Ello era de esperar. La selección ha favorecido a los genes que cooperan unos con otros. En la feroz competencia por los recursos escasos, en la lucha implacable para devorar a otras máquinas de supervivencia y para evitar ser comidos, sin duda existiría un interés para la coordinación central más bien que una anarquía dentro del cuerpo comunal. Actualmente, la intrincada coevolución mutua de los genes ha seguido su curso hasta tal extremo que la naturaleza comunal de una máquina superviviente individual es, virtualmente, irreconocible. En realidad, muchos biólogos no la reconocen y estarán en desacuerdo conmigo.
Por fortuna, en bien de lo que los periodistas llamarían la «credibilidad» del resto del presente libro, el desacuerdo es, en gran medida, académico. Así como no es conveniente hablar de quanta y de las partículas fundamentales cuando tratamos el funcionamiento de un automóvil, así también es, a menudo, tedioso e innecesario sacar a colación continuamente a los genes cuando discutimos el comportamiento de las máquinas de supervivencia. En la práctica, a menudo es conveniente, como una aproximación, considerar al cuerpo individual como un agente que «intenta» aumentar el número de todos sus genes en las generaciones futuras. Emplearé el lenguaje de la conveniencia. A menos que se especifique de otra forma, el «comportamiento altruista» y el «comportamiento egoísta» significarán el comportamiento orientado de un cuerpo animal hacia otro.
El presente capítulo trata sobre el comportamiento —el ardid del movimiento rápido que ha sido en gran medida explotado por la rama animal de las máquinas de supervivencia. Los animales se han convertido en activos vehículos buscadores de genes; máquinas de genes. El comportamiento característico, según emplean el término los biólogos, es determinado por su rapidez. Las plantas se mueven, pero muy lentamente. Cuando se aprecia su movimiento en películas pasadas a alta velocidad, las plantas trepadoras se parecen a animales activos. En su mayor parte el movimiento de las plantas es, realmente, su irreversible crecimiento. Los animales, por otra parte, han desarrollado formas de movimiento cientos de miles de veces más veloces. Más aún, los movimientos que realizan son reversibles y repetibles infinitas veces.
El medio que desarrollaron los animales para alcanzar rapidez de movimientos fue el músculo. Los músculos son máquinas, que, al igual que la máquina de vapor o la máquina de combustión interna, emplean la energía almacenada en combustibles químicos para generar movimiento mecánico. La diferencia radica en que la fuerza mecánica inmediata de un músculo está generada en forma de tensión, en lugar de presión de gas, como es el caso de las máquinas de vapor o de combustión interna. Los músculos son similares a las máquinas en que, a menudo, ejercen su fuerza sobre cuerdas y levantan pesos mediante palancas provistas de bisagras. En nosotros, los elementos que forman las palancas son conocidos con el nombre de huesos; las cuerdas, como tendones, y las bisagras, como articulaciones. Se conoce bastante sobre las formas exactas moleculares en que trabajan los músculos, pero encuentro más interesante el problema de cómo se regula la contracción muscular.
¿Han observado, alguna vez, una máquina artificial de cierta complejidad, como podría ser una máquina de coser, una máquina para hilar, una embotelladora automática o una embaladora de heno? La fuerza motriz proviene de alguna parte, digamos un motor eléctrico, o un tractor. Pero mucho más desconcertante es la intrincada regulación de las operaciones. Las válvulas se abren y cierran en su debido orden, dedos de acero anudan diestramente un fardo de heno, y luego, justo en el momento preciso, sale un cuchillo que corta la cuerda. En muchas máquinas artificiales la regulación se logra por medio de esa brillante invención que es la leva. La leva traduce el simple movimiento rotatorio en un complejo patrón rítmico de operaciones por medio de una rueda excéntrica o especialmente diseñada. El principio en que se basa la caja de música es similar. Otras máquinas tales como el órgano a vapor y la pianola emplean rollos de papel o tarjetas perforadas de acuerdo a un diseño. Recientemente ha habido una tendencia a reemplazar tales simples reguladores mecánicos por los electrónicos. Las computadoras digitales son ejemplos de grandes y versátiles mecanismos electrónicos que pueden ser utilizados para generar complejos patrones regulados de movimientos. El componente básico de una máquina electrónica moderna, como una computadora, es el semiconductor, del cual una forma conocida es el transistor.
Las máquinas de supervivencia parecen haber pasado por alto, por completo, la leva y la tarjeta perforada. El aparato que utilizan para regular sus movimientos tiene más elementos en común con una computadora electrónica, aun cuando es totalmente diferente en sus operaciones fundamentales. La unidad básica de los computadores biológicos, la célula nerviosa o neurona, no se parece en nada a un transistor en su mecanismo interno. Ciertamente el código por el cual las neuronas se comunican unas con otras se parece un poco al código de pulsaciones de las computadoras digitales, pero la neurona de un individuo es una unidad procesadora de datos mucho más complicada que un transistor. En lugar de sólo tres conexiones con otros componentes, una sola neurona puede tener diez mil. La neurona es más lenta que un transistor, pero ha avanzado mucho más en la dirección de la miniaturización, tendencia que ha dominado a la industria electrónica durante las dos últimas décadas. Esto se demuestra por el hecho de que existen más de diez mil millones de neuronas en el cerebro humano: solamente se podrían almacenar unos cuantos cientos de transistores en una calavera.
Las plantas no necesitan la neurona, ya que pueden vivir sin necesidad de desplazarse, pero se encuentra en la gran mayoría de los grupos de animales. Puede haber sido «descubierta» en una edad temprana de la evolución animal y heredada por todos los grupos, o puede haber sido redescubierta varias veces y de manera independiente.
Las neuronas son, básicamente, células provistas de un núcleo y un cromosoma, al igual que las demás células. Sus membranas celulares siguen un trazado de proyecciones largas y finas, semejantes a un alambre. Una neurona posee, a menudo, un «alambre» largo denominado axón. A pesar de que el diámetro de un axón es microscópico, su longitud puede ser de varios palmos. Existen axones que recorren toda la longitud del cuello de una jirafa. Los axones se encuentran, frecuentemente, atados juntos formando gruesos cables de múltiples ramales llamados nervios. La misión de ellos es recorrer el cuerpo de una parte a otra y transmitir mensajes, de manera similar a los cables telefónicos principales.
Otras neuronas poseen axones cortos y se encuentran confinados en densas concentraciones de tejido nervioso denominadas ganglios o, cuando son muy grandes, cerebros. Los cerebros pueden ser considerados, según sus funciones, análogos a las computadoras.[14] Son análogos en el sentido de que ambos tipos de máquinas generan complejos patrones de información de salida de acuerdo a análisis de complejos patrones de entrada de información, y luego de remitirse a la información almacenada.
En realidad, la principal forma en que los cerebros contribuyen al éxito de las máquinas de supervivencia es el control y coordinación de la contracción muscular. Para lograr este objetivo necesitan cables que lleguen hasta los músculos, y éstos reciben el nombre de nervios motores. Esta medida conduce a una eficiente preservación de los genes sólo si el ritmo correcto de la contracción muscular guarda alguna relación con el compás de los acontecimientos en el mundo exterior. Es importante contraer los músculos maxilares cuando las mandíbulas contienen algo que vale la pena morder, y contraer los músculos de las piernas en una posición adecuada para emprender una carrera, sólo en el caso de que exista algo a lo que valga la pena acercarse corriendo o frente a la necesidad de alejarse rápidamente. Por esta razón, la selección natural favoreció a los animales que adquirieron órganos sensoriales, mecanismos con los cuales poder traducir los patrones de acontecimientos físicos del mundo exterior al código de pulsaciones de las neuronas. El cerebro se encuentra conectado a los órganos de los sentidos, ojos, oídos, papilas gustativas, etc., mediante cables denominados nervios sensoriales. La forma en que actúan los sistemas sensoriales son especialmente desconcertantes, ya que pueden lograr hazañas mucho más sofisticadas de patrones de reconocimiento que las máquinas de fabricación humana más costosas y mejores; si éste no fuese el caso, todos los dactilógrafos serían innecesarios ya que serían desalojados de sus funciones por máquinas capaces de reconocer el lenguaje o programadas para leer la escritura. Los dactilógrafos humanos serán necesarios, aún, durante muchas décadas.
Puede haber existido una época en que los órganos sensoriales se comunicaban de forma más o menos directa con los músculos; en realidad, las anémonas de mar no se encuentran muy alejadas de este estado hoy día, ya que para su forma de vida resulta eficiente. Con el fin de alcanzar relaciones más complejas e indirectas entre el acontecer de los sucesos del mundo exterior y la adecuación de las contracciones musculares, se necesitó un tipo de cerebro en calidad de intermediario. Un avance notable lo constituyó la «invención» evolutiva de la memoria. Pero este mecanismo, la graduación de las contracciones musculares, pudo verse afectado por influencias derivadas de sucesos de un pasado inmediato, así como por sucesos provenientes de un pasado distante. También la memoria, o almacenamiento de datos, constituye una parte esencial de una computadora digital. Las memorias de las computadoras son más seguras, más fiables que las de los seres humanos, pero su capacidad es menor y son enormemente menos perfeccionadas en cuanto a sus técnicas de recuperación de información.
Una de las propiedades más sorprendentes del comportamiento de la máquina de supervivencia es su aparente determinación. Con ello no sólo quiero decir que aparentemente está bien calculada para ayudar a los genes del animal a sobrevivir, aunque por supuesto así sea. Me estoy refiriendo a una analogía más estrecha con el comportamiento humano que persigue un determinado fin. Cuando observamos a un animal «buscando» comida, o a su compañero, o a uno de sus hijos perdidos, casi no podemos evitar imputarle algunos de los sentimientos subjetivos que nosotros experimentamos en nuestras búsquedas. Ello puede incluir «deseo» por algún objeto, un «cuadro mental» del objeto deseado, un «objetivo» o «fin en perspectiva». Cada uno de nosotros sabe, por la evidencia de su propia introspección, que, al menos en una moderna máquina de supervivencia, esta determinación ha evolucionado hasta convertirse en la propiedad que nosotros denominamos «conciencia». No poseo conocimientos filosóficos suficientes para argumentar sobre el significado de ello pero, afortunadamente, no es relevante para nuestros propósitos actuales, ya que es fácil hablar sobre las máquinas que se comportan como si estuviesen motivadas por algún propósito determinado y dejar planteada la pregunta sobre si estos motivos son realmente conscientes. Estas máquinas son, básicamente, muy simples y los principios de comportamiento útiles inconscientes se encuentran entre los lugares comunes de la ciencia de la ingeniería. El regulador automático a vapor de Watt constituye un ejemplo clásico.
El principio fundamental involucrado es denominado realimentación negativa, del cual existen diversas formas. En general, lo que sucede es lo siguiente. La «máquina útil», aquella máquina o cosa que se comporta como si tuviese un propósito consciente, está provista de algún tipo de mecanismo graduado que mide la discrepancia entre el actual estado de cosas y el estado «deseado». Dicho mecanismo está construido de tal manera que, cuanto más grande sea la discrepancia, más activamente trabaja la máquina. De esta manera la máquina, automáticamente, tenderá a reducir la discrepancia —es por ello que se denomina realimentación negativa— y puede, en realidad, quedar en actitud de reposo cuando se logra el estado «deseado». El regulador automático de Watt consiste en un par de bolas que giran mediante un motor a vapor. Cada bola se encuentra en el extremo de un brazo provisto de bisagras. Cuanto más rápido sea el movimiento circular de las bolas, la fuerza centrífuga forzará cada vez más a los brazos para que tomen una posición horizontal, tendencia que encuentra la resistencia de la fuerza de gravedad. Los brazos están conectados a la válvula de vapor que alimenta al motor, de tal manera que el vapor tiende a quedar cerrado cuando los brazos se aproximan a la posición horizontal. Por lo tanto, si el motor trabaja demasiado rápido, parte del suministro de vapor se verá interrumpido, con lo que el motor trabajará más despacio que antes. Si disminuye su rendimiento demasiado, automáticamente se le alimentará con más vapor, ya que la válvula se abrirá más, y ganará velocidad nuevamente. Este tipo de máquinas a menudo oscilan debido al exceso de uso o a los períodos de retraso, y es tarea del arte de los ingenieros construir mecanismos suplementarios para reducir dichas oscilaciones.
El estado «deseado» del regulador automático de Watt es una velocidad determinada de rotación. Obviamente no la desea de manera consciente. El «objetivo» de una máquina se define, simplemente, como aquel estado al cual tiende a regresar. Las máquinas modernas de este tipo emplean extensiones de estos principios básicos, tales como el de realimentación negativa, para alcanzar un comportamiento mucho más complejo y «más semejante a la vida». Los proyectiles dirigidos, por ejemplo, parecen buscar activamente su blanco y cuando lo tienen en línea de tiro parecen perseguirlo, tomando en cuenta sus giros y vueltas evasivos, y en ocasiones hasta «predicen» dichos movimientos o se «anticipan» a ellos. No vale la pena profundizar en los detalles de cómo se logra esto. Involucran realimentación negativa de varios tipos, «alimentación adelantada» y otros principios bien comprendidos por los ingenieros y que ahora se sabe se encuentran intensamente involucrados en el funcionamiento de los cuerpos vivos. Nada que se aproxime remotamente a la conciencia necesita ser postulado, aun cuando un lego en la materia, al observar su comportamiento, aparentemente deliberado y siguiendo un propósito determinado, encuentre difícil de creer que el proyectil no se halle bajo el control directo de un piloto humano.
Es un error común el pensar que por el hecho de que una máquina, tal como un proyectil dirigido, fue originalmente diseñada y construida por hombres conscientes, deba hallarse verdaderamente bajo el control inmediato de hombres conscientes. Otra variante de esta falacia es la que afirma que «las computadoras no juegan realmente al ajedrez, porque sólo pueden realizar lo que un operador humano les indica». Es importante que comprendamos por qué esto es una falacia, ya que afecta a nuestra comprensión del sentido en el cual podemos afirmar que los genes «controlan» el comportamiento. El ajedrez jugado por una computadora constituye un ejemplo bastante bueno para aclarar este punto, de tal manera que lo trataré brevemente.
Las computadoras aún no juegan al ajedrez tan bien como los grandes maestros humanos, pero han alcanzado el nivel de un buen aficionado. Hablando con mayor propiedad, uno debería decir que los programas han alcanzado el nivel de un buen aficionado, ya que un programa para un partido de ajedrez no es tan exigente como para que la computadora física demuestre sus habilidades. Analicemos cuál es el papel desempeñado por el programador humano. En primer lugar él, definitivamente, no manipula a la computadora en todo momento, como lo haría un titiritero al mover las cuerdas. Ello constituiría, simplemente, un engaño. El programador se limita a escribir el programa y meterlo en la computadora, y luego ésta actúa sola: ya no hay más intervención humana, excepto la del contrincante al marcar sus movimientos. ¿Acaso el programador anticipa todas las posibles posiciones en el juego y facilita a la computadora una larga lista de buenos movimientos, uno para cada posible contingencia? Ciertamente no, ya que el número de posibles posiciones en un juego de ajedrez es tan grande que el mundo se acabaría antes de que la lista fuese completada. Por la misma razón, la computadora no puede ser programada para que ella intente «en su cabeza» todos los movimientos posibles, y todas las posibles jugadas que de ella se deriven, hasta encontrar una estrategia que le permita ganar el partido. Existen más jugadas posibles en un juego de ajedrez que átomos en una galaxia. Esto basta en cuanto a las triviales faltas de soluciones al problema de la programación de una computadora para jugar ajedrez. En realidad es un problema excesivamente difícil, y no es extraño que los mejores programas no hayan alcanzado el nivel de los grandes maestros.
El papel actual de un programador se parece más bien al de un padre que le enseña a su hijo a jugar al ajedrez. Informa a la computadora de los movimientos básicos del juego, no de manera independiente para cada posible posición de salida, sino en términos de reglas expresadas con más economía. No dice, literalmente, en un idioma sencillo «el alfil se mueve en diagonal» sino que dice algo matemáticamente equivalente, algo así, aunque expresado con más brevedad: «Las nuevas coordenadas del alfil se obtienen de las antiguas coordenadas, añadiendo la misma constante, aun cuando no necesariamente bajo el mismo signo, tanto a las antiguas coordenadas x como a las antiguas coordenadas y.» Luego podría programar algún «consejo» escrito en el mismo tipo de lenguaje matemático o lógico, pero acumulando términos humanos a sugerencias tales como «no permitas que tu rey quede desprotegido», o trucos útiles tales como atacar dos piezas a la vez con el caballo. Los detalles son fascinantes pero nos alejarían demasiado de nuestro tema principal. El punto importante es el siguiente: cuando la computadora está jugando, en realidad está sola y no puede esperar ayuda alguna de su maestro. Todo lo que el programador puede hacer es preparar a la computadora previamente de la mejor forma posible, con un equilibrio apropiado entre las listas de conocimientos específicos y sugerencias sobre estrategias y técnicas.
También los genes controlan el comportamiento de sus máquinas de supervivencia, no de manera directa, con sus dedos en las cuerdas de los títeres, sino indirectamente al igual que el programador de la computadora. Todo lo que ellos pueden hacer es prepararla con antelación; luego la máquina de supervivencia se encuentra bajo su propia responsabilidad, y los genes sólo pueden permanecer pasivos en su interior. ¿Por qué son tan pasivos? ¿Por qué no toman las riendas ocasionalmente? La respuesta es que no pueden, debido a los problemas de intervalos de tiempo. Lo ilustraremos mediante otra analogía para aclarar más este punto, analogía sacada de un libro de ciencia ficción, A for Andromeda de Fred Hoyle y John Elliot. Es una historia excitante y, como toda buena ciencia ficción, tiene algunos puntos científicos interesantes en los que se apoya. Extrañamente, el libro parece carecer de una mención explícita al más importante de estos puntos que le sirven de sustento. Es algo que se deja a la imaginación del lector. Espero que a los autores no les importe si lo explico con ciertos detalles aquí.
Se trata de una civilización alejada de la nuestra por 200 años luz, en la constelación de Andromeda.[15] Los seres que la componen desean expandir su cultura a los mundos distantes. ¿Cuáles son los mejores métodos para lograrlo? Quedan fuera de toda posibilidad los viajes directos. La velocidad de la luz impone un límite teórico máximo al nivel en que se puede desplazar un ser de un punto a otro del universo, y las consideraciones mecánicas imponen, en la práctica, un límite mucho menor. Además, puede no haber muchos mundos a los cuales valga la pena ir, y ¿cómo saber qué orientación es la adecuada para penetrar en ellos? La radio es el mejor medio para comunicarse con el resto del universo, ya que, si se posee la suficiente potencia para transmitir las señales en todas direcciones en lugar de emitirlas en una dirección determinada, se puede alcanzar un mayor número de mundos (el número de ellos aumenta en relación al cuadrado de la distancia en que viaja la señal). Las ondas de radio viajan a la velocidad de la luz, lo que significa que la señal tarda 200 años para alcanzar la Tierra desde Andromeda. El problema con este tipo de distancia es que nunca se logrará mantener una conversación. Aun si descartamos el hecho de que cada mensaje sucesivo que se transmitiese desde la Tierra sería efectuado por personas separadas unas de otras por doce generaciones, sería un derroche inútil el intentar conversar a través de tales distancias.
Pronto este problema se planteará en serio para nosotros: las ondas de radio tardan aproximadamente cuatro minutos para viajar entre la Tierra y Marte. No hay duda que los astronautas tendrán que abandonar el hábito de conversar en breves frases alternativas y tendrán que emplear largos soliloquios o monólogos, más similares a las cartas que a las conversaciones. Como otro ejemplo, Roger Payne ha señalado que la acústica del mar posee ciertas propiedades peculiares, lo que significa que el «canto» extremadamente fuerte de la yubarta o ballena jorobada podría, teóricamente, ser escuchado alrededor del mundo siempre que las ballenas nadaran a una determinada profundidad. Se desconoce si, en realidad, se comunican unas con otras a través de distancias muy grandes, pero si lo hicieran se encontrarían en un predicamento muy similar al de los astronautas en Marte. La velocidad del sonido en el agua es tal que se requerirían aproximadamente dos horas para que el canto viajase a través del océano Atlántico y se transmitiera una respuesta. Sugiero esto como explicación al hecho de que las ballenas emiten un continuo soliloquio, sin repetirse, durante ocho minutos. Luego retornan al principio de la canción y la repiten nuevamente, muchas veces, y cada ciclo completo dura aproximadamente ocho minutos.
Los habitantes de Andromeda, en la historia, hacían lo mismo. Ya que no había razón para esperar una respuesta, reunían todo lo que querían decir en un largo e ininterrumpido mensaje y luego lo transmitían al espacio, una y otra vez, con un ciclo de tiempo de varios meses. Su mensaje era muy diferente del de las ballenas, sin embargo. Consistía en instrucciones codificadas para la construcción y programación de una gigantesca computadora. Por supuesto, las instrucciones no eran en lenguaje humano, pero casi todo código puede ser descifrado por un hábil criptógrafo, especialmente si los inventores del código tuvieron la intención de que fuese fácilmente resuelto. Captado por el radiotelescopio de Jodrell Bank, el mensaje era finalmente descifrado, se construía la computadora y se ponía en funcionamiento el programa. Los resultados para la humanidad eran casi desastrosos, ya que las intenciones de los habitantes de Andromeda no eran universalmente altruistas, y la computadora se estaba convirtiendo en el dictador del mundo hasta que el héroe, al fin, la destruía con un hacha.
Desde nuestro punto de vista, la cuestión interesante es saber en qué sentido podría decirse que los habitantes de Andromeda estaban manipulando los acontecimientos en la Tierra. No tenían un control directo de lo que la computadora hacía en todo momento; en realidad, tampoco poseían medio alguno para saber si la computadora había sido construida o no, ya que la información habría tardado 200 años en llegarles. Tanto las decisiones como las acciones de la computadora eran exclusivamente suyas. Ni siquiera le era posible remitirse a sus amos para recibir instrucciones destinadas a un plan de acción general. Todas sus instrucciones tuvieron que ser ordenadas por adelantado debido a la inviolable barrera de los 200 años. En principio, tuvo que ser programada de forma muy similar a una computadora para un juego de ajedrez, pero con una mayor flexibilidad y capacidad para absorber la información local. Esta exigencia se debía al hecho de que el programa tuvo que ser diseñado para que funcionara no sólo en la Tierra sino en cualquier mundo que poseyese una tecnología avanzada, cualquiera de un juego de mundos cuyas condiciones pormenorizadas no estaban al alcance del conocimiento de los habitantes de Andromeda.
De igual manera que los habitantes de Andromeda necesitaban tener una computadora en la Tierra para que tomase las diarias decisiones por ellos, así nuestros genes han tenido que construir un cerebro. Pero los genes se diferencian de los habitantes de Andromeda en que no se limitan a enviar las instrucciones codificadas sino que ellos mismos constituyen las instrucciones. Las razones por las cuales no pueden manipular nuestros hilos de títeres son las mismas: los retardos en el tiempo, los períodos de retraso entre la causa y el efecto. Los genes obran mediante el control de la síntesis proteica. Ello constituye un medio poderoso de manipular el mundo, pero es un proceso lento. Se tarda meses de paciente juego con las cuerdas proteicas para construir un embrión. La característica principal del comportamiento, por otra parte, es su rapidez. Trabaja a escalas de tiempo, no de meses sino de segundos y de fracciones de segundo. Algo sucede en el mundo, una lechuza cruza volando, un susurro en la hierba alta traiciona a una presa y en milisegundos el sistema nervioso crepita al ponerse en acción, los músculos saltan y la vida de alguien queda a salvo —o se pierde. Los genes carecen de tales reacciones rápidas. Al igual que los habitantes de Andromeda, sólo pueden esforzarse por adelantado mediante la construcción de una rápida computadora ejecutiva para su beneficio y programándola con antelación con reglas y «consejos» para que sea capaz de afrontar tantas eventualidades como ellos pueden «anticipar». Pero la vida, de manera similar al juego de ajedrez, ofrece demasiadas posibles eventualidades diferentes para permitir que todas ellas sean previstas. De igual forma que el programador de ajedrez, los genes deben «dar las instrucciones» a sus máquinas de supervivencia no de manera especificada sino en términos de estrategias generales y trucos válidos para el oficio de vivir. [16]
Como bien lo ha señalado J. Z. Young, los genes deben efectuar una tarea análoga a una predicción. En el momento en que se construye un embrión de una máquina de supervivencia, tanto los peligros como los problemas de su vida son parte del futuro. ¿Quién puede predecir qué carnívoros acechan agazapados esperándolo detrás de cuáles arbustos, o qué presa de pies ligeros se cruzará, zigzagueando y rápida como un dardo, en su camino? Ningún profeta humano puede decirlo ni ningún gen anticiparlo. Pero pueden formularse ciertas predicciones generales. Los genes del oso polar pueden predecir, sin posibilidades de error, que el futuro que le aguarda a su máquina de supervivencia, que aún no ha nacido, va a desarrollarse en un clima frío. No lo piensan como una profecía, en realidad no piensan en absoluto: se limitan a construir un grueso abrigo de pelo, ya que eso es lo que siempre han hecho con los cuerpos anteriores y es por esa razón que todavía existen en el acervo génico. También predicen que el terreno en que vivirán estará cubierto por la nieve, y esta predicción determina que el abrigo de pelo sea blanco para permitirles el camuflaje. Si el clima del Ártico cambiase tan rápidamente que el oso cría se encontrase al nacer en un desierto tropical, las predicciones de los genes resultarían equivocadas y ellos pagarían su falta. El joven oso moriría, y ellos dentro de él.
La predicción en un mundo complejo es un negocio arriesgado. Cada decisión que toma la máquina de supervivencia es un acto aventurado, y es tarea de los genes programar a los cerebros por adelantado de tal manera que, consideradas en su promedio, las decisiones que tomen den un resultado positivo. La moneda empleada en el casino de la evolución es la supervivencia, y para expresarlo de una forma más estricta, la supervivencia de los genes, pero considerando diversos propósitos, la supervivencia individual puede calificarse como una aproximación razonable. Si un animal pequeño baja a una charca a beber, aumenta su riesgo de ser devorado por los predadores que viven de acechar a sus presas en los alrededores de los charcos. Si no va hasta donde se encuentra el agua morirá, finalmente, de sed. Existen riesgos en ambos casos y debe tomar la decisión que tienda a prolongar al máximo las posibilidades de supervivencia a largo plazo de sus genes. Quizá la mejor política sea posponer el acto de aplacar la sed hasta que se encuentre muy sediento, luego bajar y beber bastante como para que dicha necesidad tarde en presentarse de nuevo. De tal forma se reduce el número de visitas a la charca, pero, por otra parte, debe dejar transcurrir bastante tiempo con la cabeza baja cuando finalmente se decide a beber. Como otra alternativa, tal vez la mejor jugada podría ser beber poco y seguido, arrebatando rápidos sorbos de agua al cruzar corriendo la charca. Determinar cuál es la mejor estrategia de juego depende de todo tipo de factores complejos, de los cuales uno de los más importantes es el hábito de caza de los predadores, el cual ha evolucionado para ser, desde su punto de vista, de una máxima eficiencia. Debe haber alguna manera de calibrar las posibilidades. Pero, por supuesto, no debemos pensar que los animales efectúan los cálculos conscientemente. Todo lo que necesitamos creer es que aquellos individuos cuyos genes fabricaron cerebros de tal forma que tienden a juzgar correctamente tendrán, como resultado de ello, mayores probabilidades de sobrevivir y, por lo tanto, de propagar aquellos mismos genes.
Podemos llevar la metáfora del juego un poco más lejos. Un jugador debe pensar en tres factores principales: las apuestas, las probabilidades y el premio. Si el premio es muy grande, el jugador estará dispuesto a arriesgar una apuesta considerable. Un jugador que arriesga todo lo que tiene a una sola jugada tiene posibilidades de ganar una cifra muy alta. Es probable, también, que pierda una cantidad apreciable, pero por término medio, los jugadores que arriesgan altas apuestas no terminan mejor ni peor que otros jugadores que optan a pequeñas ganancias mediante apuestas bajas. Una comparación análoga se puede hacer entre aquellos que especulan en la bolsa y aquellos que se aseguran en sus inversiones. En cierto sentido la bolsa de valores constituye una analogía mejor que un casino, ya que los casinos son manipulados deliberadamente en favor de su banca (lo que significa, estrictamente hablando, que los jugadores de altas apuestas terminarán, como promedio, más pobres que aquellos jugadores cuyas apuestas son bajas; y estos últimos terminarán siendo más pobres que aquellos que no juegan en absoluto. Pero ello se debe a una razón al margen de nuestra hipótesis). Pasando por alto este punto, las posiciones de ambos jugadores parecen razonables. ¿Existen animales jugadores que hacen apuestas altas y otros que adoptan un juego más conservador? En el capítulo IX veremos que, a menudo, es posible representar a los machos como jugadores de altas apuestas que afrontan un elevado riesgo, y a las hembras como a inversoras seguras; especialmente se puede apreciar lo anteriormente expuesto en las especies polígamas, en las que los machos compiten por las hembras. Los naturalistas que lean el presente libro podrán pensar en especies que puedan ser descritas como jugadores de altas apuestas y altos riesgos, y otras especies que juegan un tipo de juego más conservador. Vuelvo, ahora, al tema más general de cómo los genes hacen «predicciones» sobre el futuro.
Uno de los medios que tienen los genes para resolver el problema relativo a las predicciones en medios ambientes impredecibles es construir una capacidad de aprendizaje. En este caso el programa puede tomar la forma de las siguientes instrucciones dadas a la máquina de supervivencia: «He aquí una lista de cosas definidas como recompensas: sabor dulce en la boca, orgasmo, temperatura suave, niño sonriente. Y he aquí una lista de cosas desagradables: diversos tipos de dolor, náuseas, estómago vacío, niño gritando. Si da la casualidad de que haces algo que va seguido por una de las cosas desagradables, no la repitas nuevamente pero, por otra parte, repite cualquier cosa que vaya seguida por una de las cosas agradables.» La ventaja de este tipo de programación es que reduce, considerablemente, el número de reglas detalladas que debían ser especificadas en el programa original; y es también apta para afrontar los cambios en el medio ambiente que no pudieron ser pronosticados detalladamente. Por otro lado, ciertas predicciones tienen que ser hechas todavía. Según nuestro ejemplo, los genes predicen que el dulce sabor en la boca y el orgasmo serán «buenos» en el sentido de que comer azúcar y copular es probable que beneficie a la supervivencia de los genes. Las posibilidades de la sacarina y la masturbación no serían anticipadas de acuerdo a este ejemplo; tampoco lo serían los peligros provocados por comer azúcar en demasiada cantidad en nuestro medio ambiente donde existe en enorme abundancia.
Las estrategias de aprendizaje han sido utilizadas en algunos programas de computadoras para juegos de ajedrez. Estos programas, en efecto, mejoran al jugar con contrincantes humanos o contra otras computadoras. Aun cuando están equipados con un repertorio de reglas y tácticas tienen, también, una pequeña tendencia a actuar por azar incluida en su sistema de decisiones. Registran las decisiones pasadas y siempre que ganan un juego aumentan, levemente, el peso dado a la táctica que precedió a la victoria, de tal manera que a la próxima vez existirán algunas posibilidades más de escogerla nuevamente.
Uno de los métodos más interesantes para predecir el futuro es el empleo de la simulación. Si un general desea saber si un determinado plan será mejor que los otros planes de alternativa, se le presenta un problema de predicción. Existen factores desconocidos que son relativos al tiempo atmosférico, la moral de su tropa y las posibles medidas preventivas tomadas por el enemigo. Una forma de averiguar si se trata de un buen plan es probarlo y ver su resultado, pero no es aconsejable emplear este método de prueba para todos los planes experimentales que se puedan inventar, aun si sólo nos limitamos a considerar que la dotación de jóvenes dispuestos a morir «por su patria» es limitada y puede agotarse, y la cantidad de planes posibles es muy grande. Es mejor probar la eficacia de los diversos planes en maniobras simuladas que en verdaderas batallas mortíferas. Pueden asumirse como ejercicios de simulacro de combate en el cual «los del Norte» luchan contra «los del Sur» empleando tiros de fogueo, pero aun así es de alto costo, tanto en lo que se refiere al tiempo como a los materiales empleados. Pueden simularse maniobras de guerra menos costosas empleando soldados de plomo y pequeños tanques de juguete, que se sitúan y movilizan sobre un gran mapa.
Las computadoras, desde fechas recientes, se han hecho cargo, en gran medida, de las funciones de simulación, no sólo en lo que respecta a estrategia militar sino en todos los campos en los cuales es necesario una predicción del futuro, campos como el económico, ecológico, sociológico y muchos otros. La técnica opera más o menos de la siguiente manera: Se inserta en la computadora un modelo de un determinado aspecto del mundo. Ello no quiere decir que si se desatornilla la tapa se verá dentro una maqueta en miniatura que tenga la misma forma que el objeto simulado. En la computadora programada para un juego de ajedrez no existe un «cuadro mental» en la memoria de ésta, reconocible como un tablero de ajedrez con los caballos y los peones dispuestos sobre él. Tanto el tablero de ajedrez como la normal disposición de sus piezas serán representados por listas de números codificados electrónicamente. Para nosotros, un mapa es un modelo a escala de una parte del mundo, reducido a dos dimensiones. En una computadora, un mapa probablemente estaría representado como una lista de ciudades y otros puntos, determinados cada uno de ellos mediante dos cifras que indiquen su latitud y su longitud. No importa cómo, en realidad, la computadora represente al mundo en su interior, siempre que lo haga de tal manera que pueda operar con su modelo, manipularlo y efectuar experimentos con el fin de entregar la información a los operadores humanos en términos comprensibles para ellos. Mediante dicha técnica de simulación, las batallas representadas pueden ser ganadas o perdidas, los aviones simulados pueden volar o estrellarse, las políticas económicas pueden llevar a la prosperidad o a la ruina. En cada caso, todo el proceso se desarrolla dentro de la computadora en una ínfima fracción del tiempo que se emplearía en la vida real. Por supuesto, existen buenos y malos modelos del mundo, y aun los mejores son sólo aproximaciones de la realidad. Ninguna cantidad de estos ejercicios de simulación puede predecir exactamente lo que sucederá en realidad, pero una buena simulación es enormemente preferible a un ensayo efectuado a ciegas. La simulación podría ser calificada como procedimiento experimental indirecto, término desgraciadamente utilizado con anterioridad por los psicólogos que emplean ratas de laboratorio.
Si la simulación es una idea tan buena, podríamos suponer que las máquinas de supervivencia la descubrieron primero. Después de todo, inventaron muchas de las otras técnicas de la ingeniería humana mucho antes de que nosotros entrásemos en escena: los lentes de enfoque y los reflectores parabólicos, el análisis de frecuencia de las ondas sonoras, el servocontrol, la sonda de ultrasonidos, el separador en el almacenamiento de la entrada de información y otras incontables técnicas de nombres difíciles cuyos detalles no interesan.
¿Qué podemos decir sobre la simulación? Bien, cuando tienes que tomar una decisión difícil que involucra ciertos elementos desconocidos en el futuro, empleas un tipo de simulación. Imaginas qué sucedería si eligieses cualquiera de las alternativas que se te presentan. Imaginas un modelo que no abarque la totalidad del mundo sino un restringido juego de entidades que piensas pueden ser relevantes. Puedes apreciarlas de manera vivida en tu mente o puedes imaginar y manipular abstracciones estilizadas de ellas. En cada caso es improbable que en algún lugar de tu cerebro se encuentre un modelo espacial de los sucesos que estás imaginando. De igual forma que en la computadora, los detalles de cómo tu cerebro representa su modelo del mundo es menos importante que el hecho de que es capaz de utilizar y predecir acontecimientos posibles. Las máquinas de supervivencia que pueden simular el futuro se encuentran un salto adelante de las máquinas de supervivencia que sólo pueden aprender sobre la base del ensayo. El problema con el método de tanteo empleado en demasía radica en que absorbe tiempo y energía. El problema de los ensayos que dan un resultado negativo es que, a menudo, pueden resultar fatales. La simulación es más rápida a la vez que más segura.
La evolución de la capacidad de simular parece haber tenido su culminación en el conocimiento subjetivo. Por qué tuvo que suceder esto es, para mí, el misterio más profundo con que se enfrenta la biología moderna. No hay razones para suponer que las computadoras electrónicas sean conscientes cuando simulan, aun cuando debemos admitir que en el futuro ello puede suceder. Quizá la conciencia surja cuando la simulación cerebral del mundo llega a ser tan compleja que debe incluir un modelo de sí misma. [17] Obviamente las extremidades y el cuerpo de una máquina de supervivencia deben constituir una parte importante de su mundo simulado; presumiblemente por el mismo tipo de razón, la simulación misma puede ser considerada como una parte del mundo destinada a ser simulada. Otro término que exprese esta idea podría ser «conocimiento de sí mismo», pero pienso que ésta no es una explicación plenamente satisfactoria de la evolución de la conciencia y ello se debe solamente en parte a que involucra una regresión infinita. Si existe un modelo del modelo, ¿por qué no un modelo del modelo del modelo…?
Cualesquiera que sean los problemas filosóficos planteados por la conciencia, en beneficio de nuestro argumento puede ser considerada como la culminación de una tendencia evolutiva hacia la emancipación de las máquinas de supervivencia, en su calidad de ejecutivos que toman decisiones, de sus maestros últimos, los genes.
Los cerebros no tan sólo están a cargo de la administración diaria de los asuntos de las máquinas de supervivencia sino que han adquirido la habilidad de predecir el futuro y de actuar de acuerdo a ello. Tienen, incluso, el poder de rebelarse contra los dictados de los genes, por ejemplo, al negarse a tener todos los hijos que son capaces de engendrar. Pero en este aspecto el hombre constituye un caso muy especial, como veremos más adelante.
¿Qué tiene que ver todo esto con el altruismo y el egoísmo?
Estoy tratando de intensificar la idea de que el comportamiento animal, ya sea altruista o egoísta, se encuentra bajo el control de los genes sólo de una manera indirecta, pero en un sentido muy poderoso. Al dictaminar la forma en que las máquinas de supervivencia y sus sistemas nerviosos son construidos, los genes ejercen un poder fundamental en el comportamiento. Pero las decisiones inmediatas y la continuidad de ellas son tomadas por el sistema nervioso. Los genes son los diseñadores de la política primaria; los cerebros, sus ejecutivos. A medida que los cerebros evolucionan y se tornan altamente desarrollados, se hacen cargo, cada vez en una mayor medida, de las decisiones respecto a la política a seguir y para ello utilizan trucos y simulación. La conclusión lógica de esta tendencia, aún no alcanzada en especie alguna, sería que los genes le dieran a la máquina de supervivencia una sola instrucción general de la política a seguir, que sería más o menos ésta: haz lo mejor que te parezca con el fin de mantenernos vivos.
Las analogías entre las computadoras y la toma de decisiones por los seres humanos está muy bien. Pero ahora debemos regresar a la realidad y recordar que la evolución, de hecho, ocurre paso a paso, a través de la supervivencia diferencial de los genes en el acervo génico. Por lo tanto, para que evolucione un modelo de comportamiento —altruista o egoísta—, es necesario que un gen «para» ese comportamiento determinado subsista en el acervo génico con mayor éxito que un gen rival, o alelo, «para» un tipo distinto de comportamiento. Un gen para el comportamiento altruista significa cualquier gen que ejerza influencia sobre el sistema nervioso de tal manera que los seres tiendan a comportarse altruístamente. [18] ¿Existe alguna evidencia experimental de herencia genética respecto al comportamiento altruista? No, hecho no sorprendente si consideramos el escaso trabajo realizado en la genética de cualquier comportamiento. En lugar de ello, me referiré a un estudio de un modelo de comportamiento que no es obviamente altruista pero que sí es bastante complejo para resultar interesante. Sirve de modelo para determinar cómo el comportamiento altruista puede ser heredado.
Las abejas melíferas sufren una enfermedad infecciosa denominada loque. Ataca a las larvas en sus celdillas. De la especie domesticada empleada por los apicultores, algunas corren más riesgo de contraer dicha enfermedad que otras, y resulta que la diferencia entre las razas es, por lo menos en ciertos casos, relativa al comportamiento. Existen las llamadas razas higiénicas que rápidamente erradican las epidemias mediante la localización de las larvas infectadas, arrastrando dichas larvas fuera de sus celdillas y arrojándolas fuera de las colmenas. Las razas susceptibles lo son porque no practican este infanticidio higiénico. El comportamiento realmente involucrado en este método higiénico es bastante complicado. Las obreras deben localizar la celdilla de cada una de las larvas infectadas, remover la capa de cera que recubre la celdilla, extraer la larva, arrastrarla a través de la puerta de la colmena y arrojarla al descargadero de los desperdicios.
Hacer experimentos genéticos con las abejas es un asunto bastante complicado por diversas razones. Las obreras no se reproducen ordinariamente, de tal manera que es necesario cruzar una abeja reina de una raza con un zángano (macho) de otra raza y luego observar el comportamiento de las hijas obreras. Esto es lo que hizo W. C. Rothenbuhler. Descubrió que todas las colmenas de la primera generación de hijas híbridas eran no higiénicas: el comportamiento del padre perteneciente a la raza higiénica parecía haberse perdido, aun cuando resultó que los genes higiénicos se encontraban todavía allí, pero eran recesivos, al igual que los genes para los ojos azules. Cuando Rothenbuhler «volvió a cruzar» a los híbridos de la primera generación con una raza higiénica pura (nuevamente empleando, por supuesto, a abejas reinas y zánganos), obtuvo un resultado muy hermoso. Las hijas abejas de la colmena se dividieron en tres grupos. Uno de ellos demostró un comportamiento higiénico perfecto, un segundo grupo demostró carecer totalmente de dicho comportamiento y el tercero demostró un comportamiento intermedio. Este último grupo perforó las celdillas de cera de las larvas enfermas pero no continuó con el proceso de arrojar la larva. Rothenbuhler conjeturó que podía haber dos genes separados, uno para destapar la celdilla y otro gen para arrojar la larva fuera de la colmena. Las razas higiénicas normales poseen ambos genes y, en cambio, las razas susceptibles de contraer la enfermedad poseen sus alelos —rivales—. Los híbridos que sólo llegaron hasta la mitad del camino poseían, presumiblemente, el gen para romper la celdilla (en dosis doble) pero no aquellos genes para arrojar fuera a la larva. Rothenbuhler dedujo que su grupo experimental de abejas aparentemente en su totalidad no higiénicas, podían ocultar un subgrupo que poseía el gen para expulsar a la larva enferma, pero incapaz de demostrarlo porque carecían de los genes para romper las celdillas. Confirmó esta suposición de la manera más elegante al abrir él mismo las celdillas. Ciertamente, la mitad de las abejas aparentemente no higiénicas mostraron, desde ese momento, un comportamiento perfectamente normal en cuanto a arrojar las larvas fuera de la colmena. [19]
Esta historia ilustra una serie de puntos importantes que surgieron en el capítulo anterior. Demuestra que es perfectamente adecuado hablar de «un gen para un comportamiento determinado» aun si no tenemos la menor idea de la cadena química de causas embrionarias que relacionen el gen con el comportamiento. Puede resultar, incluso, que la cadena de causas involucre al conocimiento. Por ejemplo, podría suceder que los genes para abrir las celdillas ejerzan su efecto otorgando a las abejas una capacidad para distinguir, por medio del gusto, la cera infectada. Ello significaría que el hecho de comer la cera de las celdillas que cubren a las víctimas de la enfermedad les resulte gratificante y, por lo tanto, tiendan a repetirlo. Aun si así fuese como trabaja este gen será, todavía, un verdadero gen «para abrir las celdillas» siempre que, manteniéndose iguales los demás factores, las abejas que poseen el gen terminen por abrir las celdillas y las abejas que no lo poseen, no lo hagan.
Como segundo punto, veremos que, también, ilustra el hecho de que los genes «cooperan», en sus efectos, sobre el comportamiento de la máquina de supervivencia comunal. El gen para arrojar la larva es inútil a menos que vaya acompañado por el gen que abre la celdilla, y viceversa. Sin embargo, los experimentos genéticos demuestran, con igual claridad, que ambos genes son, en principio, separables en su viaje a través de las generaciones. En cuanto concierne a su útil trabajo, se puede pensar en ellos como una única unidad cooperadora, pero en cuanto a genes que se reproducen, son dos agentes libres e independientes.
En bien de nuestra hipótesis será necesario especular sobre los genes «para» que hagan todo tipo de cosas improbables. Si me refiero, por ejemplo, a un gen hipotético «para salvar a compañeros de ahogarse» y tal concepto parece increíble, recuérdese la historia de las abejas higiénicas. Recuérdese que no estamos hablando sobre el gen como el único antecedente de todas las complejas contracciones musculares, integraciones sensoriales y aun decisiones conscientes que se encuentran involucradas al salvar a alguien de ahogarse. Nada expresamos sobre el problema de si el aprendizaje, la experiencia o las influencias del medio ambiente entran en el desarrollo del comportamiento. Sólo debemos conceder que es posible para un solo gen —siendo iguales todos los demás factores y muchos otros genes esenciales, así como la presencia de factores del medio ambiente— hacer que un cuerpo tenga una mayor disposición a salvar a alguien de ahogarse de la que tendría su alelo. La diferencia entre los dos genes puede resultar, en el fondo, una pequeña diferencia en una simple variable cuantitativa. Los detalles del proceso de desarrollo embriónico, por muy interesantes que sean, son irrelevantes en cuanto a las consideraciones sobre la evolución. Konrad Lorenz ha dejado muy bien establecido este punto.
Los genes son maestros de la programación, y programan para sus vidas. Son juzgados de acuerdo con el éxito de sus programas al afrontar todos los riesgos que la vida lanza a sus máquinas de supervivencia, y el juez es el juez implacable del tribunal de la supervivencia. Más adelante veremos medios por los cuales la supervivencia de los genes puede ser fomentada por lo que parece ser un comportamiento altruista. Pero el obvio primer lugar entre las prioridades de una máquina de supervivencia, y del cerebro que toma las decisiones en su beneficio, es la supervivencia y la reproducción del individuo. Todos los genes de la «colonia» estarían de acuerdo sobre estas prioridades. Los animales, por lo tanto, llegan a extremos elaborados para encontrar y cazar sus alimentos; para evitar ser cazados y comidos; para evitar las enfermedades y los accidentes; para protegerse de las condiciones climáticas desfavorables; para encontrar miembros del sexo opuesto y persuadirlos de convertirse en su pareja; y para otorgar a sus hijos ventajas similares a aquellas que gozan ellos mismos. No daré ejemplos —si se desea alguno, obsérvese cuidadosamente al primer animal salvaje que se tenga ocasión de contemplar. Pero sí deseo mencionar un tipo especial de comportamiento, ya que necesitaremos referirnos a él de nuevo cuando hablemos de altruismo y egoísmo. Me refiero al comportamiento que se puede calificar, en sentido general, como comunicación. [20]
Puede decirse que una máquina de supervivencia se ha comunicado con otra cuando influye en su comportamiento o en el estado de su sistema nervioso. No es ésta una definición que me guste tener que defender durante mucho tiempo, pero es bastante buena para nuestros propósitos actuales. Por influencia quiero decir influencia causal directa. Los ejemplos de comunicación son numerosos: los cantos de los pájaros, de las ranas y de los grillos; el agitar de la cola y el erizar de pelos en los perros; la «risa» de los chimpancés; los gestos y el lenguaje humanos. Un gran número de acciones de las máquinas de supervivencia promueven, de manera indirecta, el bienestar de los genes al influir el comportamiento de otras máquinas de supervivencia. Los animales hacen grandes esfuerzos para lograr que esta comunicación sea efectiva. Los cantos de los pájaros han encantado y desconcertado a sucesivas generaciones de hombres. Ya me he referido al más elaborado y misterioso canto de la ballena jorobada, con su prodigioso alcance, sus frecuencias que abarcan la totalidad del alcance del oído del hombre, y que va desde los subsónicos ruidos sordos hasta los chillidos ultrasónicos. Los cortones o grillos cebolleros amplifican su canto hasta alcanzar un volumen estentóreo al cantar en un hueco que ellos mismos cavan cuidadosamente en forma de un cuerno de doble exponencial, o megáfono. Las abejas danzan en la oscuridad con el fin de dar a otras abejas información exacta sobre la dirección y distancia en que se encuentra la comida, hazaña de comunicación que sólo encuentra paralelo en el lenguaje humano.
La historia tradicional narrada por los etólogos es que las señales de comunicación se desarrollan en mutuo beneficio del que envía y del que recibe el mensaje. Por ejemplo, los polluelos influyen el comportamiento de su madre al piar en un tono alto y penetrante cuando se encuentran perdidos o sienten frío. Ello normalmente produce el efecto inmediato de lograr que la madre acuda y conduzca sus polluelos a la nidada. Se puede decir que este comportamiento se ha desarrollado en beneficio mutuo en el sentido de que la selección natural ha favorecido a los polluelos que pían cuando se encuentran perdidos y también a las madres que responden de manera adecuada a la piada.
Si lo deseamos (no es, realmente, necesario) podemos considerar que las señales tales como las de las llamadas de las ovejas poseen un significado, o son portadoras de información: en este caso, «Me encuentro perdido». La llamada de alarma emitida por pájaros pequeños, que mencioné en el capítulo primero, puede decirse que transmite información: «Hay un halcón». Los animales que reciben dicha información y actúan de acuerdo a ella resultan beneficiados. Por lo tanto, la información puede decirse que es cierta. Pero, los animales ¿comunican alguna vez falsas informaciones? ¿Dicen mentiras?
La noción de que un animal transmite una mentira está sujeta a error. De manera que debo prevenir tal situación. Recuerdo haber escuchado una conferencia dada por Beatrice y Allen Gardner sobre su famoso chimpancé «parlante» Washoe (emplea el Lenguaje de Signos Norteamericano, y su logro es de gran interés potencial para los estudiosos del lenguaje). Había algunos filósofos presentes en la sala, y en el debate sostenido después de la conferencia se mostraron muy inquietos respecto al problema de si Washoe podía decir una mentira. Tuve la impresión de que los Gardner pensaban que había aspectos más importantes que tratar, y yo estaba de acuerdo con ellos. En el presente libro empleo términos como «engaño» y «mentira» en un sentido mucho más directo que aquellos filósofos. Ellos estaban interesados en la intención consciente de practicar el engaño. Si un pájaro utilizara la señal «Hay un halcón» cuando no hubiera ninguno y con ello lograra asustar y ahuyentar a sus compañeros con el fin de quedar solo para comerse todo el alimento, podríamos decir que dicho pájaro expresó una mentira. No querríamos decir con ello que, deliberadamente, tuvo la intención consciente de engañar. Todo lo que queda implícito es que el mentiroso obtuvo su comida a expensas de los demás pájaros, y la razón por la cual estos últimos se desbandaron fue debida a su reacción ante el grito del mentiroso, de una manera apropiada ante la presencia de un halcón.
Muchos insectos comestibles, como las mariposas del capítulo anterior, obtienen protección imitando la apariencia externa de otros insectos desagradables o provistos de un aguijón. Nosotros mismos nos engañamos a menudo, confundiendo a un tipo de mosca revoloteadora a rayas amarillas y negras con una avispa. Ciertas abejas que imitan a las moscas son aún más perfectas en su impostura. Los predadores también mienten. El alacrán marino espera, pacientemente, en el fondo del mar, fusionándose casi con el trasfondo. La única parte conspicua es un pedazo de carne, de apariencia de gusano, al extremo de una «caña de pescar» que se proyecta desde la parte más alta de su cabeza. Cuando se acerque una presa en forma de pez pequeño, el alacrán marino hará danzar su carnada en forma de gusano frente al pececillo con el fin de atraerlo hasta la región donde se encuentra oculta su propia boca. Abrirá, repentinamente, sus mandíbulas y el pececillo será succionado y devorado. El alacrán marino mentirá, explotando la tendencia del pececillo a acercarse a los objetos que tengan la apariencia y se retuerzan como gusanos. Dirá: «Aquí hay un gusano», y cualquier pez pequeño que «crea» la mentira será rápidamente comido.
Algunas máquinas de supervivencia explotan el deseo sexual de otras. Las orquídeas en forma de abejas inducen a las abejas a copular con sus flores debido a su enorme parecido con las abejas hembras. Lo que la orquídea gana con este engaño es la polinización, ya que una abeja que sea engañada por la apariencia de las orquídeas transportará, de paso, el polen de una a otra. Las luciérnagas (que, en realidad, son escarabajos) atraen a sus compañeros lanzando pequeños relámpagos de luces a ellos destinados. Cada especie posee su intermitente patrón de luces que impide la confusión entre las especies y la consiguiente y perjudicial hibridación. Al igual que los marineros buscan los tipos de señales de determinados faros, así las luciérnagas buscan las señales codificadas de sus propias especies. Las hembras del género Photuris han «descubierto» que pueden atraer a los machos del género Photinus si imitan el código de luces empleado por una hembra Photinus. Ellas así lo hacen, y cuando un macho Photinus es engañado y se aproxima, es sumariamente devorado por la hembra Photuris. Las sirenas y Lorelei surgen en nuestras mentes como analogías, pero los habitantes de Cornualles preferirán pensar en que los naufragios de tiempos antiguos eran provocados por hombres que empleaban linternas para atraer los barcos contra las rocas y luego saquear los cargamentos que arrojaban los buques naufragados.
Siempre que se desarrolla un sistema de comunicación, existe el peligro constante de que alguien explote el sistema para sus propios fines. Hemos sido criados bajo la perspectiva de la evolución que considera «el bien de las especies» y, naturalmente, pensamos que los mentirosos y los engañadores pertenecen a especies diferentes: predadores, víctimas, parásitos, etc. Sin embargo, debemos esperar que surjan mentiras y engaños y explotación egoísta de la comunicación, siempre que difieran los intereses de los genes de individuos diferentes. Ello incluirá a individuos de la misma especie. Como veremos, debemos esperar que los niños engañen a sus padres, los maridos a sus esposas y los hermanos mientan a sus hermanos.
Aun la creencia de que las señales de comunicación animal se desarrollaron originalmente para fomentar el beneficio mutuo y luego, más adelante, fueron explotadas por partes malévolas, es demasiado simple. Bien puede ser que toda comunicación animal contenga un elemento de engaño desde el principio, ya que toda interacción animal involucra, por lo menos, algún conflicto de intereses. El siguiente capítulo nos presenta un vigoroso concepto relacionado con los conflictos de intereses analizados desde un punto de vista evolutivo.