22. Atravesando una pared sin esfuerzo

FENÓMENOS DE EFECTO TÚNEL

Un aspecto de la mecánica cuántica que es difícil de aceptar por parte de los científicos jóvenes en su etapa de iniciación es que la ecuación propuesta por Schrödinger predice que bajo ciertas condiciones la materia puede pasar a través de lo que debería ser una barrera impenetrable. De esta forma la mecánica cuántica nos indica que los electrones son bastante parecidos a Kitty Pryde de la Patrulla X, la cual poseía la capacidad mutante de amurallarse tras paredes sólidas (como se muestra en la figura 32), o como Hash, que puede «vibrar» a través de barreras (ilustrado en la figura 33). Esta extrañísima predicción no es menos cierta que extravagante. La ecuación de Schrödinger permite calcular la probabilidad de que el electrón se mueva de una región del espacio a otra, aun cuando el sentido común nos diga que nunca podría efectuar dicha transición. Imagine que está en una cancha de balonmano al aire libre con una serie de cercas en tres lados de la cancha y una pared de hormigón cerrando el cuarto lado. Por el otro lado hay otra cancha al aire libre idéntica, rodeada también por una cerca en tres de sus lados y compartiendo la pared de hormigón con la primera cancha. Usted es libre de pasearse por donde quiera dentro de la primera cancha, pero al faltarle superpoderes no puede saltar sobre la pared de hormigón para pasar a la segunda cancha. Si uno resuelve la ecuación de Schrödinger correspondiente a esta situación encuentra algo bastante sorprendente: los cálculos indican que usted tiene una probabilidad muy alta de hallarse en la primera cancha (no hay sorpresa en ello) y una probabilidad pequeña pero no nula de aparecer en la segunda cancha al otro lado de la pared (¿eh?). Normalmente, la probabilidad de pasar a través de una barrera es muy pequeña, pero solamente se puede decir que son imposibles las situaciones para las cuales la probabilidad es exactamente cero. El resto es tan sólo improbable.

Fig. 32. Una escena del n.º 130 de X-Men, que muestra a Kitty Pryde (quien todavía no pertenecía a la Patrulla X) empleando su capacidad mutante para caminar a través de las paredes y así espiar a la Reina Blanca del Club Fuego Infernal.

© 1980 Marvel Comics

Éste es un fenómeno intrínsecamente propio de la mecánica cuántica, en el sentido de que clásicamente no hay modo posible de que usted se encuentre en la segunda cancha. Este proceso cuántico se llama efecto túnel, lo que es un mal apodo, ya que usted no cava un túnel al atravesar la pared. No se deja ningún agujero detrás, ni tampoco pasa usted por encima de la pared o por debajo de ella. Si ahora tuviera que pasar en la otra dirección por la pared, ésta sería una barrera tan formidable como cuando usted se hallaba en la primera cancha, y ahora tendrá la misma probabilidad mínima de volver a la primera cancha. Pero efecto túnel es el término que los físicos utilizan para describir este fenómeno.

Cuanto más rápido corra usted hacia la pared, mayor es la probabilidad de que aparezca en el otro lado, aunque no se mueva tan deprisa como para saltar por encima. Es sin duda de esta forma como Flash, tanto en la versión de la Edad de Oro como en la de la de Plata, es capaz de utilizar su gran velocidad para pasar a través de objetos sólidos, como se muestra en la figura 33. Es capaz de aumentar su energía cinética hasta el punto en que la probabilidad de atravesar la pared, según la ecuación de Schrödinger, se convierte casi en certeza.

Fig. 33. Escena del n.º 123 de Flash, en el que Jay Garrick, el Flash de la Edad de Oro, demuestra el proceso de la mecánica cuántica llamado efecto túnel. La onda de materia de un objeto tiene una probabilidad pequeña pero no nula de atravesar una barrera sólida. Cuanto más rápidamente se dirige el objeto hacia la barrera mayor es la probabilidad de la transición. Como observa correctamente Jay, la barrera no resulta afectada por el proceso de efecto túnel.

© 1961 National Periodical Publications Inc. (DC)

Considere dos metales separados por el vacío. Un electrón en el metal de la izquierda es como una persona en la primera cancha de baloncesto. En lugar de una pared de hormigón, un delgado espacio vacío separa este electrón del segundo metal, que puede ser considerado como otra cancha. Un electrón en un metal tiene una probabilidad pequeña pero no nula de encontrarse en el segundo metal. El electrón no pasa a través del espacio vacío y no tiene suficiente energía cinética para escapar por sí mismo del metal. (Esto es algo bueno, pues de otro modo los objetos estarían perdiendo continuamente electrones por todas partes, y la adherencia estática sería uno de los problemas más preocupantes de cada día.) En lugar de ello, la onda de materia del electrón se prolonga en el vacío, disminuyendo en magnitud. Un fenómeno similar tiene lugar con las ondas de luz que se mueven desde un medio más denso a otro de menor densidad. Bajo condiciones para las cuales la onda luminosa sería reflejada en su totalidad en la interfaz, queda todavía una pequeña difracción de luz en el medio menos denso. La magnitud de la onda difractada decrece cuanto más progresa en el interior del medio menos denso. Puesto que el cuadrado de la función de onda del electrón representa la probabilidad de hallar la partícula en un punto del espacio y del tiempo, un valor finito para la «onda de materia» indica que existe una probabilidad de que el electrón se halle en el segundo metal. Si el trecho no es demasiado grande (comparado con la longitud de onda de materia del electrón, que en la práctica es algo menor de un nanómetro), entonces la onda de materia tendrá todavía un valor apreciable en el segundo metal. Por dejarlo más claro digamos que el electrón de un lado de la barrera se mueve hacia la obstrucción, y la mayor parte de las veces se refleja simplemente en la pared. Si un millón de electrones golpea la barrera, entonces, dependiendo de su altura y amplitud, 990.000 electrones podrían reflejarse y 10.000 pasarían al otro lado.

Si la separación entre los dos metales es demasiado grande, entonces incluso para los electrones más energéticos la probabilidad de experimentar el efecto túnel es extraordinariamente pequeña. El momento de una persona es grande, de modo que nuestras longitudes de onda de materia son muy pequeñas, mucho menores que la millonésima de la trillonésima parte de la anchura de un átomo y mucho menores que la anchura de la pared de hormigón que nos separa de la segunda cancha de baloncesto. No obstante, si usted corriera hacia la pared de hormigón, hay una minúscula probabilidad de que su onda de materia alcance el otro lado de la pared. Cuanto mayor sea su energía cinética mayor será su oportunidad de experimentar el efecto túnel. Los que dudan de que eso es posible están invitados a lanzarse desde ahora contra paredes de hormigón, y a perseverar en sus intentos sin que importen lo descorazonadores que puedan ser los resultados iniciales.

Los electrones de un sólido traquetean con una frecuencia de más de mil billones de veces por segundo. En consecuencia, en un segundo tendrán unos mil billones de oportunidades de efectuar el paso a través de una barrera por efecto túnel. Envíe bastantes electrones contra una barrera, y si su altura no es muy grande ni tampoco lo es la separación, una fracción apreciable pasará al otro lado en virtud del efecto túnel. El fenómeno del efecto túnel de la mecánica cuántica no solamente ha sido comprobado para los electrones, sino que es el principio fundamental en el que se basa un tipo único de microscopio llamado microscopio de exploración por efecto túnel (Scanning Tunnelling Microscope) que permite obtener imágenes directas de los átomos. Como se muestra en la figura 34, cuando una punta metálica se acerca mucho, aunque sin tocarla, a una superficie metálica, puede interceptar las nubes electrónicas que envuelven cada átomo de la superficie. Cuando los electrones pasan por efecto túnel de un átomo a la punta metálica, se registra una corriente eléctrica en un medidor conectado a la ranura. El que tenga lugar o no el efecto túnel depende en gran medida de la separación entre los átomos de la superficie y la punta metálica de exploración. Un cambio en la distancia de solamente la mitad de un átomo puede cambiar la probabilidad del efecto en un factor de más de mil. Moviendo la punta lentamente sobre la superficie y midiendo cuidadosamente la corriente en cada lugar, es posible trazar un mapa de la posición de cada átomo en la superficie.

Fig. 34. Dibujo que muestra el mecanismo básico de un microscopio de exploración por efecto túnel. Una fina punta de metal se aproxima mucho a una superficie conductora. La proximidad es de unos pocos diámetros atómicos. Cuando la punta pasa por encima de un átomo de la superficie, las nubes de probabilidad de los electrones del átomo pueden llegar a experimentar el efecto túnel hasta la punta. Cuando la punta está justo encima del átomo, la probabilidad del efecto túnel es alta y la corriente en la punta será grande. De esta forma es posible explorar y captar imágenes de los átomos de la superficie.

Una imagen de este tipo se muestra en la figura 35, que deja ver la localización de átomos de carbono en la superficie de un cristal de grafito (más conocido como «mina de lápiz»). La escala en gris no es real (los átomos de carbono no son negros ni blancos, ni tienen ningún color en lo que a esto respecta), pero se utiliza para representar la magnitud de la corriente registrada en la punta en cada posición, lo que a su vez refleja la densidad electrónica que hay en cada punto. La figura 35 nos muestra que los átomos de carbono del grafito forman placas hexagonales que son casi bidimensionales, bastante parecidas a las placas de seis lados que forman un copo de nieve. El hecho de que los átomos de carbono formen retículas hexagonales implica que un cristal de grafito consiste en hojas de átomos de carbono como la de la figura 35 descansando unas sobre otras. Al formar un cristal tridimensional a partir de tales hojas bidimensionales, el sólido apila cada hoja sobre la otra como las finas capas de un pastel de hojaldre. Los planos del grafito sólido se mantienen unidos tan débilmente que se les puede separar con la mano, simplemente raspando la punta de un lápiz a lo largo de una hoja de papel. El hecho de que esta forma de carbono sólido forme un utensilio de escritura mejor que si todos los átomos de carbono tuvieran cuatro enlaces iguales (compuesto conocido como «diamante») puede deducirse directamente de esta imagen atómica.

Fig. 35. Imagen del microscopio de exploración de efecto túnel de los átomos de la superficie del grafito, la forma del carbono empleada para la mina de los lápices. Cada mancha blanca indica una región del espacio en la que la corriente túnel es elevada para esa posición de la punta (ver figura 34). Se aprecia bien la retícula hexagonal de los átomos de carbono, La escala de grises se emplea para indicar la intensidad de la corriente de efecto túnel. El eje y se extiende a lo ancho de 1 nm, mientras que el eje x es de 0,5 nm de largo, Cortesía de la doctora Laura Adams y del profesor Alien Goldman de la Universidad de Minnesota.

En el próximo capítulo trataremos de la física de los transistores y diodos, y me salgo del guión para decirle que esos dispositivos semiconductores son en esencia válvulas que regulan y amplifican el flujo de corriente. Una manera de conseguir controlar esta corriente es a través del proceso del efecto túnel. Cuando dos conductores están muy próximos entre sí, separados por una delgada barrera aislante, normalmente no puede fluir corriente de un conductor al otro. Aplicando un voltaje a lo largo de esta estructura de sándwich, puede variarse la altura efectiva de la pared que separa los electrones de una región de los de la otra. Como se dijo, la probabilidad del efecto túnel es una función muy sensible a la altura de esta barrera. De este modo el efecto túnel se utiliza para modular el flujo de electrones a través del dispositivo. Estos «diodos de efecto túnel» son componentes integrales de los teléfonos móviles, así como de otros dispositivos de estado sólido. El efecto túnel de la mecánica cuántica no es por lo tanto una novedad teórica esotérica o útil solamente en los microscopios atómicos. Muchos de los productos que asociamos con nuestro actual estilo de vida no hubieran sido posibles de no ser porque el efecto túnel es un fenómeno fiable.

Cuando aplicamos las leyes de la física cuántica a objetos grandes como Kitty Pryde de la Patrulla X (fig. 33), hallamos que el efecto túnel sigue siendo posible, pero muy poco probable. ¿Cuán improbable? Suponiendo que la masa de Kitty sea de 50 kg (uno de sus nombres en clave era Sprite, después de todo), incluso si se lanzara contra la pared, con toda la velocidad de que es capaz, un millón de veces por segundo, tardaría más de la edad del universo antes de que pudiera esperar atravesar hasta el otro lado por el efecto túnel. Claramente la excepción milagrosa entra en juego aquí de forma contundente. Con nuestra comprensión avanzada de la física, podemos describir con seguridad el poder mutante de Kitty Pryde como capaz de alterar su función de onda cuántica macroscópica para aumentar a voluntad su probabilidad de experimentar el efecto túnel hasta el ciento por ciento. Muy útil cuando uno se ha dejado las llaves olvidadas dentro del coche.

Un antiguo rompecabezas de los cómics es que si Kitty Pryde puede pasar a través de las paredes, ¿cómo es que no cae a la vez a través del suelo? ¿Y cómo, cuando está «en fase» y es inmaterial, puede caminar? En el número 141 de X-Men se argumentaba que mientras estaba en fase, Kitty camina en realidad sobre una capa de aire, sin estar en contacto real con el suelo. Cuando es inmaterial en su modalidad en fase no resulta por lo tanto afectada por ninguna trampilla abierta bajo ella. Suponiendo por un momento que pueda realmente caminar sobre el aire, es decir que de algún modo el aire proporcione suficiente resistencia para ejercer una fuerza de reacción sobre sus pies que le permita un empuje de avance, impulsándola hacia delante, la cuestión sigue siendo cómo su pie parcialmente material puede seguir a su cuerpo a través de una pared.

Sin embargo, si el mecanismo por el cual es capaz de pasar a través de barreras sólidas es efectivamente el efecto túnel de la mecánica cuántica, entonces es perfectamente razonable que no se deslice a través del suelo. Cuando un electrón experimenta el efecto túnel desde un lado de la barrera al otro, conserva su energía en el proceso. Si tiene un cierto valor de energía cinética y potencial en un lado de la barrera, tiene la misma energía total después de haber completado el proceso de efecto túnel. De hecho, el efecto túnel solamente puede tener lugar cuando la energía del objeto es exactamente la misma en ambos lados de la barrera. La relación de la energía cinética a la potencial puede cambiar cuando se atraviesa una barrera por efecto túnel, desde una región permitida a otra.

Técnicamente, Kitty no puede caminar mientras está experimentando el efecto túnel, puesto que no puede aumentar su energía apoyándose contra ningún objeto, ya sea el suelo sólido o un colchón de aire. Pero a la vez no puede perder tampoco ninguna energía. Todo lo que necesita hacer es caminar normalmente mientras se acerca a la pared, activar su poder mutante para maximizar su probabilidad de efecto túnel, y entonces resbalará a través del tabique con la misma velocidad que tenía cuando se aproximaba al mismo. En las ocasiones en que desea pasar en fase a través del suelo, como en el número 4 de Astonishing X-Men, en donde realmente pasa en fase a través de casi treinta metros de metal sólido para llegar a un laboratorio subterráneo, debería saltar ligeramente mientras está todavía en fase corporal, y a continuación justo antes de que su pie toque el suelo, activar su capacidad mutante de efecto túnel. Continuaría su movimiento con la energía cinética última que tenía en su estado sólido, y descendería con una velocidad constante. Esto es probablemente más seguro para ella que si mantiene activado su potencial mutante de efecto túnel hasta que está cerca del suelo de la habitación inferior, y evita materializarse cerca del techo, donde tendría que vérselas con su ahora elevada energía potencial gravitatoria.