CONSERVACIÓN DE LA ENERGÍA
Flash puede ser capaz de correr a través de la superficie del océano y de capturar balas en el aire, pero nos inquieta una cuestión más importante: ¿con qué frecuencia necesita comer? La respuesta rápida es ¡mucha! Una pregunta más básica que podríamos formular es: ¿por qué necesita comer? ¿Qué es exactamente lo que contiene el alimento que lo hace esencial para cualquier actividad, ya sea correr, caminar o incluso permanecer sentado? ¿Y por qué obtenemos solamente esas cualidades de la materia orgánica y no de las rocas o del metal o del plástico?
Flash come por la misma razón que lo hacemos todos: para abastecerse de materia prima para el crecimiento y regeneración de las células y para obtener energía para el funcionamiento metabólico. Al nacer, su cuerpo contiene una cantidad de átomos que era insuficiente para acomodar todo el crecimiento que tuvo lugar durante lo que cuenta de vida. A medida que creció y maduró, necesitó más átomos, proporcionados normalmente en forma de moléculas complejas que su cuerpo ha tenido que descomponer y convertir en los elementos fundamentales necesarios para el reemplazo y el crecimiento celular. Tal como se dijo en nuestra discusión acerca de la explosión de Krypton, todos los átomos del universo —incluidos los de la comida que ingerimos— fueron sintetizados mediante reacciones nucleares en una estrella ahora ya muerta, en la cual los átomos de hidrógeno fueron aplastados entre sí para formar átomos de helio, el helio se fusionó para formar carbón, y así sucesivamente. Un producto adicional derivado de esas reacciones de fusión en nuestro Sol proporciona el segundo componente esencial de los alimentos que ingerimos. Matter-Eater Lad (el chico comedor de materia) de la Legión de Superhéroes puede ser capaz de subsistir consumiendo objetos inertes como metal o piedra, y la amenaza cósmica Galactus debe consumir la energía vital de los planetas. Sin embargo, para la mayoría el alimento que comemos debe haber estado vivo anteriormente. Sólo tales comestibles nos suministran un componente adicional, tan misterioso como mundano es su nombre: energía.
El uso de la palabra energía es tan corriente que resulta inquietante darse cuenta de lo difícil que es definirla sin utilizar las palabras energía o trabajo en su descripción. La definición no matemática más sencilla es que la «energía» es una medida de la capacidad para producir movimiento. Si un objeto ya se está moviendo, decimos que posee «energía cinética», y puede producir movimiento si tropieza con otro. Incluso si no se está moviendo, un objeto puede poseer energía, como en el caso en que está siendo empujado por una fuerza externa (la gravedad, por ejemplo) pero se le impide acelerarse, por ejemplo si está sujeto a cierta altura sobre el suelo. Puesto que el objeto se moverá si se le deja libre, se dice que posee «energía potencial».
Toda la energía es o bien cinética o bien potencial, aunque dependiendo de las circunstancias una masa puede poseer ambas, tal como cuando Gwen Stacy cae desde lo alto del puente en el capítulo 3. Cuando se hallaba en lo alto del puente tenía una gran energía potencial, ya que la gravedad puede actuar a gran distancia. Pero su movimiento estaba impedido, puesto que el puente la sostenía. Cuando fue arrojada desde lo alto de la torre, se retiró el impedimento y la fuerza que actuaba sobre ella (la gravedad) le imprimió entonces su aceleración. A medida que se desplomaba disponía de una distancia cada vez más corta para seguir cayendo, de modo que su energía potencial decrecía. La energía potencial no desapareció, sino que en lugar de ello su gran energía potencial en lo alto del puente se convertía en una energía cinética que crecía sin cesar a medida que caía cada vez con más rapidez. En cualquier punto de su caída, la cantidad de energía cinética ganada era exactamente la energía potencial perdida (ignorando la energía gastada en vencer la resistencia del aire). Si hubiese golpeado el agua en la base del puente, su energía potencial hubiera sido la mínima (una vez en la base de la torre ya no hay posibilidad de seguir cayendo), mientras que la velocidad y, por consiguiente, la energía cinética hubieran sido la máxima. De hecho (ignorando de nuevo la fricción del aire) su energía cinética en la base hubiera sido exactamente igual a su gran energía potencial en lo alto del puente cuanto comenzó a caer. Esta energía cinética se hubiera transferido al agua, que proporcionaría una gran fuerza para cambiar su gran velocidad a cero, con el mismo resultado terrible que cuando fue recogida por la red de Spiderman como se describió en el capítulo 3.
También podemos imaginar a Spiderman columpiándose adelante y atrás en su red como si fuera un péndulo. En la parte más elevada de su arco no se mueve (debido a que se trata del punto más alto de su balanceo), pero está alejado del suelo y tiene una gran energía potencial. Su energía potencial en la parte más baja de su balanceo tiene un valor mínimo, y si hubiera comenzado en ese punto, no se hubiera movido. Al comenzar en un punto más alto, su energía potencial inicial se transforma en energía cinética, y en el punto más bajo de su arco su pérdida de energía potencial es exactamente igual a su ganancia de energía cinética. La única fuerza que actúa sobre él en este punto más bajo es la gravedad (que tira hacia abajo) y la tensión de la cuerda (que tira hacia arriba). Ninguna de las dos actúa en la dirección horizontal de su balanceo en este punto. Pero ya se encuentra en movimiento, y un objeto en movimiento permanece en él a menos que actúe una fuerza externa. Al llegar más allá de este punto más bajo y empezar a elevarse de nuevo, su energía cinética se transforma de nuevo en energía potencial. Si nadie le impulsa, nunca podrá tener más energía total que aquella con la que comenzó (¿de dónde iba a provenir?) y así el punto final de su balanceo no puede estar más alto que la altura inicial. De hecho, parte de su energía cinética se emplea en desplazar el aire de su trayectoria (resistencia del aire), de modo que se elevará a una altura algo menor que la del punto de comienzo.
Este recuento de cuánta energía es potencial y cuánta es cinética implica una de las ideas más profundas de toda la física: la energía no se crea ni se destruye, sino que solamente puede cambiar de una forma a otra. Este concepto se resume en el elegante título de principio de la conservación de la energía. Nunca hemos podido pillar a la Naturaleza en un caso en que la energía al comienzo de un proceso no sea exactamente igual a la energía al final del mismo. Nunca.
Cuando los físicos estudiaron la desintegración de los núcleos radiactivos en las décadas de 1920 y 1930, hallaron que las energías finales de los electrones emitidos y de los núcleos resultantes no igualaban a la energía inicial del núcleo de partida. Enfrentado con la posibilidad de que la energía no se conservara en las reacciones de desintegración, Wolfgang Pauli sugirió en lugar de ello que la energía que faltaba era transportada lejos por una misteriosa partícula fantasma invisible a los detectores. Se construyeron eventualmente dispositivos con el fin de observar dichas «partículas fantasma». No sólo resultaron ser reales, sino que de hecho los neutrinos (como fueron bautizadas dichas partículas, de un modo algo caprichoso, por Enrico Fermi, al describirlos en italiano como «pequeños entes neutros») se hallan entre las formas de materia más predominantes del universo.
Suponga que clavamos un clavo en un tablón de madera. La energía potencial del martillo, sujeto por encima de la cabeza del carpintero, se convierte en energía cinética cuando desciende. Cuando el martillo golpea al clavo, la energía cinética del mismo provoca el movimiento del clavo (profundamente en el tablero, esperamos) y, como un efecto secundario, motiva también que los átomos de la cabeza del clavo se agiten más violentamente, calentándolo. El reparto de la energía cinética incidente del martillo en vibraciones adicionales de los átomos de la cabeza del clavo, el movimiento hacia delante del propio clavo, y la rotura de enlaces moleculares en la madera (necesaria si el clavo ha de ocupar un espacio antes llenado por la madera) puede resumirse describiendo la «eficacia» del proceso de martilleo. Si uno añade cuidadosamente todas las cantidades pequeñas y grandes de energía cinética del clavo, la madera e incluso el aire (el «pum» que se escucha cuando se golpea el clavo resulta de una onda de presión —el sonido— inducida en la atmósfera circundante), el resultado neto debe resultar exactamente igual que la energía cinética inicial del martillo justo antes de golpear la cabeza del clavo. Sin embargo, el calentamiento del clavo y la creación de un efecto de sonido son «energías derrochadas» desde el punto de vista del carpintero, y cuentan contra la eficacia del proceso de martilleo.
A veces esta energía derrochada no es insignificante. Un automóvil que viaja a lo largo de una carretera plana tiene una energía cinética. Esta energía proviene de una reacción química durante la combustión del vapor de gasolina con el oxígeno, iniciada mediante la chispa eléctrica de la bujía. Los gases resultantes de esta pequeña reacción explosiva se mueven a grandes velocidades para que puedan desplazar un pistón. El movimiento arriba y abajo del pistón se traslada mediante un ingenioso sistema a la rotación de las ruedas del automóvil. Naturalmente, no toda la energía de esta reacción química se aplica al desplazamiento de los pistones —gran parte de ella calienta el motor, lo cual es inútil desde el punto de vista de la locomoción—. Además, mientras el coche viaja a lo largo de la autopista, se necesita también energía para desplazar el aire de su camino. El rendimiento del automóvil se determina en gran parte por el esfuerzo de desplazar el aire del volumen inmediato que intenta ocupar ¡más de cinco toneladas de aire por cada kilómetro recorrido para un automóvil de tamaño medio! Cuanto mayor es el perfil del automóvil o del camión, mayor es el volumen de aire que debe ser desplazado, y más energía hay que dedicar a dicha tarea, además de impulsar al vehículo hacia delante. Este mismo principio explica también por qué es más fácil moverse bajo el agua en una piscina con las manos en los costados que si se las mantiene separadas del cuerpo. Cuanto menor es la superficie frontal, mayor es el rendimiento del combustible para vehículos de masa comparable. El diseño aerodinámico de un coche deportivo, por consiguiente, no solamente intenta aumentar nuestro atractivo por parte del sexo opuesto, sino que también tiene una importancia relevante al determinar la frecuencia con la que debemos visitar una gasolinera.
El Duende Verde gastó energía transportando a Gwen Stacy a lo alto del puente George Washington. Este aumento de la energía potencial de la chica quedó almacenado al permanecer en lo alto de una de las torres. El aumento de su energía potencial provino de la energía química del combustible del deslizador del Duende. Llevado a su lógica conclusión, puesto que el principio de conservación de la energía afirma que si uno no puede crear nueva energía ni destruir la actual, sino únicamente convertirla de una forma en otra, entonces toda la energía y materia que existe actualmente en el universo estaba presente en el instante en que el Big Bang anunció la creación del mismo. En este instante primigenio, el universo entero estaba comprimido en un volumen inconcebiblemente pequeño. A medida que el universo se expandía, la cantidad total de energía y de contenido de materia permaneció sin cambio, aunque repartida ahora sobre un volumen siempre creciente.
La «densidad de energía» es la energía por volumen; por lo tanto, si la cantidad de energía es la misma pero el volumen aumenta, la densidad de energía disminuye. La energía y la materia pueden intercambiarse a través de un proceso representado por la famosa ecuación de Einstein E = mc2. La importancia de E = mc2 se debe a que nos dice que la materia puede considerarse «energía decelerada». Normalmente, cuando los fotones chocan entre sí y forman materia, se crea una cantidad igual de materia y antimateria. A medida que el universo se expandía y se enfriaba, durante el primer segundo posterior al Big Bang, los protones y los neutrones comenzaron a formar un «plasma quark-gluon». A través de un proceso que sigue sin comprenderse bien, en el universo primitivo se formaron algunos protones y neutrones de más en relación con sus antipartículas. Esta formación de materia ocurrió solamente una vez, muy al comienzo de la historia del universo, cuando la densidad de energía era lo bastante grande como para permitir que la materia cobrara existencia, mientras que en tiempos posteriores (como en el presente) cuando la densidad de energía está por debajo del umbral E = m c2, no hay suficiente fondo de energía en el espacio exterior para formar espontáneamente materia[37]. Los protones y electrones creados en los primeros eones del universo surgieron juntos debido a su atracción electrostática y formaron átomos de hidrógeno. La gravedad atrajo hasta reunirlos a algunos de esos átomos de hidrógeno para formar grandes aglomeraciones que se convirtieron en estrellas. En los centros de esas estrellas, mantenidas juntas por la energía gravitatoria potencial, una reacción nuclear transforma esos átomos de hidrógeno en elementos más pesados y en energía cinética.
Ahora bien, podemos decir que toda la energía (y, por consiguiente, toda la materia) que se halla en el universo actual estaba presente en el momento del Big Bang. Pero esto conduce a dos cuestiones más profundas acerca de la energía: ¿qué es realmente?, y ¿de dónde provino inicialmente? La ciencia proporciona la misma respuesta exacta a ambas cuestiones: nadie lo sabe.
Comida rápida
Para calcular cuánto debe comer Flash para poder correr a supervelocidad, necesitamos calcular su energía cinética. Los físicos tratan siempre de ahorrar trabajo, así que reciclaremos las matemáticas del capítulo 1 para que no tengamos que esforzarnos más. Hablando de trabajo, con el fin de cambiar la energía cinética de un objeto, bien sea acelerándolo o frenándolo, uno debe hacer Trabajo. Escribimos Trabajo con mayúscula porque en física el término tiene un significado específico que es ligeramente distinto del corriente.
Cuando una fuerza actúa sobre un objeto a lo largo de una distancia determinada, decimos que la fuerza realiza Trabajo sobre el objeto y, dependiendo de la dirección de la fuerza, aumentará o disminuirá la energía cinética del objeto. De este modo Trabajo es justamente otro término para la energía, y tendrá las mismas unidades. Para una masa m que cae, la fuerza que actúa sobre ella es su peso debido a la gravedad F = mg, y la distancia sobre la que actúa la fuerza sobre el objeto es precisamente la altura h desde la que cae. Así pues, Trabajo = (Fuerza) × (distancia) = (mg) × (h) = mgh. Esto resulta ser la energía potencial que tenía el objeto a una altura h, de modo que en este ejemplo el Trabajo puede contemplarse como la energía necesaria para aumentar la energía potencial de un objeto.
Consideremos a Gwen Stacy cayendo (capítulo 3) o a Superman saltando (capítulo 1). En cada caso el Trabajo que efectúa la gravedad está dado por Trabajo = mgh. Para Gwen el Trabajo aumenta su energía cinética, y para Superman disminuye su energía cinética. La diferencia está en que en el caso de Gwen la fuerza la empuja hacia abajo en la dirección de su movimiento, mientras que en el del hombre de acero la fuerza sigue siendo hacia abajo, pero se opone a la dirección de su salto. Gwen comienza sin energía cinética, pero la fuerza gravitatoria que actúa a distancia (lo alto de la torre del puente) le proporciona una velocidad final grande antes de chocar contra el agua. La conexión entre su velocidad final v y la distancia de caída h venía dada por v2 = 2gh, donde g es la aceleración debida a la gravedad. Ésta es una afirmación cierta y, de acuerdo con nuestra regla de álgebra (ver Prefacio), podemos multiplicar y dividir ambos lados de una expresión cierta por la misma cantidad, y seguirá siendo cierta. Así si dividimos por 2 ambos lados de v2 = 2gh, el resultado es v2/2 = gh. Si ahora multiplicamos los dos lados por la masa m de Gwen, obtenemos mv2/2 = mgh. El lado derecho es el Trabajo que la gravedad efectúa sobre Gwen. El lado izquierdo debe por lo tanto describir su cambio en energía cinética, es decir su energía cinética final menos su energía cinética inicial. Puesto que comenzó sin energía cinética (sin movimiento no hay energía cinética, aunque tenía mucha energía potencial) su energía cinética final queda establecida como Energía cinética = 1/2 mv2. Enhorabuena, acaba de efectuar otro cálculo de física[38].
Cuando Flash deja de correr se efectúa Trabajo al cambiar la energía cinética del velocista escarlata. De tanto en tanto, la aceleración que debe experimentar Flash está representada de una forma más o menos realista, y descritas las consecuencias de esas deceleraciones. En el número 106 de Flash, nuestro héroe tuvo que detenerse de repente para alcanzar un objeto que viajaba a 800 km/h. El cómic lo muestra formando surcos profundos en el suelo con sus pies mientras intenta detenerse rápidamente. Aquí las fuerzas, en particular la fricción, que acompañarían a su rápida deceleración están representadas fielmente. Al hacerlo pasar al reposo desde una velocidad de 800 km/h, el gran cambio en la energía cinética requiere un gran Trabajo correspondiente. La viñeta del cómic (figura 16) muestra a Flash frenando en unos cinco metros, de modo que la distancia es corta, y puesto que Trabajo = (Fuerza) × (distancia), la fuerza que ejercen sus pies sobre el suelo debe ser en correspondencia muy grande. De hecho, para cambiar su velocidad de 800 km/h en una distancia de cinco metros se necesita una fuerza de ¡más de 40.000 kilos!
Fig. 16. Un ejemplo inusual en el n.º 106 de Flash de los efectos realistas de la deceleración súbita. Cuanto más corta es la distancia de frenado, mayor es la fuerza que han de ejercer sus botas sobre el suelo al frenar.
© 1959 National Periodical Publications Inc. (DC)
De modo parecido, en el volumen 2 de Flash, ejemplar número 25 de abril de 1989, Wally West[39] corre tan deprisa que, en su intento de parar repentinamente deja cortes profundos de una milla de longitud por toda Norteamérica. A partir de la longitud de las marcas del patinazo de frenado, los científicos que siguen la pista a Wally son capaces de determinar lo rápido que se movía y su punto probable de parada, utilizando las mismas técnicas que emplea la policía cuando reconstruye un accidente de automóvil a partir de la longitud de las marcas del patinazo de los neumáticos. Siendo realistas, uno debería saber siempre dónde ha estado Flash, basándose en los profundos surcos que excavan sus pies cada vez que empieza a correr o se detiene de repente. Por fortuna, para el Departamento de Carreteras y Transportes de Central City, esta exhibición físicamente exacta de los poderes de Flash tiene lugar sólo de vez en cuando.
Volviendo ahora a los hábitos de comida de Flash, si la energía cinética EC se escribe matemáticamente como EC = (1/2) mv2, entonces las necesidades de ingesta calórica de Flash aumentan cuadráticamente cuanto más deprisa corre. Si corre dos veces más rápido, su energía cinética aumenta por un factor de cuatro, por lo que necesita comer cuatro veces más para alcanzar esta mayor velocidad. En la Edad de Plata (finales de los cincuenta y década de los sesenta), el artista Carmine Infantino dibujaría a Barry Allen medianamente esbelto y no como una masa voluminosa de músculos, dado que era, después de todo, un corredor (Flash, no Carmine). Si Flash pesaba 70 kg sobre la Tierra, entonces su masa sería de 70 kg. Cuando corría al 1% de la velocidad de la luz (lo que dista mucho de la velocidad tope de Flash), su velocidad sería v = 300 millones de m/s. En este caso su energía cinética EC es (1/2) × (70 kg) × (300.000.000 m/s)2 = 3,15 trillones de kgm2/s2 = 0,75 trillones de calorías. La energía se utiliza con tanta frecuencia en física que tiene su propia unidad de medida, una de las cuales se llama caloría y se define de forma que 0,24 calorías = 1 kgm2/s2. Es decir, 0,24 calorías es igual al Trabajo resultante de aplicar una fuerza de 1 kg m/s2 sobre la distancia de un metro.
La razón por la cual 1 kgm2/s2 es igual a este extraño número de calorías (0,24 para ser exactos) es clave en cuanto al hecho de que a mediados del siglo XIX los físicos estaban desconcertados con respecto a la energía, situación que no mejoró mucho durante años. La caloría se definió originalmente como una unidad de calor, al creerse que el calor era una magnitud distinta del Trabajo y la energía. De aquí que se desarrollara un sistema de medidas para el calor, mientras que se empleaba una unidad diferente para medir la energía cinética y la potencial. El físico que reconoció que el calor era simplemente otra forma de energía, y que el trabajo mecánico podía transformarse directamente en calor, fue James Prescott Joule, en cuyo honor se ha bautizado una unidad estándar de energía, el julio[40] (1 julio = 1 kgm2/s2). Aunque los físicos emplean el julio al cuantificar la energía cinética o potencial, nosotros seguiremos ajustados a la más engorrosa kgm2/s2, con el fin de destacar los distintos factores que intervienen en la determinación de la energía[41].
Debemos observar que una caloría de un físico no es lo mismo que una caloría de un nutricionista. Para un físico una caloría se define como la cantidad de energía necesaria para aumentar la temperatura de un gramo de agua un grado Celsius. Es una forma perfectamente válida, aunque arbitraria, de definir la energía en una determinación de laboratorio. Pero esta definición conduce a la observación de que un único bizcocho de soda contiene bastante energía como para elevar la temperatura de 24.000 g de agua en un grado. Es decir, para un físico el contenido de energía de un mero bizcocho es de 24.000 calorías. Para evitar el tener que tratar siempre con estos números tan grandes, una caloría alimenticia se define igual a 1.000 «calorías de la física». Por consiguiente, las 24 calorías alimentarias de un simple bizcocho equivalen realmente a 24.000 calorías acordes con la definición de laboratorio del término. Es igualmente bastante malo pensar en las casi 500 calorías alimentarias de una hamburguesa de queso, pero si consideramos que contiene realmente 500.000 calorías físicas, nunca volveríamos a comer nada.
Para convertir la energía cinética de Flash de 75 billones de calorías en calorías alimenticias, deberíamos dividir su energía por 1.000. Esto ayuda, pero todavía gasta 75 mil millones de calorías alimenticias corriendo al 1% de la velocidad de la luz. Dicho de otro modo, necesitaría comer 150 millones de hamburguesas de queso para poder correr con esa velocidad suponiendo que el 100% de la energía del alimento se convierte en energía cinética[42]. Si se para, su energía cinética pasa a valer cero, y para volver a correr de nuevo tan deprisa necesita comer otros 150 millones de hamburguesas. En uno de los cómics de Flash, a mediados de los años ochenta, se reconoció brevemente que necesitaba comer casi constantemente (incluso masticando a supervelocidad) con el fin de sostener sus altas velocidades. En la Edad de Oro, la Edad de Plata y ahora en la Edad Moderna, la conservación de la energía se ignora cómodamente. Actualmente la energía cinética de Flash se atribuye a su capacidad de recurrir a un extracto de velocidad de la «Fuerza de velocidad», que es una manera elegante de decir: relájese, se trata sólo de un cómic.
Hamburguesas de queso y bombas H
La siguiente pregunta que nos hacemos es: ¿por qué una hamburguesa de queso, o cualquier alimento, proporciona energía a Flash? Es fácil identificar la energía cinética cuando algo se mueve, y la energía potencial debida a la gravedad se comprende también muy sencillamente, pero hay muchas otras formas de energía que necesitan de cierta reflexión para determinar la categoría a la que pertenecen, potencial o cinética. La energía que Flash gana comiendo no es debida a la energía cinética de los átomos que se agitan en su comida (la comida caliente tiene el mismo número de calorías que la fría), sino a la energía potencial contenida en los enlaces químicos de su alimento. Dado que la energía no puede crearse ni destruirse, sino solamente transformarse de un estado a otro, sigamos la cadena hacia atrás para ver de dónde proviene la energía potencial de una hamburguesa de queso.
Para comprender la energía potencial almacenada en la comida hemos de considerar algo de química básica. Cuando dos átomos se acercan mucho entre sí, si las condiciones son adecuadas, formarán un enlace químico y se creará una nueva unidad, llamada molécula. Una molécula puede ser tan pequeña como dos átomos de oxígeno enlazados entre sí formando una molécula de oxígeno (O2), o puede ser tan grande y compleja como el ADN que se halla en el interior de cada una de las células de su cuerpo. La cuestión de si dos o más átomos formarán un enlace químico y la elucidación de las correspondientes condiciones es la base de toda la química. Todos los átomos tienen núcleos cargados positivamente en torno a los cuales ronda un enjambre de electrones. Las propiedades químicas de un elemento están determinadas por el número de electrones que posee y por el modo como pueden equilibrar su repulsión mutua (al estar negativamente cargados) con su atracción hacia los núcleos cargados positivamente. Cuando un átomo se acerca mucho a otro, las posiciones más probables de los electrones de los dos átomos se superponen y, dependiendo de su naturaleza detallada, se creará una fuerza atractiva o repulsiva entre ambos átomos. Si la fuerza es atractiva, los electrones crean un enlace químico y los átomos forman una molécula. Si la fuerza es repulsiva, decimos entonces que los dos átomos no reaccionan químicamente. Determinar si la fuerza es atractiva o no supone cálculos complicados de mecánica cuántica (tendremos mucho más que decir acerca de la mecánica cuántica en la sección 3). Si la fuerza es atractiva y se obliga a los átomos a mantenerse separados físicamente, entonces hay una energía potencial entre ellos, puesto que una vez que se libera esta restricción los dos forman una molécula. De este modo decimos que los dos átomos, una vez químicamente unidos, están en un estado de baja energía, tal como la energía potencial gravitatoria de un ladrillo es mínima cuando se coloca sobre el suelo. Se tiene que efectuar trabajo para elevar el ladrillo a una altura h, del mismo modo que se ha de suministrar energía a la molécula para separarla en sus átomos constituyentes.
Estamos finalmente (y casi puedo oír cómo dice «¡gracias a Dios!») en condiciones de contestar la pregunta de por qué necesita comer Flash. O mejor dicho, por qué la comida proporciona la energía que necesita para mantener su energía cinética. Cuando Flash corre, gasta energía en el nivel celular para expandir y contraer los músculos de sus piernas. Esta energía celular proviene a su vez del desayuno que toma Barry Allen. ¿Y de dónde viene la energía de la comida? De las plantas, bien sea consumida directamente o a través de un proceso intermedio (tal como la comida obtenida de los animales). Esta energía almacenada en la comida es sencillamente energía potencial a escala molecular. Las plantas toman diversos «bloques de construcción» moleculares más pequeños y los procesan, almacenándolos en una «torre de bloques» subcelular. Esta torre molecular de azúcares complejos, una vez construida, es bastante estable. El proceso de elevar y organizar un grupo de bloques en forma de una torre alta eleva la energía potencial de los bloques (excepto para el bloque inferior).
De un modo análogo, las plantas efectúan Trabajo cuando construyen esos azúcares a partir de moléculas más simples, elevando la energía potencial de la molécula finalmente sintetizada. La energía potencial permanece retenida en el interior de los azúcares hasta que la mitocondria del interior de nuestras células construye la adenosina trifosfato o ATP, liberando la energía almacenada, tal como el Trabajo de construir un bloque de torres se conserva como energía potencial de los bloques más altos hasta que la torre se derrumba, convirtiendo la energía potencial en energía cinética. La cantidad de energía liberada por el ATP en las células de los músculos de las piernas de Flash es mayor que la energía necesaria para «derrumbar la compleja torre de azúcar», aunque la ganancia para Flash es mucho menor que el esfuerzo de la célula de la planta para elevar previamente la torre.
¿De dónde obtiene la célula de la planta esta energía? A través de un proceso llamado fotosíntesis, por medio del cual la energía solar es absorbida por la célula de la planta y se emplea en la construcción de azúcares complejos. La luz proviene del sol (no se impaciente, ya casi estamos llegando al final), donde es generada como un resultado adicional del proceso de fusión nuclear, en el cual los núcleos de hidrógeno se activan mediante la presión gravitatoria para crear núcleos de helio. En definitiva, toda la energía química de la comida es luz solar transformada, la cual a su vez es generada por el proceso de fusión nuclear que tiene lugar en la detonación de una bomba de hidrógeno. De este modo la mayor parte de la energía de la Tierra tiene como origen la energía solar, así como todos los átomos de la Tierra, desde las moléculas de ATP hasta el anillo en el que Flash guarda su vestimenta, pasando por su propio cuerpo, fueron creados en un crisol solar (aunque obviamente no el de nuestro propio sol).
En último término, toda la vida es posible porque la masa de un núcleo de helio (que contiene dos protones y dos electrones) es ligeramente menor que la de dos núcleos de deuterio (un núcleo de deuterio contiene un protón y un neutrón) combinados en el centro de una estrella. Y al decir ligeramente menor trato de decir que la masa de un núcleo de helio es el 99,3% de la de dos núcleos de deuterio. Esta pequeña diferencia de masa implica una gran emisión de energía, puesto que según E = mc2, el cambio de la masa se multiplica por el cuadrado de la velocidad de la luz.
De modo que la vida en el universo es posible porque la masa del núcleo de helio resultante es exactamente el 99,3% de los elementos que intervienen en la reacción que lo produce. Si la diferencia de masa fuera del 99,4%, entonces no se formaría el núcleo de deuterio, y por lo tanto no proseguiría la fusión del helio. En este caso las estrellas brillarían demasiado débilmente como para sintetizar elementos, y no tendrían lugar explosiones de supernova que son las que generan los elementos pesados y las que los expelen al vacío en donde pueden formar planetas y personas. Por otra parte, si la diferencia de masa fuera del 99,2%, entonces se desprendería demasiada energía de la reacción de fusión. En este caso los protones se combinarían directamente para formar núcleos de helio en el universo temprano, y no habría combustible nuclear para formar las estrellas. El origen de esta asombrosa sintonía de las propiedades fundamentales de la naturaleza es actualmente objeto de investigación.
Ejercicios de respiración profunda
Para correr, Flash necesita la energía almacenada en la comida, que está retenida en moléculas complejas. Hemos descrito esta energía como semejante a la energía potencial de una torre de bloques, en cuya construcción han de emplear trabajo las plantas. Nosotros transformamos esta energía almacenada, luego de haber consumido las plantas, en energía cinética cuando derribamos la torre. Pero ¿cuál es el disparador que hace caer esta torre? ¿Cómo sabe la torre cuándo necesita la célula que se libere energía? Hay mucha bioquímica en el proceso de liberación de energía por la mitocondria en las células del cuerpo, pero el paso esencial implica una reacción química de incorporación de oxígeno y emisión de dióxido de carbono. Cuanto más rápido corre Flash, más energía cinética manifiesta y necesita liberar más energía potencial almacenada en sus células y respirar más oxígeno. Ya hemos discutido el hecho de que necesitaría comer una pasmosa cantidad de comida para dar cuenta de la energía cinética que exhibe rutinariamente. ¿Qué hay del oxígeno que inhala? ¿Tendrá que consumir toda la atmósfera terrestre cuando corre?
Para responder a esta pregunta necesitamos primero saber cuánto O2 utiliza Flash cuando recorre una milla. El volumen de oxígeno consumido por un corredor dependerá de su masa, y las mediciones indican unos 70 cm3 de O2 por kilogramo del corredor y por minuto, para atletas de élite a una marcha de seis minutos por milla. Suponiendo que la masa de Flash sea de 70 kg, utilizará casi 30 litros de O2 por cada kilómetro que recorre (un litro es igual a mil centímetros cúbicos). Supongamos que su razón de consumo de O2 es la misma incluso para grandes velocidades. Treinta litros de O2 contienen algo menos que un millón de trillones de moléculas de oxígeno, y a una velocidad de 16 km/s esto significa que Flash inhala alrededor de un millón de trillones de moléculas de O2 cada segundo. Esto suena a mucho, pero afortunadamente hay muchas más moléculas de O2 en nuestra atmósfera que eso. Muchísimas más. De hecho, grosso modo, la atmósfera de la Tierra contiene más de diez millones de trillones de trillones de moléculas de O2. Así, incluso a una razón de consumo de un millón de trillones de moléculas por segundo, tendría que correr así de rápido (16 km/s) y respirar a este ritmo sin cesar durante más de 500 mil millones de años antes de agotar nuestra provisión de oxígeno. Cuanto más deprisa corre, más deprisa consumirá nuestro aire, pero incluso corriendo a casi la velocidad de la luz (de lo cual es capaz, aunque no lo haga con frecuencia) tardaría más de dos millones de años, corriendo sin parar y respirando a este ritmo, en agotar nuestra atmósfera. Así pues, al menos en lo que hace a este aspecto de su supervelocidad, podemos respirar tranquilos.
La atmósfera de la Tierra puede estar segura, pero naturalmente esto supone que Flash es capaz de respirar mientras corre. Es decir, corriendo a varios cientos de kilómetros por hora, ¿será capaz de llegar a respirar profundamente? Afortunadamente para el velocista escarlata, lleva una reserva de aire consigo mientras corre. En el número 167 de Flash, esta región de aire estacionario (con respecto a Flash) se describe como su «aura», mientras que en dinámica de fluidos recibe el nombre de «zona de no deslizamiento». De cualquier modo que se le llame, ésta es la razón por la que tienen abolladuras las pelotas de golf. Para comprenderlo, intentemos este sencillo experimento casero de física: abramos el grifo de agua fría del lavabo del cuarto de baño, solamente lo justo para que se abra la válvula. Para conseguir los mejores resultados, quite primero el filtro de la boca del grifo. Cuando empieza a salir el agua, puede ver que se mueve muy suavemente desde el grifo, con la apariencia de un cilindro pulido, más ancho en la salida del grifo y adelgazándose ligeramente debido a la tensión superficial. Si se ignora el sonido del agua al caer en el lavabo resulta difícil distinguir si el agua se está moviendo y no es realmente una estructura rígida. Este tipo de flujo de agua, en el que todas las moléculas de agua se mueven suavemente en la misma dirección, se llama flujo laminar. En el extremo opuesto, abra la válvula del todo. El agua se agita y forma remolinos moviéndose en muchas direcciones con un amplio rango de velocidades. Este tipo de flujo de agua se denomina turbulento. Naturalmente, si quiere que el agua pase a través de una tubería del modo más eficaz posible, querrá que el flujo sea laminar, en donde todas las moléculas de agua se mueven en una misma dirección a lo largo de la tubería, en lugar de turbulento, en donde los vórtices y los remolinos implican necesariamente que algunas moléculas de agua se mueven contra la corriente.
Incluso en un flujo laminar a través de una tubería, todas las moléculas pueden moverse en la misma dirección pero sin que todas participen de la misma velocidad. Las moléculas de la parte exterior tropezarán con las paredes de la tubería, transfiriendo su energía cinética a la misma (que es rígida, de modo que la tubería se calentará un poco pero no se moverá) y se detendrán. Justo en la cercanía de las paredes de la tubería se forma una delgada capa de agua que no se mueve. El agua próxima a esta capa que no se mueve pierde algo de su energía cinética, aunque no toda, porque a diferencia de los átomos de la tubería, las moléculas de agua de la «zona de no deslizamiento» se pueden mover. En el siguiente anillo más cercano al centro de la tubería, el agua se mueve un poco más deprisa. Así pues, incluso en el flujo laminar uniforme, existe una serie continua de anillos concéntricos, cada uno de los cuales se mueve progresivamente más rápido que el adyacente. El agua del centro exacto de la tubería es la que se mueve con mayor velocidad. En el flujo laminar todos los anillos son uniformes, mientras que en el flujo turbulento hay un movimiento caótico a través de la sección de la tubería.
La situación es simétrica en el caso de una tubería en movimiento empujada a través de agua en reposo. El agua más cercana a las paredes de la tubería es arrastrada con ella, mientras que el agua próxima a este anillo se mueve algo más lentamente, y así en adelante. Pero en cada caso, tanto si es el agua la que se mueve a través de la tubería o es la tubería la que se mueve a través del agua, el agua cercana a la tubería está estacionaria relativamente a la tubería. En tanto el flujo sea laminar, cerca de un objeto que se mueve se produce una delgada capa de aire (los razonamientos hechos con relación al agua se aplican igualmente a un fluido como el aire) que no se mueve con respecto al objeto. Al igual que en el ejemplo del grifo de agua, esta zona laminar de no deslizamiento es más robusta cuanto más lento es el movimiento a través del fluido. A una velocidad muy alta la transferencia de energía a través de los anillos concéntricos se vuelve desordenada y se origina la turbulencia. Un objeto que se mueve a una velocidad determinada ha de gastar más energía al generar flujo turbulento que si el flujo es laminar.
Ésta es una razón de por qué tienen abolladuras las pelotas de golf. Los salientes de la pelota de golf disminuyen la sección transversal del torbellino que se forma tras la bola que se mueve a velocidades altas. Dicho burdamente, las abolladuras reducen la fricción de la bola, al perderse menos energía en el menor torbellino. Este efecto se descubrió por casualidad. A mediados del siglo XIX, las pelotas de golf eran esferas lisas de goma de gutapercha. Los golfistas se dieron cuenta de que las pelotas viejas y magulladas, con rasguños y golpes alcanzaban distancias mayores en un determinado swing que las nuevas y lisas. El estudio experimental y una comprensión teórica de la mecánica de fluidos condujeron al diseño óptimo de las pelotas de golf con abolladuras.
Lo que es bueno para una pelota de golf es bueno para Flash. Cuando el velocista escarlata corre, la capa de aire que está en contacto con él permanece estacionaria relativamente a su cuerpo, de manera que dispone de una bolsa de aire que lleva consigo constantemente a su alrededor. Incluso en una capa de solamente unos pocos centímetros de grosor hay casi un millón de trillones de moléculas de O2. Esta «reserva» de aire debe refrescarse continuamente con aire nuevo del exterior de la capa límite, con el fin de que el velocista escarlata pueda correr durante más que unos pocos segundos cada vez.
En los cómics de Flash la zona de no deslizamiento o «aura» que rodea al velocista escarlata no solamente le permite respirar mientras corre sino que también lo libera de otras consecuencias molestas del rozamiento del aire. Si un meteorito se quema en la atmósfera, por ejemplo, debido a las extremadas fuerzas de fricción que experimenta al desplazar el aire de su trayecto mientras penetra en la atmósfera a gran velocidad[43], entonces ¿por qué no se quema Flash cuando corre a grandes velocidades?
El número 167 de Flash daba una respuesta a esta cuestión, pero se trataba de una solución que pocos aficionados hallaron satisfactoria. De acuerdo con esta explicación, el «aura protectora» que Flash había adquirido junto con sus poderes de supervelocidad había sido proporcionada por un «duende inexperto de un mundo de diez dimensiones» llamado Mopee. En esta historia, utilizando sus capacidades mágicas, Mopee (con un parecido más que pasajero con Woody Allen) eliminó el «aura» de Flash pero no su supervelocidad. En consecuencia, Flash podía seguir corriendo a grandes velocidades, pero no podía impedir quemarse debido a la tremenda resistencia del aire que encontraba en su carrera.
Que Flash tuviera un duendecillo que le acosara no era tan sorprendente como el hecho de que el Flash de la Edad de Plata hubiera dejado transcurrir sesenta y dos números de su propio cómic antes de tropezarse con él. En los años cincuenta y sesenta, casi parecía que cada superhéroe publicado por DC Comics tenía su propio ser extradimensional dañino. El primero de tales personajes fue Mr. Mxyzptlk, un ser de un mundo de cinco dimensiones contra cuyos poderes mágicos los de Superman no tenían efecto. Mxyzptlk solamente podía ser obligado a volver a la quinta dimensión si se conseguía que dijera su nombre al revés, después de lo cual era incapaz de regresar a nuestro mundo tridimensional durante al menos tres meses (seguramente para que los lectores no acabaran aburriéndose con él y sus apariciones merecieran atención). Para no ser menos que el Hombre de acero, Batman tenía su propio duende mágico, llamado Bat-Mite, cuyos intentos para honrar a su ídolo, el inimitable Cruzado Enmascarado, tenían con frecuencia un efecto contraproducente y creaban caos y dificultades para Batman y Robin. J’onn J’onnz, o Detective Marciano, tenía un compañero alienígeno llamado SOC, mientras Aquaman tenía un diablillo llamado Quisp. De los siete miembros fundadores de la Liga de la Justicia, solamente Linterna Verde y la Mujer Maravilla no han tenido nunca un espíritu sobrenatural o extradimensional propio.
No se debió al hecho de que Flash adquiriera finalmente su diablillo lo que disgustó a los aficionados a los cómics, sino más bien a que Mopee pretendió haber usado sus poderes mágicos para otorgar a Barry Allen sus poderes de supervelocidad. Los aspectos de ciencia ficción que introdujeron en la Edad de Plata con la creación del Flash los guionistas John Broome, Gardner Fox, Robert Kanigher y el editor Julie Schwartz parecían menoscabados por la pretensión de que los poderes de Flash tenían de hecho un origen mágico. Mopee no volvió a los cómics de Flash y, por lo que concierne a la mayor parte de los aficionados de la Edad de Plata, el número 167 de Flash nunca llegó a existir.