MECÁNICA CUÁNTICA
La historia original del número 4 de Showcase que describe cómo ganó Barry Allen sus poderes de supervelocidad y se convirtió en el Flash de la Edad de Plata, entregaba el testigo de la Edad de Oro de los superhéroes. Justo antes de ser alcanzado por la descarga eléctrica que lo roció a la vez con productos químicos exóticos, el policía científico Allen hacía una pausa relajante en su laboratorio tomando un pastel y un vaso de leche mientras leía el número 13 de Flash Comics, que presentaba al Flash de la Edad de Oro en su cubierta. Después de que el terrible accidente otorgara a Barry sus superpoderes, sus pensamientos inmediatos se dirigieron al modo de hacer uso de esas potencialidades para ayudar a la humanidad. Inspirándose en el cómic de Flash que había estado leyendo antes de ser alcanzado por el rayo, se vistió un traje rojo y amarillo y dio comienzo a su carrera de lucha contra el delito como el Flash de la Edad de Plata (aunque se refería a sí mismo simplemente como Flash, sin darse cuenta de que era un personaje de cómic de la emergente Edad de Plata de los superhéroes). En un giro que hoy en día describiríamos como «postmoderno», y entonces fue considerado una «idea inteligente», se decidió en los cómics de Flash de la década de los sesenta que el personaje de Flash de los años cuarenta (que usaba un traje distinto y había obtenido su supervelocidad por un accidente químico distinto, aunque tampoco plausible) era un personaje de cómic de la «realidad» de Barry Allen.
El Flash de la Edad de Oro (cuya identidad secreta era Jay Garrik) fue considerado ficticio en lo que concierne al Flash de la Edad de Plata hasta septiembre de 1961. En la clásica historia «Flash of Two Worlds» («Flash de dos mundos») en el número 23 de Flash (figura 27), se reveló que el Flash de la Edad de Plata y el Flash de la Edad de Oro existían ambos, pero en Tierras paralelas, separadas por una «barrera vibratoria». En esta historia el Flash de la Edad de Plata (Barry Allen) vibró accidentalmente a supervelocidad a la frecuencia exacta necesaria para pasar hasta la Tierra en la cual vivía su ídolo el Flash de la Edad de Oro (Jay Garrick). Una vez se dio cuenta de que estaba en el mundo de los héroes de la Edad de Oro, Barry encontró a Jay y se presentó a sí mismo. «Como sabes —explicó el policía científico—, dos objetos pueden ocupar el mismo espacio e instante si vibran a distintos ritmos.» Al parecer Barry Allen era mejor científico forense que físico teórico. Independientemente de su frecuencia de vibración (y, como vimos en la sección dos, los átomos de un sólido vibran simplemente porque tienen una temperatura no nula) no hay forma de que dos objetos puedan ocupar el mismo espacio y el mismo instante de tiempo (a menos que nos refiramos a cantidades sin masa como los fotones luminosos).
El redactor de la historia «Flash of Two Worlds» fue Gardner Fox, que había escrito también muchos de los cómics del Flash de la Edad de Oro. Propuso un mecanismo para explicar cómo el héroe de la Edad de Plata pudo leer los cómics que presentaban al héroe de la Edad de Oro en su segunda Tierra, y proporcionó también algunos detalles de sus hábitos de trabajo. Como supuso Barry: «Un escritor llamado Gardner Fox escribió sobre tus aventuras, ¡que decía que se le aparecían en sueños! Obviamente cuando Fox estaba dormido ¡su mente estaba “sintonizada” en tu Tierra vibratoria! ¡Esto explica por qué “soñaba” The Flash!»[71]. Este encuentro cruzado entre los Flash de la Edad de Plata y Edad de Oro fue un éxito entre los aficionados de los cómics, y el Flash de la Edad de Plata cruzaría cada vez con más frecuencia la barrera vibratoria que le conducía a la Tierra-2. El mundo en el que residía el Flash de la Edad de Oro, aunque apareció antes cronológicamente, fue llamado Tierra-2, mientras que el mundo de la Edad de Plata recibió el nombre de Tierra-1. El mundo del lector, en el cual todos los superhéroes existían solamente como personajes ficticios de cómics, fue llamado Tierra-Principal. Eventualmente la Liga de la Justicia de América de la Edad de Plata de los años sesenta, que comprendía a Flash, Linterna Verde, Atom, Batman, Superman, la Mujer Maravilla, y otros superhéroes, se reunió y tuvo una aventura con la Liga de la Justicia de América de Tierra-2 de los años cuarenta, cuyos miembros comprendían a Flash, Linterna Verde, Atom, Batman, Superman, la Mujer Maravilla, y otros. Tan popular fue este encuentro de los dos superequipos que pronto se convirtió en una tradición anual. Pero la Justice League y la Justice Society sólo pudieron visitar la Tierra de los otros varias veces antes de que la novedad desapareciera. Pronto la Justice League se ramificó y visitó otras Tierras, tales como Tierra-3, donde el análogo diabólico de la Liga de la Justicia de América había formado el Sindicato del Crimen de América (Crime Syndicate of America, supuestamente para distinguirse de su contrapartida criminal europea). El Capitán Marvel, es decir, Billy Batson, que podía convertirse en superhéroe exclamando «¡Shazam!», y el resto de su elenco de apoyo habitaban Tierra-S, y a su debido tiempo recibieron una visita de cruce por parte de la Liga de la Justicia de América[72]. Tierra-X, Tierra-4 y otras siguieron pronto, y con el paso del tiempo la frase «multiuniverso» se tornó apropiada para describir el número aparentemente sin límite de universos alternativos que abundaban.
Fig. 27. La cubierta del n.º 123 de The Flash, donde se da a los fans del cómic una indicación de que existían dos mundos más allá del suyo propio. © 1961 National Periodical Publications Inc. (DC) |
![]() |
Los ejemplares de La Liga de la Justicia de América que describen el encuentro de los héroes de las edades de Plata y de Oro siempre llevaban títulos tales como «Crisis en Tierra-2» o «Crisis en Tierra-X». Las tramas se tornaron tan enrevesadas y con tantas historias alternativas que en 1985 DC Comics intentó normalizar el multiuniverso. Las miniseries que durante un año describieron este proceso de simplificación se llamaron «Crisis en las infinitas Tierras». Con una vasta limpieza de continuidad en camino, los escritores y editores de DC Comics aprovecharon esta oportunidad para desembarazarse de los mundos menos populares y llevar a todos los héroes de los mejores títulos de ventas a una Tierra (precisamente la Tierra-1 de los héroes de la Edad de Plata). En consecuencia, las miniseries Crisis en las infinitas Tierras es notable entre los aficionados a los cómics por las muertes del Flash Barry Allen y Supergirl (ambos murieron heroicamente combatiendo contra el diabólico tirano que amenazaba destruir la Tierra-1 de la Edad de Plata) y por la supresión de Superboy de la historia de Superman. A diferencia de la mayor parte de las fatalidades de los cómics, tanto Barry Allen como Supergirl siguieron muertos casi definitivamente (con resurrecciones ocasionales como estrellas invitadas como truco de ventas), mientras que las aventuras de lucha contra el crimen empezaron a retroceder de nuevo hasta los años de adolescencia de Clark Kent. Por ridículo que pueda sonar lo anterior, el concepto de un número infinito de mundos paralelos podría ser uno de los ejemplos más extraños de ¡física correcta en los cómics![73] Justo cuatro años antes de la publicación del número 4 de Showcase, la noción de un número infinito de universos paralelos y divergentes fue propuesta seriamente como una interpretación de las ecuaciones de la mecánica cuántica. En otras palabras: algunos científicos creen que el concepto de los universos paralelos es un concepto serio y viable de la física teórica. Las teorías actuales indican que si tales Tierras alternativas existen, serían como las descritas en el universo de los cómics de Marvel, en donde ligeros cambios en un personaje de la historia tal como los presentados por el Centinela en historietas como «¿Qué pasaría si Gwen Stacy hubiera vivido?» conducen a mundos divergentes que nunca pueden ser visitados por nuestra realidad, independientemente de nuestra frecuencia vibratoria.
Las grandes mentes piensan de un modo parecido
Hasta aquí a lo largo de este libro hemos tratado de lo que los físicos llaman mecánica clásica. Entender lo que significa la «mecánica» de algo significa que puede predecir la estática (por ejemplo, el mayor ángulo con el que se puede colocar una escalera para que permanezca en equilibrio contra una pared) y el movimiento de objetos (tal como la velocidad con la que cae la escalera cuando comienza a resbalar, una vez identificadas las fuerzas externas que actúan sobre ella). La ecuación fundamental que gobierna cómo se moverá un objeto macroscópico como resultado de una fuerza aplicada es nuestra vieja amiga la segunda ley de Newton del movimiento, F = m a. Para el movimiento de objetos grandes tales como automóviles, pelotas de béisbol y personas, las fuerzas dominantes son la gravedad, el rozamiento y la electrostática. Incluso cuando consideramos la electricidad y el magnetismo, seguimos haciendo uso de F = m a, donde F en la parte izquierda de esta ecuación es o bien la fuerza de Coulomb de atracción o de repulsión entre cargas eléctricas o bien la fuerza de un campo magnético sobre una carga eléctrica en movimiento. El aspecto de la «mecánica cuántica» que justifica esta separación de la «mecánica clásica» como una rama distinta de la física es que cuando consideramos electrones y átomos, F = m a deja súbitamente de comportarse bien. Luego de un gran esfuerzo tratando de «corregir» la física clásica para los átomos (ajustando las leyes de Newton sin subvertirlas del todo) los físicos se vieron forzados a concluir a regañadientes que en el interior de los átomos se aplicaba otro tipo de «mecánica». Es decir, que era necesaria una nueva ecuación para describir la respuesta de los átomos a fuerzas externas. Después de unos veinticinco años de intentar una forma u otra para esta ecuación, casi simultáneamente Werner Heisenberg y Erwin Schrödinger obtuvieron la forma correcta del equivalente para los átomos de F = m a.
No teman: no hay peligro de que tratemos aquí del enfoque de Heisenberg ni del de Schrödinger con ningún detalle matemático. Dentro unas cuantas páginas escribiré la ecuación de Schrödinger, pero será solamente para que la podamos mirar maravillados como si fuera un animal exótico de zoológico. El tratamiento de Heisenberg de la física cuántica emplea el álgebra lineal, mientras que Schrödinger utiliza una complicada ecuación diferencial en derivadas parciales (por sencillez nos centraremos en Schrödinger en el resto de este capítulo). Explicar por completo sus teorías rompería el pacto que hemos mantenido hasta ahora de que no emplearíamos en estas páginas nada más complicado que el álgebra de instituto (el álgebra que hemos utilizado hasta ahora en este libro tiene la misma relación con el álgebra lineal que una mosca tiene con una casa[74]).
No obstante, con respecto a las matemáticas hay dos puntos que vale la pena destacar aquí. El primero es que, a diferencia del caso de Isaac Newton visto en el capítulo 1, el cual tuvo que inventar el cálculo para aplicarlo a sus leyes del movimiento recientemente descubiertas, tanto Heisenberg como Schrödinger pudieron utilizar las matemáticas que ya habían sido desarrolladas al menos un siglo antes. Las ramas matemáticas del álgebra lineal y de las ecuaciones diferenciales en derivadas parciales que emplearon Heisenberg y Schrödinger para describir sus ideas físicas habían sido inventadas por matemáticos del siglo XVIII y XIX, y se hallaban bien establecidas en la época en que fueron necesarias en 1925.
Con frecuencia los matemáticos desarrollan una nueva rama de las matemáticas o del análisis por el simple placer de construir una serie de reglas y de descubrir las condiciones y principios que se derivan lógicamente de ellas. Ocasionalmente, los físicos descubren más tarde que para describir el comportamiento del mundo natural investigado resultan indispensables las mismas herramientas que previamente existían solamente para satisfacción de la curiosidad intelectual de los matemáticos. Por ejemplo, la tarea de Einstein al desarrollar la teoría general de la relatividad en 1915 hubiera sido mucho más difícil si no hubiera dispuesto de la ayuda de la teoría de la geometría de varias dimensiones de Bernhard Riemann, desarrollada en 1854. Este panorama de físicos que llevan a cabo avances del mañana mediante las herramientas matemáticas del ayer se ha repetido tan frecuentemente que los físicos tienden a no pensar mucho en ello.
El segundo punto acerca de las teorías de Heisenberg y Schrödinger es que, aunque emplean ramas diferentes de la matemática y tienen una apariencia muy distinta, tras un análisis cuidadoso (que Schrödinger llevó a cabo en 1926) se puede mostrar que son matemáticamente equivalentes. Puesto que describen el mismo fenómeno físico (átomos, electrones y luz), y están inspirados por los mismos datos experimentales, quizá no sea muy sorprendente que resulten ser la misma teoría, a pesar de que los lenguajes matemáticos utilizados para expresarlas sean muy distintos.
Schrödinger y Heisenberg, de modo independiente, desarrollaron el mismo año descripciones distintas del mundo cuántico. La noción de que tales ideas se hallan «maduras» para su descubrimiento en ciertos momentos de la historia se encuentra una y otra vez, y no está confinada a la física teórica. Naturalmente, el simple mimetismo explica gran parte de la similitud en los programas de televisión o en las películas de Hollywood, del mismo modo como el despunte de Superman en Action Comics condujo a una proliferación de los cómics de superhéroes por parte de muchos otros editores, incluyendo Nacional Comics, con la esperanza de embotellar al rayo de nuevo. Hay, sin embargo, casos bien documentados de estudios de cine o cadenas de televisión que de forma independiente y simultánea han decidido que ha llegado el momento de reintroducir un determinado género, tal como las películas de piratas o la serie del doctor urbano. Este sincronismo ocurre también en los cómics, como en el ejemplo de la Patrulla X y la Patrulla Condenada. En marzo de 1954, DC publicó el número 80 de My Greatest Adventures, presentando el debut de superhéroes inadaptados (Robotman, Negative Man y la obligada compañera femenina, Elastic-Girl), cuyos extravagantes poderes hicieron que la sociedad los evitara. Estaban dirigidos por un genio en silla de ruedas llamado el Jefe, que los convenció para luchar en equipo en ayuda de la misma sociedad que los rechazaba, combatiendo con frecuencia a sus opuestos de la Hermandad del Crimen. Tres meses más tarde los aficionados podían comprar el número 1 de X-Men, publicado por Marvel Comics, donde podían ver a un equipo de mutantes (Cíclope, la Bestia, Ángel, el Hombre de Hielo y, de nuevo la obligatoria compañera, la Chica Maravillosa) cuyos extravagantes poderes provocaron el rechazo de la sociedad normal. Estos adolescentes con superpoderes estaban dirigidos por el telépata mutante en silla de ruedas Profesor X, que los había reclutado y entrenado para ayudar a la misma sociedad que los rechazaba, enfrentados con frecuencia a sus opuestos de la Hermandad de Mutantes Diabólicos.
A pesar de algunas profundas diferencias (el Profesor X es calvo y va bien afeitado, mientras que el jefe es pelirrojo y tiene barba), las espectaculares similitudes de concepto hicieron que muchos aficionados a los cómics se preguntaran si la Patrulla X no estaba copiada del modelo de la Patrulla Condenada. Sin embargo, entrevistas con los escritores de ambos cómics y la investigación de historiadores de cómics indican que es más probable que la aparición casi simultánea sea una coincidencia. El largo período de tiempo necesario para concebir, escribir, dibujar, entintar y poner las letras de un cómic antes de su proceso por la imprenta y su distribución en los quioscos sugiere que la Patrulla X estaba ya en producción cuando apareció por primera vez la Patrulla Condenada.
Otro caso de sincronismo de publicaciones es el de los monstruos de estercolero cubiertos de musgo Swamp Thing de DC (escrito por Len Vein) y Man-Thing de Marvel (escrito en colaboración por Gerry Conway), que aparecieron en 1971 con un mes de diferencia entre ambos. Tanto Wein como Conway insistieron en que sus creaciones no tenían nada que ver, y en que el hecho de que fueran compañeros de habitación en esa época era puramente fortuito.
![]() |
Fig. 28. Erwin Schrödinger, físico teórico, premio Nobel y mujeriego. Fue el creador de la ecuación de Schrödinger, fundamento de la mecánica cuántica y de nuestro moderno estilo de vida tecnológico. |
Si el comportamiento de los objetos en la escala atómica está gobernado por las ondas de materia que acompañan su movimiento, entonces lo que la física atómica necesita es una ecuación de ondas que describa la evolución de dichas ondas en el espacio y en el tiempo. Los físicos de principios de la década de 1920 intentaron elaborar una ecuación de ese tipo, hasta que en 1925 Erwin Schrödinger (figura 28) adivinó esencialmente la expresión matemática correcta.
Con la ecuación de Schrödinger los científicos tuvieron un marco con el cual podían comprender las interacciones de los átomos con la luz. Ésta fue la motivación de Schrödinger para el desarrollo de su ecuación de ondas de materia. Una generación más tarde, equipados con la comprensión de la naturaleza de la materia posibilitada por la ecuación de Schrödinger, un nuevo grupo de científicos desarrolló el transistor y, separadamente, el láser y la fisión nuclear (centrales nucleares y bombas atómicas) y la fusión nuclear (bombas de hidrógeno). Los caminos que condujeron tanto al transistor como al láser fueron difíciles, y solamente con la guía de la teoría cuántica se pudieron desarrollar con éxito. Una generación más tarde se crearían el reproductor de CD, el ordenador personal, el teléfono móvil y el reproductor de DVD, por citar solamente unos pocos inventos. Y puesto que ninguno de ellos hubiera sido posible sin el transistor o el láser, ninguno de ellos hubiera sido posible sin la ecuación de Schrödinger. Es una pequeña maravilla que hasta hace poco el retrato de Schrödinger haya estado en el billete de mil schillings[75] de su Austria natal, puesto que puede en verdad considerarse uno de los arquitectos del estilo de vida que damos por supuesto en el siglo XXI.
Hace poco he dicho que Schrödinger «adivinó» la forma de la ecuación de onda de materia. Quizás «adivinó» es una palabra demasiado fuerte. Erwin Schrödinger empleó una considerable intuición física para desarrollar una nueva ecuación que describiera el comportamiento de los átomos. Los meros mortales puede que no sepan nunca exactamente cómo alguien como Newton o Schrödinger hacen lo que hacen. La penetración que conduce a una nueva teoría de la naturaleza es quizás más poderosa que la de la creación artística, puesto que una teoría física nueva debe ser no solamente original sino también matemáticamente coherente y estar de acuerdo con las observaciones experimentales. La teoría más elegante del mundo es inútil si queda refutada por los experimentos.
Aunque no podamos saber cómo Schrödinger hizo lo que hizo, sabemos dónde y cuándo lo hizo. Los historiadores de la ciencia nos dicen que Schrödinger desarrolló su famosa expresión en 1925 mientras se encontraba en un chalet de los Alpes suizos prestado por un amigo durante unas largas vacaciones de navidad. Es más, aunque sabemos que su mujer no estaba en ese chalet, sabemos también que no estaba solo. No sabemos, sin embargo, cuál de las muchas amigas de Schrödinger le acompañaba.
Llegados a este punto el lector podría querer examinar de nuevo el retrato de Schrödinger de la figura 28. Podíamos tener una nueva contestación a la pregunta «¿Por qué sonríe?». Es cierto que Edwin no nos impresiona como seductor. Si alguien se ha preguntado si existe alguna expresión matemática que lo haga a uno atractivo para el sexo opuesto, la ecuación de Schrödinger pudiera ser un buen comienzo. Incluso la breve sinopsis de física cuántica presentada en este capítulo habrá sin duda, fiel creyente, potenciado su atractivo romántico. Esto se añade, naturalmente, al irresistible sex-appeal que otorga un conocimiento enciclopédico de los cómics de superhéroes.
El gato de Schrödinger de los dos mundos
La ecuación de Schrödinger es la F = m a de los electrones y los átomos. Así como la segunda ley de Newton, una vez que se han especificado las fuerzas externas F, describe la aceleración a, y de aquí la velocidad y la posición de un objeto, la ecuación de Schrödinger, dada la energía potencial del electrón mediante el término V, permite el cálculo de la probabilidad por volumen Ψ2 de hallar el electrón en un cierto punto del espacio y del tiempo. Una vez que conozco la probabilidad de dónde estará el electrón, puedo calcular la localización o el momento medio del mismo. Dado que los valores medios son las únicas cantidades que tienen fiabilidad, esto es realmente todo lo que se debería pedir a una teoría.
El énfasis sobre las cantidades medias en la física cuántica es distinta de nuestra consideración de los promedios en la anterior discusión de la termodinámica (capítulo 12). Allí hablamos de la energía media por átomo de un objeto, caracterizada por su temperatura, porque resultaba cómodo. En principio, si tuviéramos suficiente tiempo y memoria de ordenador, o fuéramos tan superveloces como Flash o Superman, podríamos seguir la pista de la posición y del momento de cada molécula de aire de una habitación, por ejemplo. Podríamos, por tanto, calcular la fuerza instantánea sobre las paredes por unidad de superficie, lo que proporcionará la misma información que una determinación de la presión. En los sistemas cuánticos, por otra parte, las propiedades de tipo ondulatorio de la materia establecen un límite a nuestra capacidad de efectuar mediciones, y el promedio es lo mejor que podemos obtener.
¿Qué tiene la naturaleza ondulatoria de la materia que hace tan difícil medir con precisión la localización precisa de un electrón en un átomo? Piense en una cuerda de violín sujeta con una frecuencia de vibración fundamental y varios tonos armónicos más altos. Suponga que la cuerda está vibrando a una frecuencia determinada, pero que es una que no podemos oír. Si las vibraciones fueran tan rápidas que no pudiéramos ver vibrar la cuerda, ¿cómo comprobaríamos que en realidad vibra? Un modo sería tocando la cuerda y sintiendo las vibraciones con nuestros dedos. Si las puntas de nuestros dedos fueran lo bastante sensibles (como las de Matt Murdock, conocido también con el nombre de Daredevil), podríamos incluso determinar la frecuencia exacta con la que ha estado vibrando la cuerda.
Digo «ha estado vibrando» porque, una vez que hemos tocado la cuerda, ya no oscilará más a la misma frecuencia que antes. O bien habrá dejado de vibrar del todo o estará vibrando a una frecuencia algo distinta. Quizás podamos determinar la frecuencia de vibración acercando nuestros dedos pero no haciendo contacto directo con la cuerda. De este modo podemos sentir las vibraciones del aire provocadas por la cuerda oscilante del violín. Con el fin de aumentar la sensibilidad de esta medición, necesitamos aproximar mucho nuestros dedos a la cuerda. Pero entonces las vibraciones del aire se reflejarán en nuestros dedos y rebotarán hacia la cuerda, proporcionando una retroacción que puede alterar su configuración vibratoria. Cuanto más distantes mantengamos las puntas de nuestros dedos, más débil será la retroacción, pero entonces nuestra determinación de la frecuencia vibratoria será menos precisa.
Las oscilaciones de la onda de materia de un electrón en un átomo son justamente tan sensibles a las perturbaciones. Las mediciones de la localización de un electrón perturbarán su onda de materia. Se ha escrito mucho acerca del papel del «observador» en la física cuántica, pero no es más profundo que el hecho de que cuando usted trata de mirar algo más pequeño que la sonda que se usa para verlo, perturbará lo que está tratando de ver.
La teoría cuántica puede proporcionar determinaciones muy precisas del tiempo promedio que hay que esperar antes de que la mitad de una gran cantidad de isótopos nucleares haya sufrido una desintegración radiactiva (definido como su «vida media»), pero esto no es útil para predecir cuándo se desintegrará un único átomo. El problema con los sucesos singulares queda bien ilustrado por el siguiente desafío: tomo un euro de mi bolsillo y se me permite lanzarlo al aire una sola vez. ¿Cuál es la probabilidad de que salga cara? Casi con seguridad su instinto le pide contestar que un 50%, pero usted sospecha que hay trampa. Y tendrá razón, es una pregunta con trampa. A los que contestarían que la probabilidad de obtener cara es del 50% les digo: demuéstrenlo. Y no podrán, nunca de acuerdo con una única tirada, mientras vivamos en un mundo con euros de dos caras. Si usted lanza la moneda mil veces (o lanza mil monedas una vez) hallará que para una moneda aceptable, muy cerca del 50% de las veces se obtendrá cara. Pero la probabilidad es una guía pobre para sucesos únicos aislados. Sin embargo la probabilidad es todo lo que ofrece la ecuación de Schrödinger. Esto no sentó bien entre muchos de los físicos antiguos que estaban acostumbrados a la precisión de reloj de la mecánica newtoniana, y propusieron un experimento conceptual que abriría una «caja de Pandora» en la cual colocaron un gato.
Plantearon la siguiente situación: una caja, dentro de la cual hay un gato y que también alberga una botella sellada de veneno y otra caja más pequeña conteniendo un isótopo radiactivo. El elemento radiactivo tiene una vida media de una hora, lo que significa, según la mecánica cuántica, que después de una hora hay una probabilidad del 50% de que haya sufrido una desintegración. Un subproducto de esta desintegración nuclear es la emisión de una partícula alfa (conocida de otro modo como núcleo de helio), y la botella de veneno está dispuesta de tal modo que se romperá al ser alcanzada por esta partícula. Así, después de una hora, hay un riesgo del 50% de que el gato esté muerto, habiendo sucumbido a los vapores del veneno liberados cuando la botella fue alcanzada por la partícula alfa, y una probabilidad del 50% de que la botella siga intacta, con el gato vivo y en buen estado.
De acuerdo con la ecuación de Schrödinger, antes del límite de una hora, en cuyo punto uno abre la caja y mira en su interior, puede describirse significativamente al gato como «la superposición (promedio) de un gato muerto y un gato vivo». Una vez que se abre la tapa, la «función de onda del gato promedio» colapsa en una que describe un gato o bien 100% vivo o 100% muerto, pero no hay modo de conocer lo que se observará antes de abrir la tapa. Si las paredes de la caja son transparentes, nunca estará seguro de que la luz del exterior no haya perturbado el proceso de desintegración (recuerde que la observación de los sistemas cuánticos puede alterarlos a veces). Muchos físicos han considerado esta interpretación deficiente (a pesar de que experimentos recientes sobre los estados cuánticos entrelazados de luz, como se describe en el número 19 de Justice League of America sugieren que esto es exactamente lo que ocurre), y se han dedicado muchas ideas y razonamientos para intentar resolver la sensación desagradable asociada con el gato de Schrödinger. Una solución provocativa a este problema, descrita seguidamente, permite que Flash y Superman viajen a Tierras alternativas.
En 1957, Hugh Everett III sugirió que una vez que el gato está precintado en la caja, se crean dos universos paralelos casi idénticos que se bifurcan: uno en el cual al final de la hora el gato está vivo y otro en el cual está muerto. Lo que hacemos cuando abrimos la caja no implica el colapso de funciones de onda ni que el gato está 50% muerto y 50% vivo antes de que miremos. Más bien todo lo que hacemos al final de la hora es determinar en cuál de los universos vivimos, si aquel en el que el gato está vivo o en aquel en el que el gato está muerto. De hecho, por cada proceso cuántico para el cual hay al menos dos resultados posibles, existe ese número de universos, correspondiendo a los diferentes resultados posibles. Una vez que las dos Tierras se han separado en la bifurcación, debido a los dos resultados posibles de un determinado suceso cuántico, cada una evoluciona de modo diferente, dependiendo de las miríadas de sucesos cuánticos ulteriores que tienen lugar luego de este punto de ramificación inicial. Si la bifurcación de las Tierras tuvo lugar recientemente, entonces una Tierra particular pudiera parecerse a nuestro propio mundo. Si la separación ocurrió hace mucho tiempo, entonces durante el tiempo transcurrido habrán existido muchas oportunidades para que los sucesos cuánticos subsiguientes tengan resultados distintos de los observados en nuestro mundo. La historia de esta segunda Tierra puede ser bastante parecida a la nuestra entonces, pero cabe también la posibilidad de diferencias sensacionales[76].
De aquí que la teoría cuántica da una justificación física para ambas historias de «¿Qué pasaría si?» del Universo Marvel y las Tierras Alternativas de DC Comics. En una de las Tierras, Jay Carrik inhaló «vapor de agua pesada» en un accidente de laboratorio, ganando el don de la supervelocidad con el cual luchó en pro de la justicia, como Flash con sus compañeros de equipo en la Justice League of America. En la otra Tierra el policía científico Barry Allen fue rociado con una serie de productos químicos mientras era alcanzado simultáneamente por un rayo, dejándolo con el don de la supervelocidad, con el cual luchó como Flash con sus compañeros de equipo de la Liga de la Justicia de América. En otra Tierra, un supervelocista cometió crímenes como el diabólico Johnny Quick con sus compañeros del Crime Syndicate of America. Hay en principio un número infinito de Tierras, correspondiendo a todos los resultados posibles de todos los efectos cuánticos factibles, aunque una tesis básica de esta teoría es que ordinariamente no puede haber comunicación entre esas múltiples Tierras alternativas. Ordinariamente. Al parecer, para alguien capaz de vibrar a supervelocidad como Flash, el viaje entre esos muchos mundos tendría lugar con tanta frecuencia como aquella con la que los lectores siguieran comprando tales historias.
Para los físicos la propuesta de Hugh Everett III conduce a crisis muy diversas en las Tierras infinitas. La solución de los muchos-mundos al problema del gato de Schrödinger representó para la mayoría de los físicos un ejemplo de que el remedio puede ser peor que la enfermedad. No obstante, no hay nada lógica o físicamente inconsistente en esta teoría, y nadie ha sido capaz de demostrar que es incorrecta. Los físicos que consideraban intelectualmente insatisfactorio decir que una teoría completa de la naturaleza solamente puede predecir probabilidades no pudieron aceptar la noción de que la teoría describe realmente la creación espontánea y continua de un número infinito de universos alternativos. El modelo de los «muchos mundos» puede considerarse la tía loca de la teoría cuántica desde su publicación, y ha sido guardada en el ático metafórico hasta muy recientemente. Nunca se me enseñó, por ejemplo, cuando estudié mecánica cuántica en el instituto y luego con más detalle en la universidad. Descubrí el modelo de los «muchos mundos» por casualidad cuando, como estudiante graduado, me tropecé con un ejemplar del libro de 1973 de Bryce DeWitt y Nelly Gram, La interpretación de los muchos mundos de la mecánica cuántica, abandonado en un despacho de estudiante graduado. En un exitoso intento de posponer mis deberes, tomé este extraño libro, empecé a leerlo y como resultado aprendí que en algún sitio había otro James Kakalios que estaba realmente acabando a tiempo su tarea (cuyo conocimiento no me resultó grato).
Si bien pocos físicos prestan atención al modelo de los «muchos mundos», hay una clase de físicos teóricos que han demostrado ser grandes defensores de esta idea: los teóricos de cuerdas.
Por qué Superman no puede cambiar la historia
En los años que siguieron al desarrollo de la ecuación de Schrödinger, los científicos han desarrollado técnicas para describir cómo interactúa la onda de materia del electrón con versiones cuánticas de campos eléctricos y magnéticos (un proceso llamado Electrodinámica cuántica o QED) y cómo se comportan las ondas de materia de los quarks del interior de un núcleo (un proceso llamado cromodinámica cuántica o QCD). Un objetivo pendiente de la física teórica es entender cómo puede describirse la gravedad mediante procesos cuánticos. Hay una teoría de la gravedad perfectamente buena, a saber la teoría general de la relatividad de Einstein. Hay una teoría excelente para describir la naturaleza cuántica de los electrones (QED). Combinar esas teorías en un todo coherente ha demostrado estar más allá de las capacidades de cualquier teórico de la actualidad. Lo más cerca que los teóricos han estado de una teoría cuántica de la gravedad es algo llamado «teoría de cuerdas».
Una simplificación grosera de la teoría de cuerdas es que sugiere que la masa en sí misma es una onda, o más bien una vibración de una cuerda elemental, y que esas «cuerdas» son los constituyentes básicos de todo lo que forma el universo En su estado actual, muchos físicos son escépticos con respecto a la teoría de cuerdas. Su primera objeción es que para que las ecuaciones se equilibren, la teoría de cuerdas funciona solamente en once dimensiones (diez espaciales y una temporal). Esto es algo embarazoso porque, hasta donde podemos distinguir, vivimos solamente en tres dimensiones espaciales, y ninguno ha hallado nunca dimensiones adicionales[77]. Para resolver esta discrepancia los teóricos de cuerdas han sugerido que existen realmente once dimensiones, pero que siete de esas dimensiones espaciales están enrolladas en forma de pequeñas bolas de un diámetro inferior a la milésima de la billonésima de una trillonésima parte de un centímetro, una escala de longitud llamada la longitud de Planck. Otro inconveniente de la teoría de cuerdas está relacionado con esta noción extradimensional: sondear escalas tan pequeñas de longitud requiere en correspondencia energías más altas que las que pueden alcanzar los aceleradores de partículas actuales y los de la próxima generación. Sin la verificación proporcionada por el experimento, el único criterio para determinar si las ecuaciones se hallan en el camino correcto es la elegancia matemática. Esto podría ser peligroso, porque aunque es cierto que las ecuaciones de la mecánica clásica, de la electricidad y el magnetismo y de la mecánica cuántica poseen realmente una cierta belleza matemática, no hay a priori ninguna razón para creer que la naturaleza se preocupa de si hallamos que las ecuaciones son elegantes o no. No obstante, la teoría de cuerdas es en el presente el único candidato probable para una teoría cuántica de la gravedad y solamente estudios más avanzados determinarán su éxito.
Los físicos que desarrollan la gravedad cuántica han invocado la interpretación de los muchos mundos con el fin de resolver las inconsistencias lógicas de sus cálculos que implican el viaje en el tiempo. Recientemente algunos científicos han proclamado que el viaje en el tiempo no es físicamente imposible, aunque es muy improbable que se pueda realizar realmente nunca. El problema con el viaje en el tiempo hacia el pasado está resaltado en la famosa «paradoja del abuelo». En resumen, si uno pudiera realmente retroceder en el tiempo, sería posible matar a su abuelo cuando era joven, antes de que fuera concebido su propio padre. De este modo usted impediría su propio nacimiento, pero la única manera de poder impedir eso es habiendo nacido primero. Con el fin de hallar una escapatoria a este enigma, los físicos teóricos modernos han desempolvado la interpretación de los muchos mundos de Hugh Everett III. Si hubiera ciertamente un número infinito de universos paralelos alternativos, entonces (razonan los teóricos) cuando usted viaja hacia atrás en el tiempo, las rigurosas distorsiones del espacio-tiempo necesarias para realizar este viaje le enviarían a usted a un universo paralelo al suyo propio. Entonces será libre de matar a tanto abuelos como balas tenga, sin miedo de alterar su propia existencia, puesto que su propio abuelo está a salvo en el pasado de su propio universo, imperturbado por la devastación que usted está infligiendo en el pasado de mundos alternativos.
Estas ideas teóricas modernas fueron realmente anticipadas en la aventura de 1961 del número 146 de Superman, «Las grandes proezas de Superman». En esta historia Superman acepta viajar al pasado como un favor a Lori Lemaris, una sirena de la ciudad sumergida de Atlantis con la cual mantuvo una «relación especial» (cuando ella era niña y amiga suya, Lori no era la novia de Superman). Lori implora a Superman que evite el hundimiento de Atlantis, que tuvo lugar hace millones de años. Superman argumenta que todos sus intentos previos (presentados en anteriores ejemplares de Action Comics y Superman) para cambiar la historia habían fallado, pero las súplicas de Lori (y lo que parecen ser ojos de alcoba) convencieron a Superman para hacer el intento. Dado que hace falta un gran esfuerzo y una velocidad mayor que 340 m/s para romper la barrera del sonido (el esfuerzo, como se discutió en el capítulo 5, es debido en parte al trabajo que hay que hacer para apartar el aire del trayecto), en DC Comics se propuso que con un esfuerzo todavía mayor y una velocidad mucho mayor uno podría atravesar la «barrera del tiempo» (tanto Flash como Superman, ambos capaces de esas velocidades necesarias, viajarían en el tiempo hacia atrás y adelante conforme lo requiriera la trama).
Fig. 29. Superman viaja en el tiempo y salva a Abraham Lincoln de ser alcanzado por el disparo de John Wilkes Booth. ¿O no fue así?
© 1961 National Periodical Publications Inc. (DC)
Superman retrocede al menos hasta ocho millones de años antes de nuestra era y alcanza casi el momento exacto en que la avanzada civilización de Atlantis, que reside en una pequeña isla alejada de la costa de lo que parece ser un centro de descanso costero, está próxima a sucumbir a «unas olas gigantescas causadas por un terremoto colosal submarino». Superman corre a otra isla a una distancia a salvo del temblor submarino, la cual es el hogar de otra civilización avanzada. Nada se dice de por qué no hemos sabido nunca de esta otra antigua civilización. Superman toma prestado cierto «metal extraño» de edificios que iban a ser destruidos en esta otra isla y modela una enorme grúa con la cual eleva la isla completa de Atlantis, depositándola en una isla desierta segura, donde queda a salvo del terremoto. No entremos en lo que pudiera componer ese «extraño metal», para tener una fuerza de tensión suficiente para izar una isla.
Fig. 30. Superman, en el mismo cómic de la figura 29, ahora se da cuenta de que la historia ha permanecido cambios a pesar de su travesía en el tiempo realizando «grandes proezas».
© 1961 National Periodical Publications Inc, (DC)
En esta ocasión, a diferencia de intentos previos, Superman pudo cambiar con éxito el curso de la historia, y decidió hacer varios descansos en su viaje de retorno a su época, aprovechando la oportunidad para «reparar» diversos acontecimientos históricos. Salva a los cristianos de ser devorados por los leones del Coliseo romano[78], toma el lugar de Nathan Hales cuando está a punto de ser ejecutado por los británicos, evita la masacre de Custer en Little Big Horn, y se deja caer por el Teatro Ford el 14 de abril de 1865. Como se muestra en la figura 29, cuando John Wilkes Boot está a punto de asesinar al presidente Lincoln, tiene tiempo de gritar «¡Sic Semper… Ulp!» mientras las manos que pueden aplastar diamantes se cierran sobre la pistola. Superman se siente ahora como un niño en una tienda histórica de caramelos y decide intentar salvar a la población de su planeta natal Krypton.
Fig. 31. Superman descubre en 1961 lo que los teóricos cuánticos han conjeturado recientemente: que el viaje en el tiempo debe implicar también necesariamente el transporte a universos paralelos alternativos.
© 1961 National Periodical Publications Inc, (DC)
Puesto que pierde sus superpoderes bajo la luz roja del sol Rao de Krypton (por entonces la explicación de sus asombrosas capacidades se atribuía al sol amarillo de la Tierra) Superman decide construir una flota de naves espaciales a partir de barcos terrestres hundidos y enviarla a Krypton para permitir que todos escapen a otro mundo. Utilizando su visión telescópica observa a sus padres desembarcando en un nuevo planeta con un niño Kal-El. En este momento Superman se da cuenta de que ha caído en una paradoja, puesto que si sus padres nunca lo enviaron a la Tierra cuando niño, ¿cómo es que puede salvarlos ahora?
De vuelta a su presente en 1961, el Hombre del Mañana descubre que todos los libros de historia permanecen inalterados, tal como se muestra en la figura 30. Lincoln fue tiroteado de verdad en el Teatro Ford y Nathan Hale y el General Custer están descritos de modo semejante sufriendo sus destinos sin Superman, quien no puede entender cómo es posible eso, ya que «con seguridad, los libros [de historia] son ciertos». Ejem. Volviendo a seguir la pista de sus pasos en el tiempo, Superman llega a una Tierra alternativa (figura 31) en la cual los libros de historia dan el apropiado crédito al papel ejercido por Superman corrigiendo los «errores» del pasado.
¡Ah! Superman descubrió en 1961 lo que los físicos teóricos redescubrieron en el 2001: que el viaje en el tiempo solamente es posible mediante la interpretación de los muchos mundos de la mecánica cuántica. Superman cumplió ciertamente con esas proezas asombrosas, alterando el curso de la historia, pero en un universo alternativo, no en el suyo propio (ver figura 31). Un fenómeno semejante tiene lugar en el número 267 de Los Vengadores de Marvel Comics, donde el demonio temporal Lord Kang el Conquistador resulta que ha creado un vasto número de Tierras alternativas como subproducto de sus frecuentes viajes en el tiempo con el fin de derrotar a sus antagonistas superhéroes. Otro ejemplo más de cómics adelantándose al avance de la física.