[1] ¿Cómo lo supo? Newton fue un gran hombre: escribió, «Porque puedo pulir un cristal». Pueden preguntarse ¿cómo diablos podía decir que porque podía pulimentarlo no podían existir agujeros y manchas? Newton pulía sus propias lentes y espejos y sabía lo que estaba haciendo al pulir: estaba rayando la superficie de un cristal con polvos cada vez más finos. Según se hacían más finas las rayaduras, la superficie del cristal cambiaba su aspecto desde un gris deslustrado (debido a que la luz era difundida por las grandes rayas) a una claridad transparente (porque las extremadamente finas rayaduras dejaban pasar la luz). Así que vio que era imposible aceptar la suposición de que la luz pudiese verse afectada por irregularidades muy pequeñas tales como arañazos o agujeros y manchas; de hecho, encontró que lo contrario era lo correcto. Las rayaduras más finas y por tanto las manchas igualmente minúsculas, no afectan a la luz. Por lo que la teoría de agujeros y manchas no es adecuada. <<
[2] Resulta muy afortunado para nosotros el que Newton se convenciese de que la luz son «corpúsculos» porque podemos ver por lo que tuvo pasar una mente vigorosa e inteligente al considerar este fenómeno de la reflexión parcial por dos o más superficies y tratar de explicarlo. (Aquellos que creían que la luz eran ondas nunca tuvieron que pelear con ello). Newton argumentaba lo siguiente: Aunque la luz parece reflejarse por la primera superficie, no puede ser así. Si lo fuese, ¿cómo podría entonces ser capturada de nuevo la luz reflejada por la primera superficie cuando el espesor fuese tal que se supone que no existe reflexión alguna? Por consiguiente, la luz debe reflejarse en la segunda superficie. Pero para explicar el hecho de que el espesor del cristal determina el valor de la reflexión parcial, Newton propuso esta idea: la luz que llega a la primera superficie establece una especie de onda o campo que viaja junto con la luz y la predispone a reflejarse o no en la segunda superficie. Denominó a este proceso, que ocurre en ciclos dependiendo del espesor del cristal, «accesos de fácil reflexión o de fácil transmisión».
Existen dos dificultades en esta idea: la primera es el efecto de las superficies adicionales que he descrito en el Texto —cada nueva superficie afecta a la reflexión—. El otro problema es que la luz ciertamente se refleja en la superficie de un lago, que no tiene una segunda superficie, luego la luz debe reflejarse en la superficie frontal. En el caso de superficies únicas, Newton decía que la luz tenía una predisposición a reflejarse. ¿Podemos tener una teoría en la que la luz sabe el tipo de superficie en la que está incidiendo y si es la única superficie? Newton no resaltó esas dificultades de su teoría de «accesos de reflexión y transmisión» aunque está claro que sabía que su teoría no era satisfactoria. En la época de Newton, las dificultades de una teoría se discutían con brevedad y se encubrían —un estilo muy distinto del que se usa hoy en la ciencia, en donde se señalan los puntos donde nuestra propia teoría no se ajusta a las observaciones experimentales—. No estoy diciendo nada en contra de Newton; sólo quiero decir algo a favor de cómo nos comunicamos entre nosotros en la ciencia hoy en día. <<
[3] Esta idea utiliza el hecho de que las ondas se pueden combinar o cancelar, y los cálculos basados en este modelo se ajustaban a los resultados de los experimentos de Newton, así como a los realizados durante centenares de años posteriores. Pero cuando se desarrollaron instrumentos suficientemente sensibles como para detectar un único fotón, la teoría ondulatoria predecía que los «clicks» del fotomultiplicador debían de hacerse menos y menos audibles, mientras que lo que ocurría era que mantenían la misma intensidad —simplemente se sucedían con frecuencia cada vez menor—. No existía modelo razonable que pudiese explicar este hecho, por lo que hubo un período durante el cual uno debía ser listo: Había que saber qué experimento se estaba analizando para decir si la luz eran ondas o partículas. Este estado de confusión se denominó la «dualidad onda-partícula» de la luz, y había quién decía de manera chistosa que la luz era ondas los Lunes, Miércoles y Viernes; partículas los Martes, Jueves y Sábados, y los Domingos, ¡había que meditarlo! El propósito de estas conferencias es decirles como se «resolvió» finalmente el rompecabezas. <<
[4] Las zonas del espejo cuyas flechas señalan, en general, hacia la izquierda, también dan lugar a una reflexión fuerte (cuando se eliminan las zonas cuyas flechas señalan en sentido opuesto). Si tanto las zonas con flechas con tendencia hacia la izquierda como aquellas con tendencia hacia la derecha reflejan a la vez, entonces la contribución se cancela. Esto es análogo al caso de la reflexión parcial por dos superficies: mientras que cada superficie es capaz de reflejar por sí misma, si el espesor es tal que las dos superficies contribuyen con flechas señalando en sentidos opuestos, la reflexión se anula. <<
[5]No puedo resistir sin hablarles de una red de difracción creada por la Naturaleza: los cristales de sal son átomos de sodio y cloro empaquetados con una distribución regular. Su distribución alternada, al igual que nuestra superficie de surcos, actúa como una rejilla cuando la luz del color adecuado (rayos-X en este caso) incide sobre ella. Buscando los lugares específicos donde un detector recoge muchas de estas reflexiones especiales (llamadas difracción), se puede determinar exactamente la distancia entre surcos y en consecuencia la separación entre los átomos (ver Fig. 28). Es una forma preciosa de determinar la estructura de todo tipo de cristales, así como de confirmar que los rayos-X son la misma cosa que la luz. Estos experimentos se realizaron por primera vez en 1914. Fue muy excitante ver, en detalle, por vez primera cómo están empaquetados los átomos en substancias diferentes. <<
[6] Este es un ejemplo del «principio de incertidumbre»: existe una especie de «complementariedad» entre el conocimiento de por dónde va la luz entre los bloques y por dónde va después —el conocimiento preciso de ambos es imposible—. Me gustaría situar el principio de incertidumbre en su contexto histórico: Cuando las ideas revolucionarias de la física cuántica comenzaron a llegar, la gente intentaba todavía entenderlas en términos de las viejas ideas pasadas de moda (tales como que la luz viaja en línea recta). Pero en determinado momento las viejas ideas empezaban a fallar, de manera que se ideó una advertencia que decía «Sus viejas ideas son condenadamente malas cuando…». Si se deshacen de todas las ideas pasadas de moda y en su lugar utilizan las ideas que les estoy explicando en estas conferencias —sumando flechas para todos los caminos en que un suceso puede tener lugar— ¡no hay necesidad de un principio de incertidumbre! <<
[7] Los matemáticos han tratado de encontrar todos los objetos que puedan existir que obedezcan a las leyes del álgebra (A + B = B + A, A × B = B × A, etc.). Las reglas se hicieron originariamente para los enteros positivos, utilizados para contar cosas como manzanas o personas. Los números se mejoraron tras la invención del cero, fracciones, números irracionales —números que no se pueden explicar como cociente de dos enteros— y números negativos, y continuaron obedeciendo las reglas originales del álgebra. Algunos de los números que inventaron los matemáticos supusieron, al principio, dificultades para las personas —la idea de media persona era difícil de imaginar— pero hoy no existe ninguna dificultad: nadie tiene escrúpulos morales o sentimientos sangrientos incómodos cuando oye que hay una media de 3,2 personas por milla cuadrada en algunas regiones. No intentan imaginar la persona 0,2, en su lugar saben que 3,2 significa que si multiplican 3,2 por 10, obtienen 32. De modo que, algunas cosas, que satisfacen las reglas del álgebra, pueden ser interesantes para los matemáticos incluso aunque no siempre representen la situación real. Las flechas en un plano pueden «sumarse» colocando la cabeza de una flecha sobre la cola de otra, o «multiplicarse» mediante reducciones y giros sucesivos. Puesto que estas flechas obedecen las mismas reglas del álgebra que los números regulares, los matemáticos las denominan números. Pero para distinguirlos de los números ordinarios, los llaman «números complejos». Para aquellos de Vds. que hayan estudiado las matemáticas suficientes para haber llegado a los «números complejos» les podría haber dicho «la probabilidad de un suceso es el valor absoluto del cuadrado de un número complejo. Cuando un suceso puede ocurrir por caminos alternativos, sumen los números complejos; cuando pueda ocurrir sólo por una sucesión de pasos, multipliquen los números complejos». Aunque puede resultar más impresionante de esta manera, no he dicho nada que no dijese antes —sólo he utilizado un lenguaje diferente—. <<
[8] Habrán notado que cambiamos 0,0384 por 0,04 y utilizado 84% como el cuadrado de 0,92 a fin de conseguir el 100% de la luz considerada. Pero cuando se suma todo, 0,0384 y 84% no tienen por qué redondearse —todos los trocitos de flecha (representando todos los caminos en que puede ir la luz) se compensan entre sí y dan la respuesta correcta—. Para aquellos de Vds. que gusten de este tipo de cosas, aquí va un ejemplo de otro camino por el que puede viajar la luz desde el detector hasta A —una serie de tres reflexiones (y dos transmisiones), que resultan en una flecha final de longitud 0,98 × 0,2 × 0,2 × 0,2 × 0,98 o alrededor de 0,008 —una flecha muy diminuta (ver Fig. 46). Para realizar un cálculo completo de la reflexión parcial por dos superficies, tendrían que añadir esta pequeña flecha, más otra más pequeña aún que representa cinco reflexiones, etc. <<
[9] Esta regla verifica lo que nos enseñan en la escuela —la cantidad de luz transmitida a una cierta distancia varía inversamente con el cuadrado de la distancia— porque una flecha que reduce su tamaño original a la mitad, tiene un cuadrado de valor un cuarto de su longitud inicial. <<
[10] Este fenómeno, denominado el efecto Hanbury-Brown-Twiss, ha sido utilizado para distinguir una fuente única de ondas de radio de otra doble en las profundidades del espacio, incluso cuando las dos fuentes se encontraban extremadamente próximas. <<
[11] Mantener este principio en mente debería de ayudar al estudiante a evitar confusiones con cosas como la «reducción de un paquete de ondas» y magias similares. <<
[12] La historia completa de esta situación es muy interesante: si los detectores en A y B no son perfectos, y detectan los fotones sólo en algunas ocasiones, hay tres condiciones finales distinguibles: 1) los detectores en A y B se disparan; 2) los detectores en B y D se disparan, y 3) el detector en D se dispara con A y B inalterados (han permanecido en su estado inicial). Las posibilidades para los dos primeros sucesos se calculan de la forma explicada anteriormente (excepto que existirá un paso más —una reducción por la probabilidad de que el detector en A [o en B] se dispare, puesto que los detectores no son perfectos—). Cuando D se dispara solo, no es posible separar ambos casos, y la Naturaleza juega con nosotros y causa interferencia —la misma respuesta peculiar que hubiésemos obtenido si no hubiese habido detectores (excepto que la flecha final se ha reducido en una amplitud equivalente a la de que los detectores no se disparen)—. El resultado final es una mezcla, la simple suma de los tres casos (ver Fig. 51). Al aumentar la fiabilidad de los detectores, obtenemos menos interferencia. <<
[13] En estas conferencias estoy dibujando la situación especial de un punto en una dimensión, a lo largo del eje X. Para situar un punto en el espacio tridimensional, se tiene que establecer una «habitación» y medir la distancia del punto hasta el suelo y a cada una de las paredes adyacentes (con ángulos rectos entre sí). Estas tres medidas se pueden llamar X1, Y1 y Z1. La distancia real de este punto a un segundo punto con medidas X2, Y2, Z2 se puede calcular utilizando un «teorema Pitagórico tridimensional»: el cuadrado de esta distancia real es
(X2 − X1)2 + (Y2 − Y1)2 + (Z2 − Z1)2
A la diferencia entre esto y las diferencias de tiempos al cuadrado—
(X2 − X1)2 + (Y2 − Y1)2 + (Z2 − Z1)2 − (T2 − T1)2
—se le denomina a veces «Intervalo» o I, y es la combinación de la que, de acuerdo con la teoría de Einstein de la relatividad, debe depender P(A a B). La mayor contribución a la flecha final P(A a B) viene de donde se supone —de donde la diferencia en distancia igual a la diferencia en tiempo (es decir, cuando I es cero)—. Pero además existe una contribución cuando I no es cero, que es inversamente proporcional a I: señala a las 3 en punto cuando I es positivo (cuando la luz va más deprisa que c), y señala hacia las 9 en punto cuando I es negativo. Estas últimas contribuciones se cancelan en muchas circunstancias (ver Fig. 56). <<
[14] La fórmula para E(A a B) es complicada, pero hay una forma interesante de explicar cuánto vale. E(A a B) se puede representar como una suma gigantesca de un montón de caminos distintos por los que un electrón puede ir del punto A al punto B en el espacio-tiempo (ver Fig. 57): el electrón puede dar un «vuelo de un salto» yendo directamente de A a B; puede hacer un «vuelo de dos saltos» parando en un punto intermedio C, puede dar un «vuelo de tres saltos» parando en los puntos D y E, y así sucesivamente. En este análisis, la amplitud de cada «salto» —desde un punto F a otro G— es P(F a G), la misma amplitud que para un fotón que vaya de F a G. La amplitud de cada «parada» se representa por n2, siendo n el número que mencioné antes, el que usamos para que nuestros cálculos resulten correctos.
La fórmula para E(A a B) es entonces una serie de términos: P(A a B) [el «vuelo de un salto»] + P(A a C) × n2 × P(C a B) [el «vuelo de dos saltos», parando en C] × P(A a D) × n2 × P(D a E) × n2 × P(E a B) [el «vuelo de tres saltos», parando en D y E] + … de todos los posibles puntos intermedios C, D, E y así sucesivamente.
Nótese que al aumentar n, los caminos indirectos contribuyen en mayor medida a la flecha final. Cuando n es cero (como para el fotón), todos los términos con n desaparecen (porque también ellos son iguales a cero), dejando sólo el primer término que es P(A a B). En consecuencia, E(A a B) y P(A a B) están íntimamente relacionados. <<
[15] Este número, la amplitud para emitir o absorber un fotón, se denomina a veces la «carga» de la partícula. <<
[16] Si hubiese incluido los efectos de la polarización del electrón, la flecha del «segundo camino» debería haberse «restado» —girado 180° y sumado—. (Más detalles sobre el tema aparecerán más adelante en esta conferencia). <<
[17] Las condiciones finales del experimento para estos caminos más complicados son las mismas que para los caminos más sencillos —los electrones situados inicialmente en los puntos 1 y 2 y acabando en los puntos 3 y 4— de modo que no podemos distinguir entre estas alternativas y las dos primeras. En consecuencia debemos sumar las flechas de estos dos caminos a los dos caminos considerados previamente. <<
[18] A un fotón intercambiado de esta manera, que en realidad nunca aparece en las condiciones iniciales o finales del experimento, se le denomina en ocasiones un «fotón virtual». <<
[19] Dirac propuso la existencia de «antielectrones» en 1931; el año siguiente, Carl Anderson los encontró experimentalmente y los llamó «positrones». Hoy, los positrones se generan con facilidad (por ejemplo, haciendo que dos fotones colisionen entre sí) y se mantienen durante semanas en un campo magnético. <<
[20] La amplitud para el intercambio de un fotón es (−j) × P(A − B) × j —dos acoplamientos y la amplitud para que un fotón vaya de un sitio a otro—. La amplitud para que un protón se acople con un fotón es −j. <<
[21] El radio del arco evidentemente depende de la longitud de la flecha de cada sección, que viene determinada, en último lugar, por la amplitud S de que un electrón en un átomo del cristal difunda al fotón. Este radio se puede calcular usando las fórmulas de las tres acciones básicas para la multitud de intercambios de fotones involucrados y sumando las amplitudes. Es un problema muy difícil, pero este radio ha sido calculado para substancias relativamente sencillas con considerable éxito, y las variaciones del radio, de substancia a substancia, se explican bastante bien utilizando estas ideas de la electrodinámica cuántica. Debe decirse, sin embargo, que nunca se ha realizado un cálculo directo, a partir de primeros principios, para una substancia tan compleja como un cristal. En estos casos, el radio se determina experimentalmente. Para un cristal, se ha obtenido a partir de los experimentos un valor de aproximadamente 0,2 (cuando la luz incide directamente sobre el cristal en ángulo recto). <<
[22] Cada una de las flechas de la reflexión por una sección (que forman un «círculo») tiene la misma longitud que cada una de las flechas que hacen que la flecha final de la transmisión esté más girada. Por tanto, existe una relación entre la reflexión parcial de un material y su índice de refracción.
Parece que la flecha final es más grande que 1, lo que significa: ¡que sale más luz del cristal que la que entra! Parece así porque he despreciado las amplitudes para que un fotón fuese hacia abajo a otra sección, un nuevo fotón se difundiese hacia arriba en otra sección y luego un tercer fotón se difundiese hacia abajo a través del cristal —y otras posibilidades más complicadas—, que son las causantes de que las flechitas se curven manteniendo la longitud de la flecha final entre 0,92 y 1 (por consiguiente, la probabilidad total de que la luz sea reflejada o transmitida por la lámina del cristal es siempre del 100%). <<
[23] Otra forma de describir esta dificultad es decir que quizá la idea de que dos puntos pueden estar infinitamente próximos es errónea —la suposición de que podemos utilizar la geometría hasta el último recoveco es falsa—. Si hacemos la distancia mínima posible entre dos puntos tan pequeña como 10−100 cm (la distancia más pequeña involucrada en cualquier experimento, hoy en día, es de alrededor de 10−16 cm), los infinitos desaparecen, de acuerdo —pero surgen otras inconsistencias tales como que la probabilidad total de un suceso sume algo más o menos del 100%, o que obtengamos energías negativas en cantidades infinitesimales—. Se ha sugerido que estas consistencias surgen porque no se ha tenido en cuenta los efectos de la gravedad —que son normalmente muy, muy débiles, pero que se vuelven importantes a distancias del orden de 10−33 cm—. <<
[24] Aunque en los experimentos a alta energía surgen muchas partículas del núcleo, en los experimentos a baja energía —en condiciones más normales— se encuentra que los núcleos contienen sólo protones y neutrones. <<
[25] Un MeV es muy pequeño —apropiado para tales partículas— alrededor de 1,78 × 10−27 gr. <<
[26] Nótense los nombres: «fotón» proviene de la palabra griega para luz; «electrón» viene del griego ámbar, el inicio de la electricidad. Pero según iba progresando la física moderna, los nombres de las partículas han mostrado un interés cada vez menor por el griego clásico, hasta llegar a inventar palabras como «gluones». ¿Pueden imaginar Vds. por qué se llaman «gluones»? De hecho, d y u representan palabras, pero no quiero confundirles, —un quark d no está más «abajo (down)» que está «arriba (up)» un quark u. Incidentalmente la d-nez o u-nez de un quark se llama su «aroma (flavor)». [También se utiliza la expresión «sabor» para flavor. N. de la T.] <<
[27] R = red (rojo), G = green (verde), B = blue (azul). (N. de la T.) <<
[28] También se denominan: antiverde → magenta, antirrojo → cian, antiazul → amarillo. (N. de la T.) <<
[29] Después de haberse pronunciado estas conferencias, se lograron energías lo suficientemente elevadas como para producir un W aislado, encontrándose para su masa un valor muy próximo al valor predicho por la teoría. <<
[30] «glue» en original inglés. (N. de la T.) <<
[31] El momento magnético del muón se ha medido con mucha precisión —se ha encontrado ser 1,001165924 (con una incertidumbre de 9 en el último dígito) mientras que el valor para el electrón es 1,00115965221 (con una incertidumbre de 3 en el último dígito)—. Podrían sentir curiosidad de por qué el momento magnético del muón es ligeramente superior al del electrón. Uno de los diagramas que hemos dibujado tenía un electrón emitiendo un fotón que se desintegraba en un par positrón-electrón (ver Fig. 89). Existe también una pequeña amplitud de que el fotón emitido puede formar un par muón-antimuón que es más pesado que el electrón original. Esto es asimétrico, porque el muón emite un fotón, si ese fotón forma un par positrón-electrón, este par es más ligero que el muón original. La teoría de la electrodinámica cuántica describe con precisión todas las propiedades eléctricas del muón y del electrón. <<
[32] «strange» en el original inglés. (N. de la T.) <<
[33] De «charm» (encanto). (N. de la T.) <<
[34] Desde que se impartieron estas conferencias, ha aparecido cierta evidencia de la existencia de un quark t con una masa elevada —alrededor de 40 000 MeV. [t de «true» y «truth» N. de la T.] <<
[35] Cuando Einstein y otros trataron de unificar la gravitación con la electrodinámica, ambas teorías eran aproximaciones clásicas. En otras palabras, estaban equivocadas. Ninguna de estas teorías tenía el marco de amplitudes que hemos encontrado tan necesario en la actualidad. <<