Notas

[1] La moderna teoría de la evolución todavía se denomina «darwinismo», aunque ha ido mucho más lejos de lo que propuso el propio Darwin (quien nada sabía, por ejemplo, del ADN o de las mutaciones). Este tipo de eponimia es poco habitual en la ciencia: no llamamos «newtonismo» a la física clásica ni «einstenismo» a la relatividad. Pero Darwin fue tan certero y fue tanto lo que logró con El origen que para muchas personas la biología evolutiva es sinónimo de su nombre. A lo largo de este libro utilizaré el término «darwinismo» en varias ocasiones, pero el lector debe tener en cuenta que me refiero a la «teoría evolutiva moderna». <<

[2] A diferencia de las cajas de cerillas, los lenguajes humanos que se ordenan de acuerdo con una jerarquía anidada en la que algunos (como el inglés y el alemán) se parecen mucho más entre sí que a otros (como el chino). De hecho, es posible construir un árbol evolutivo de los lenguajes basado en la semejanza de palabras y gramática. La razón de que los lenguajes puedan ordenarse de este modo es que experimentaron su propia forma de evolución, cambiando de manera paulatina con el tiempo y divergiendo a medida que los grupos humanos se desplazaban a nuevas regiones y perdían el contacto entre sí. Como las especies, los lenguajes tienen especiación y ascendencia común. Fue el propio Darwin quien primero observó esta semejanza. <<

[3] Los mamuts lanudos se extinguieron hace unos diez mil años, probablemente a causa de la presión de la caza por nuestros antepasados. Al menos un ejemplar se conservó tan bien por congelación que en 1951 proporcionó carne para una cena del Club de Exploradores de Nueva York. <<

[4] Es probable que los mamíferos ancestrales retuvieran los testículos en el abdomen de adultos (algunos mamíferos, como el ornitorrinco y el elefante, todavía lo hacen), lo que nos lleva a preguntamos por qué la evolución favoreció el descenso de los testículos hacia una posición externa, más expuesta a lesiones. Aún no conocemos la respuesta, pero una de las claves es que las enzimas implicadas en la formación de los espermatozoides no funcionan tan bien a la temperatura del interior del cuerpo (por eso los médicos aconsejan a los hombres que quieren ser padres que eviten los baños calientes antes del sexo). Es posible que a medida que evolucionaba la euritermia (sangre caliente) en los mamíferos, en algunos grupos los testículos se vieran forzados a descender para mantenerse a una temperatura más fresca. Pero tal vez los testículos externos evolucionaron por otras razones, y las enzimas implicadas en la formación del esperma simplemente han perdido la capacidad de funcionar a temperaturas más altas. <<

[5] Quienes se oponen a la evolución a menudo sostienen que la teoría de la evolución debería explicar también el origen de la vida, y que el darwinismo fracasa porque todavía no sabemos responder a esta pregunta. Esta objeción es desacertada. La teoría de la evolución se ocupa sólo de lo que ocurre después del origen de la vida (definida aquí como organismos o moléculas con capacidad de reproducirse a sí mismos). El origen de la vida no es competencia de la biología evolutiva, sino de la abiogénesis, una disciplina científica que engloba química, geología y biología molecular. Como esta disciplina todavía está en pañales y todavía ha dado pocas respuestas, he omitido en este libro toda discusión sobre cómo comenzó la vida en la Tierra. Una revisión de las muchas teorías que compiten por explicarlo puede encontrarse en Robert Hazen, Gen*e*sis: The Scientific Quest for Life’s Origin. <<

[6] Nótese que durante la primera mitad de la historia de la vida las únicas especies eran bacterias. Los organismos pluricelulares complejos no aparecieron hasta el último 15 por 100 de la historia de la vida. Una línea del tiempo evolutivo a escala real, que permite ver lo reciente que es la aparición de los organismos que nos resultan más familiares, puede verse en http://andabien.com/html/evolution-timeline.htm. ¡Hay que desplazar mucho la barra para llegar al presente! <<

[7] Los creacionistas utilizan a menudo el concepto bíblico de «género» para referirse a los grupos que surgieron de un acto de creación especial (véase Génesis, I, XII, 25), pero dentro de los cuales se permite cierto grado de evolución. Para explicar los «géneros», un sitio web del creacionismo afirma: «Por ejemplo, puede haber muchas especies de paloma, pero todas siguen siendo palomas. Por consiguiente, las palomas serían un “género” de animal (un ave)». Así pues, la microevolución se permite dentro de los «géneros», mientras que no puede producirse ni se produjo macroevolución entre géneros. En otras palabras, todos los miembros de un género tienen un antepasado común, pero no así los miembros de géneros distintos. El problema es que los creacionistas no ofrecen ningún criterio para identificar los «géneros» (¿corresponden acaso a los géneros biológicos?, ¿a las familias?, ¿pertenecen todas las moscas al mismo género o a varios géneros?), por lo que es imposible juzgar lo que ven como los límites del cambio evolutivo. Pero todos los creacionistas se muestran de acuerdo en una cosa: Homo sapiens es un «género» por si mismo, y por lo tanto debe haber sido creado. No hay nada, sin embargo, ni en la teoría ni en los datos de la evolución, que implique que el cambio evolutivo pueda estar limitado: por lo que sabemos, la macroevolución no es más que microevolución en un período de tiempo muy dilatado. (Véase la visión creacionista de los «géneros» en http://www.clarifyingchristianity.com/creation.shtml y http://www.nwcreation.net/biblicalkinds.html, y una refutación en http://www.geocities.com/CapeCanaveral/Hangar/2437/kinds.htm.) <<

[8] En la actualidad los paleontólogos creen que todos los terópodos —incluido el famoso Tyrannosaurus rex—, estaban recubiertos de plumas de algún tipo. Estas plumas no suelen enseñarse en las reconstrucciones de museos o en películas como Parque Jurásico. ¡Ver un T. rex cubierto de plumón no haría mucho por reforzar su imagen aterradora! <<

[9] Una estimulante descripción de cómo se descubrió y preparó a «Dave», el primer espécimen de Sinomithosaurus, puede encontrarse en http://www.amnh.org/leam/pd/dinos/markmeetsdave.html. <<

[10] El programa NOVA realizó un excelente documental para la televisión sobre el descubrimiento de Microraptor gui y la posterior controversia sobre si volaba. «The Four-Winged Dinosaur» puede verse en línea en http:// www.pbs.org/wgbh/nova/microraptor/program.html. <<

[11] En una auténtica hazaña científica reciente, se ha logrado obtener fragmentos de una proteína, el colágeno, de un fósil de T. rex de hace 68 millones de años, y determinar la secuencia de aminoácidos de estos fragmentos. El análisis muestra que T. rex está más estrechamente emparentado con las aves actuales (gallinas y avestruces) que con cualquier otro grupo de vertebrados vivos. Este descubrimiento confirma lo que los científicos sospechan desde hace tiempo: todos los dinosaurios se extinguieron con la excepción de un linaje que dio origen a las aves. Cada vez más, los biólogos reconocen en las aves unos dinosaurios altamente modificados. De hecho, las aves suelen clasificarse como dinosaurios. <<

[12] La expresión original de Gish es udder failure, que en inglés americano se pronuncia igual que utter failure («absoluto fracaso»); udder significa «ubre». (N. del t.) <<

[13] Las secuencias de ADN y proteínas de las ballenas muestran que, entre los mamíferos, sus parientes más cercanos son los artiodáctilos, un hallazgo que concuerda plenamente con los indicios fósiles. <<

[14] El lector puede ver un ciervo-ratón corriendo hacia el agua para escapar de un águila en http://www.youtube.com/watch?v=13GQbT21jxs. <<

[15] El artículo, sin embargo, sí que se publicó. En él se mostraba que pese a sus distintos estilos de carrera, los avestruces y los caballos utilizan una cantidad de energía parecida para cubrir la misma distancia. Fedak, M. A. y H. J. Seeherman, «A reappraisal of the energetics of locomotion shows identical costs in bipeds and quadrupeds including the ostrich and the horse», Nature, 282 (1981), pp. 713-716. <<

[16] Este vídeo muestra el uso de las alas durante el cortejo nupcial: http://revver.com/video/213669/masai-ostrich-mating/. <<

[17] Las ballenas, que no tienen orejas externas, también tienen unos músculos de las orejas no funcionales (y a veces unos orificios auditivos diminutos e inútiles) que han heredado de sus antepasados terrestres. <<

[18] Los pseudogenes, hasta donde yo sé, no pueden resucitarse. Una vez que un gen experimenta una mutación que lo inactiva, rápidamente acumula otras que van degradando cada vez más la información para hacer la proteína. La probabilidad de que todas esas mutaciones reviertan y despierten el gen es, en la práctica, nula. <<

[19] Como era de esperar, los mamíferos marinos que pasan parte del tiempo en tierra firme, como los leones marinos, tienen más genes RO activos que las ballenas y los delfines, supuestamente porque todavía necesitan detectar olores en el aire. <<

[20] Los creacionistas usan a menudo los dibujos «alterados» de Haeckel como arma para atacar a la evolución en general: los evolucionistas, dicen, distorsionan los hechos para que apoyen un darwinismo que es erróneo. Pero la historia de Haeckel no es tan simple. Quizá no fuera culpable de falsedad, sino de negligencia: su «fraude» consistió únicamente en ilustrar tres embriones distintos con la misma plancha de xilografía. Cuando se le llamó la atención sobre su error, lo admitió y corrigió. No hay evidencia alguna de que hubiera distorsionado a propósito la apariencia de los embriones para que parecieran más semejantes de lo que eran. R. J. Richards (2008, capítulo 8) explica la historia completa. <<

[21] Nuestra ascendencia nos ha legado muchos otros males físicos. Las hemorroides, los dolores de espalda, el hipo y la apendicitis son también un recuerdo de nuestra evolución. Neil Shubin describe éstos y muchos otros en Your Inner Fish. <<

[22] También inspiró el poema de William Cowper «The Solitude of Alexander Selkirk» [La soledad de Alexander Selkirk], con sus célebres versos iniciales

I am monarch of all I survey;

My right there is none to dispute;

From the centre all round to the sea

I am lord of the fowl and the brute.

[Soy monarca de cuanto exploro; / ningún derecho se me puede disputar; / desde el centro hasta el mar / soy señor de aves y alimañas.] <<

[23] Puede verse una animación de la deriva continental durante los últimos 150 millones de años en http://mulinet6.li.mahidol.ac.th/cd-rom/cd-rom0309t/Evolution_files/platereconanim.gif. Más animaciones, y más detalladas, de la historia completa de la Tierra, pueden encontrare en http://www.scotese.com/. <<

[24] 1 − (999.999/1.000.000)1000000, o sea, 1 menos la probabilidad de que no colonice la isla ni una sola vez en un millón de años. (N. del t.) <<

[25] Este verso, sin duda el más célebre de Tennyson, procede de su poema «In Memoriam A. H. H.» (1850):

[Man,] Who trusted God was love indeed

And love Creation’s final law—

Tho’ Nature, red in tooth and claw

With ravine, shrieked against his creed.

[[El hombre,] que en verdad creyó que Dios era amor / y el amor la ley última de la creación / —aunque la Naturaleza, roja de colmillos y garras / de rapacidad, brama contra su creencia—.] <<

[26] Puede verse un vídeo de avispones japoneses depredando abejas melíferas y siendo cocidos hasta la muerte durante la defensa de abejas japonesas en http://www.youtube.com/watch?v=DcZCttPGyJO. Los científicos han descubierto recientemente otra forma en que las abejas matan a los avispones: los asfixian. En Chipre, las abejas autóctonas también forman bolas alrededor de los avispones intrusos. Para respirar, las avispas expanden y contraen el abdomen, bombeando aire al interior del cuerpo a través de unos finos conductos. La apretada bola que forman las abejas impide que el avispón pueda mover el abdomen, que queda de este modo privado de aire. <<

[27] En Parasite Rex, Carl Zimmer explica muchas otras fascinantes (y horripilantes) maneras en que han evolucionado los parásitos para manipular a sus huéspedes. <<

[28] Hay otro aspecto de esta historia que es casi igual de fascinante: las hormigas, que pasan buena parte de su tiempo en los árboles, han adquirido mediante la evolución la capacidad de planear. Cuando caen de una rama, pueden maniobrar en el aire de manera que, en lugar de caer en el hostil suelo del bosque, caigan de nuevo en la seguridad del tronco. Se desconoce todavía cómo una hormiga en caída libre logra controlar la dirección de planeo, pero pueden verse vídeos de este peculiar comportamiento en http://www.canopyants.com/videol.html. <<

[29] Los creacionistas a veces citan esta lengua como ejemplo de un carácter que no puede haber evolucionado porque los estadios intermedios de su evolución supuestamente hubieran sido malas adaptaciones. Esta afirmación carece de fundamento. Para una descripción de la larga lengua y la posible vía de evolución por selección natural, véase http://www.talkorigins.org/faqs/woodpecker/woodpecker.html. <<

[30] Mientras escribo esto ha aparecido un informe que muestra que el ADN extraído de los huesos de neandertales contiene otra forma clara del gen. Es probable, pues, que algunos neandertales fueran pelirrojos. <<

[31] Las distintas razas se consideran todas miembros de la especie Canis lupus familiaris porque pueden cruzarse entre sí con éxito. Si sólo las conociéramos como fósiles, las considerables diferencias que presentan nos llevarían a la conclusión de que existía alguna barrera genética que impedía que se cruzaran, y que por lo tanto eran especies distintas. <<

[32] Los insectos también se adaptaron a la distinta composición química de cada una de las especies de plantas, hasta el punto de que en la actualidad cada nueva forma de la chinche sólo crece bien en la planta introducida y no en el jabonero autóctono. <<

[33] El lector interesado encontrará una descripción de cómo la coagulación de la sangre y el flagelo podrían haber evolucionado por selección natural en el libro de Kenneth Miller Only a Theory, así como en M. J. Pallen y N. J. Matzke (2006). <<

[34] Ave paseriforme del África subsahariana (Euplectes ardens). (N. del t.) <<

[35] Puede verse un vídeo de machos del gallo de las artemisas contoneándose en un lek ante las hembras en http://www.youtube.com/watch?v=qcWx2VbT_j8. <<

[36] El organismo con reproducción sexual más antiguo identificado hasta el momento es un alga roja, en cuyos fósiles de hace 1.200 millones de años se distinguen con claridad dos sexos. Ha recibido el adecuado nombre de Bangiomorpha pubescens. [N. del t.: Juego de palabras entre «bang», que en inglés vulgar significa «practicar el sexo», y el género actual de algas rojas Bangia.] <<

[37] Conviene recordar que nos referimos a la diferencia entre machos y hembras en la varianza del éxito de apareamiento. El éxito de apareamiento promedio de machos y hembras, en cambio, tiene que ser igual, pues cada descendiente debe tener un padre y una madre. En los machos, este promedio se consigue con el éxito de unos pocos que tienen muchos hijos mientras el resto no tienen ninguno. Por otro lado, cada hembra tiene aproximadamente el mismo número de descendientes. <<

[38] Cuando se los presiona, los creacionistas explican los dimorfismos sexuales recurriendo a los misteriosos caprichos del creador. En su libro Darwin on Trial, el defensor del diseño inteligente Phillip Johnson responde a la pregunta del evolucionista Douglas Futuyma: «¿Realmente suponen los científicos de la creación que su Creador consideró apropiado crear un ave que no pudiera reproducirse sin más de un metro de cola que la convierte en presa fácil para los leopardos?». Y Johnson replica: «No sé qué deben suponer los científicos de la creación, pero me parece a mí que el macho y la hembra del pavo real son justamente el tipo de criaturas que un Creador caprichoso favorecería, y que un “proceso mecánico e indiferente” como la selección natural nunca permitiría desarrollar». Pero una hipótesis bien entendida y contrastable como la selección sexual sin duda triunfa frente a una apelación, imposible de contrastar, a los inescrutables caprichos de un creador. <<

[39] El lector se preguntará por qué, si las hembras tienen preferencia por caracteres no expresados, esos caracteres no han llegado a evolucionar nunca en los machos. Una explicación es sencillamente que nunca llegaron a producirse las mutaciones necesarias. Otra es que las mutaciones necesarias sí que llegaron a producirse, pero reducían la supervivencia más de lo que aumentaban la capacidad para atraer parejas. <<

[40] Puede objetarse que esta concordancia sólo pone de manifiesto que todos los cerebros humanos están conectados neurológicamente de tal modo que dividen lo que realmente es un continuo de aves por los mismos puntos arbitrarios. Pero esta objeción pierde fuerza cuando se recuerda que las propias aves reconocen los mismos grupos. Cuando llega el momento de reproducirse, un macho de petirrojo corteja sólo a las hembras de petirrojo, no a las hembras de gorrión, de estornino o de corneja. Las aves, como el resto de los animales, ¡saben reconocer especies distintas! <<

[41] Por ejemplo, si el 99 por 100 de todas las especies producidas se hubieran extinguido, todavía necesitamos una tasa de especiación de sólo una nueva especie por especie cada 100 millones de años para producir 100 millones de especies en la actualidad. <<

[42] Para una presentación clara de cómo reconstruye la ciencia los sucesos antiguos en la geología, la biología y la astronomía, véase Tunney, C., Bones, Rocks and Stars: The Science of When Things Happened, Macmillan, Nueva York, 2006 (hay trad. cast.: Huesos, piedras y estrellas: la dotación científica del pasado, Crítica, Barcelona, 2007). <<

[43] He aquí una descripción más detallada de cómo se forma una especie alopoliploide. Aunque el proceso no es difícil de entender, conviene prestar atención a los detalles porque hay que seguirle la pista a unos cuantos números. Con la excepción de las bacterias y los virus, cada especie lleva dos copias de cada cromosoma. Los humanos, por ejemplo, tienen cuarenta y seis cromosomas que comprenden veintidós pares u homólogos, más dos cromosomas sexuales, XX en las mujeres y XY en los hombres. Uno de los miembros de cada par de cromosomas se hereda del padre, y el otro de la madre. Cuando dos individuos de una especie producen gametos (espermatozoides y óvulos o huevos en los animales, polen y óvulos en las plantas), los cromosomas homólogos se separan y sólo uno de cada pareja va a parar a un espermatozoide, óvulo o grano de polen. Pero antes de que esto ocurra, los homólogos tienen que alinearse y aparearse para poder ser divididos adecuadamente. Si los cromosomas no pueden aparearse como es debido, el individuo no puede producir gametos y es estéril. Esta imposibilidad de aparearse se encuentra en la base de la especiación alopoliploide. Supongamos, a modo de ejemplo, que una especie de planta (seamos imaginativos y llamémosla A) tiene seis cromosomas, tres pares de homólogos. Supongamos además que una especie emparentada, la especie B, tiene diez cromosomas (cinco pares). Un híbrido entre las dos especies tendrá ocho cromosomas, tres que habrá recibido de la especie A y cinco de la especie B (hay que recordar que los gametos de cada especie sólo llevan la mitad de los cromosomas). Este híbrido quizá sea viable y vigoroso, pero tendrá problemas cuando intente producir polen u óvulos. Cinco cromosomas procedentes de una especie intentarán emparejarse con los tres cromosomas procedentes de la otra especie. Con tanto lío, la formación de gametos quedará abortada y el híbrido será estéril.

Pero supongamos que por alguna razón el híbrido consigue duplicar todos sus cromosomas, aumentándolos en número de ocho a dieciséis. Este nuevo superhíbrido será capaz de emparejar los cromosomas como es debido: cada uno de los seis cromosomas de la especie A encontrará su homólogo, y lo mismo pasará con los diez cromosomas de la especie B. Como los emparejamientos se producen de manera adecuada, el superhíbrido será fértil, pues producirá polen y óvulos con ocho cromosomas. El superhíbrido es lo que técnicamente se conoce como alopoliploide, del griego «diferente» y «múltiple». En sus dieciséis cromosomas llevará el material genético completo de sus dos especies progenitoras, A y B. Podemos esperar que su aspecto sea un poco un intermedio entre el de sus dos progenitores. Además, esta nueva combinación de caracteres quizá le permita ocupar un nuevo nicho ecológico.

El poliploide AB no sólo es fértil, sino que producirá descendencia si es fecundado por otro poliploide similar. Cada progenitor aporta ocho cromosomas a la semilla, que dará lugar a una planta AB con dieciséis cromosomas, igual que los pies parentales. Así pues, un grupo de poliploides como estos constituirá una población que podrá cruzarse y perpetuarse.

Será una nueva especie. ¿Por qué? Porque el poliploide AB estará reproductivamente aislado de sus dos especies progenitoras. Tanto si se hibrida con la especie A como si lo hace con la B, su descendencia será estéril. Supongamos que se hibrida con la especie A. El poliploide producirá gametos con ocho cromosomas, tres originarios de la especie A y cinco de la especie B. Éstos se unirán a los gametos de la especie A, que contendrán tres cromosomas. La planta resultante de esta unión tendrá once cromosomas, pero será estéril, pues cada uno de los cromosomas A encontrará su pareja durante la formación de los gametos, pero no así los cromosomas B. Una situación análoga se produce cuando el poliploide AB fecunda o es fecundado por la especie B: la descendencia tendrá trece cromosomas, y los cinco cromosomas A no podrán emparejarse durante la formación de gametos.

Así pues, el nuevo poliploide producirá sólo híbridos estériles cuando se aparee con cualquiera de las dos especies que le dieron origen. En cambio, cuando los poliploides se apareen entre sí, los descendientes serán fértiles, y tendrán dieciséis cromosomas como sus individuos progenitores. En otras palabras, los poliploides forman un grupo cuyos individuos pueden cruzarse entre sí y que está reproductivamente aislado de otros grupos, que es justamente lo que define a una especie biológica. Esta especie habrá surgido sin necesidad de aislamiento geográfico: por necesidad, pues dos especies sólo pueden formar un híbrido si viven en el mismo lugar.

Pero ¿cómo se forma la especie poliploide para empezar? No hace falta que profundicemos en los detalles salvo para decir que implica la formación de un híbrido entre las dos especies parentales seguido de una serie de pasos en los que esos híbridos producen unas formas de polen u óvulos poco frecuentes con un conjunto duplicado de cromosomas (unos gametos no reducidos). La fusión entre estos gametos produce un individuo poliploide en tan sólo dos generaciones. Todos estos pasos han sido documentados tanto en invernaderos como en la naturaleza. <<

[44] Como ejemplo de autopoliploidía, supongamos que los miembros de cierta especie de planta tienen catorce cromosomas, o siete pares. Un individuo podría producir ocasionalmente gametos no reducidos que contuvieran los catorce cromosomas en lugar de siete. Si este gameto se une con un gameto normal de siete cromosomas procedente de un pie de la misma especie, obtendríamos una planta semiestéril con veintiún cromosomas: es prácticamente estéril porque durante la formación de los gametos son tres los cromosomas homólogos que intentan aparearse, en lugar de los dos habituales, y eso no funciona demasiado bien. Pero si este mismo individuo produce una vez más unos pocos gametos no reducidos con veintiún cromosomas que se unen a gametos normales de la misma especie, se obtiene una planta autopoliploide de veintiocho cromosomas que lleva dos copias completas del genoma parental. Una población de estos individuos puede considerarse una nueva especie porque puede cruzarse con otros autopoliploides similares pero no con la especie parental. Esta especie autopoliploide tiene exactamente los mismos genes que los miembros de la especie parental, pero en dosis cuádruple en vez de doble.

Como un autopoliploide recién formado tiene los mismos genes que su especie progenitora, con frecuencia se parecerá a ésta. A veces los miembros de la nueva especie sólo pueden identificarse contando sus cromosomas al microscopio para ver si tienen el doble de cromosomas que los individuos de la especie parental. Como se parecen a sus progenitores, seguramente existen en la naturaleza muchas especies autopoliploides que todavía no han sido identificadas como tales. <<

[45] Aunque los casos de especiación no poliploide que ocurren en «tiempo real» son muy infrecuentes, hay al menos uno que parece plausible. Se trata de dos grupos de mosquitos de Londres que, aunque suelen designarse como subespecies, presentan un grado considerable de aislamiento reproductor. Culex pipiens pipiens es uno de los mosquitos urbanos más comunes. Sus víctimas más frecuentes son pájaros, y, como ocurre con muchas especies de mosquitos, las hembras ponen los huevos sólo después de haber chupado algo de sangre. Durante el invierno, los machos mueren pero las hembras entran en un estado parecido a la hibernación llamado «diapausa». Durante el apareamiento, los pipiens forman grandes enjambres en los que machos y hembras copulan en masa.

Quince metros más abajo, en los túneles del metro londinense, vive una subespecie estrechamente emparentada, Culex pipiens molestus, así llamada porque prefiere picar a los mamíferos, especialmente a los que viajan en los trenes. (Se convirtió en un verdadero fastidio durante el Blitz, el bombardeo alemán sobre Londres durante la segunda guerra mundial, cuando miles de londinenses se vieron obligados a dormir en las estaciones del metro durante los ataques aéreos.) Aunque pica a ratas y humanos, molestus no necesita chupar sangre para poner sus huevos y, como cabe esperar de los habitantes de los túneles de temperatura templada, prefiere aparearse en espacios confinados y no realizan diapausa durante el invierno.

La diferencia en la forma de apareamiento de estas dos subespecies conduce a un fuerte aislamiento sexual entre las dos formas tanto en su entorno como en el laboratorio. Eso, unido al hecho de que existe una considerable divergencia genética entre las formas, indica que están camino de convertirse en especies distintas. De hecho, algunos entomólogos ya las clasifican de este modo: Culex pipiens y Culex molestus. Dado que la construcción del metro londinense no comenzó hasta la década de 1860 y muchas de las líneas tienen menos de un siglo, este evento de «especiación» parece haber ocurrido en tiempos recientes. Pero la historia tiene un resquicio: en Nueva York vive un par de especies parecidas, una en el exterior y la otra en los túneles del metro. Existe la posibilidad de que ambos pares de especies sean representantes de un par de especies parecidas que divergieron hace mucho más tiempo, que habitan en algún otro lugar del mundo y migraron a sus respectivos hábitats tanto en Londres como en Nueva York. Lo que necesitamos para abordar este problema, y todavía no tenemos, es un buen árbol genealógico de estos mosquitos basado en el ADN. <<

[46] Este grupo solía llamarse homínidos, pero este término se reserva ahora para todos los grandes simios modernos y extintos, incluidos los humanos, los chimpancés, los gorilas, los orangutanes y todos sus antepasados. <<

[47] Una indicación de la naturaleza competitiva de la paleoantropología es el número de personas que comparten el crédito por el descubrimiento, preparación y descripción de Sahelanthropus: el artículo que lo anuncia tiene treinta y ocho autores, ¡todo por un solo cráneo! <<

[48] http://www.youtube.com/watch?v=V9DIMkKotWUNR=l muestra un chimpancé caminando torpemente sobre dos patas. <<

[49] En http://www.pbs.Org/wgbh/evolution/library/07/l/l_071_03.html puede verse un vídeo de las huellas y de cómo se hicieron. <<

[50] Nótese que ésta sería entonces la segunda vez que un linaje humano habría emigrado desde África; la primera vez fue la protagonizada por H. erectus. <<

[51] Véase en http://www.talkorigins.org/faqs/homs/compare.html una discusión de cómo tratan los creacionistas el registro fósil humano. <<

[52] A diferencia de la mayoría de los primates, las hembras humanas no muestran signos visibles cuando ovulan. (Los genitales de las hembras de babuino, por ejemplo, se hinchan y adquieren un vivo color rojo cuando son fértiles.) Hay más de una docena de teorías de por qué las hembras humanas evolucionaron para ocultar sus períodos de fertilidad. La más célebre es que se trata de una estrategia de las hembras para que sus parejas se queden con ellas y las ayuden en el cuidado y sostén de los hijos. Si un hombre no sabe cuándo es fértil su mujer y quiere tener hijos, tiene que quedarse con ella y copular con frecuencia. <<

[53] La idea de que FOXP2 es un gen del lenguaje proviene de la observación de que ha evolucionado extraordinariamente rápido en el linaje humano, que las formas imitantes del gen afectan a la capacidad de las personas para producir y comprender el habla, y que mutaciones parecidas en los ratones hacen que las crías no puedan chillar. <<

[54] En realidad, se ha intentado al menos en una ocasión. En 1927, Ilya Ivanovich Ivanov, un excéntrico biólogo ruso cuyo fuerte era producir animales híbridos por medio de la inseminación artificial, utilizó una técnica para intentar crear híbridos entre humano y chimpancé (apodados «humancés» o «chúmanos»). En una estación de campo de la Guinea francesa, inseminó tres hembras de chimpancé con esperma humano. Por fortuna, no se produjo ningún embarazo, y sus planes posteriores para hacer el experimento inverso se vieron frustrados. <<

[55] Los biólogos han identificado al menos dos genes responsables de buena parte de las diferencias en la pigmentación de la piel entre las poblaciones de europeos y africanos. Curiosamente, ambos fueron descubiertos porque afectan a la pigmentación de los peces. <<

[56] Recientemente se ha descrito un caso parecido para la amilasa-1, la enzima de la saliva que descompone el almidón en azúcares simples. Las poblaciones humanas que tienen mucho almidón en su dieta, como los japoneses y los europeos, tienen más copias del gen correspondiente que las poblaciones que subsisten con dietas bajas en almidón, como los pescadores o los cazadores-recolectores de la selva lluviosa. A diferencia de lo ocurrido con la enzima lactasa, la selección natural incrementó la expresión de la amilasa-1 favoreciendo la duplicación de los genes que la producen. <<

[57] Recuérdese que ningún alimento tiene un sabor inherente: el «gusto» que tiene para los individuos depende de la evolución de las interacciones entre los receptores del gusto y las neuronas que éstos estimulan en el cerebro. Casi con certeza, la evolución ha modelado nuestro cerebro y papilas gustativas de manera que nos resulte agradable el sabor de los alimentos dulces y grasos, incitándonos así a buscarlos. Probablemente para una hiena la carne podrida sea tan deliciosa como un helado de vainilla lo es para nosotros. <<

[58] El original contiene un juego de palabras intraducible entre fittest, el mejor dotado, y fattest, el más gordo. (N. del t.) <<

[59] «They say that bears have love affairs / And even camels / We’re men and mammals —let’s misbehave!» <<

[60] La mayoría de los psicólogos evolutivos creen que el AAE es una realidad, que durante los millones de años de la evolución humana, el entorno, tanto físico como social, se mantuvo relativamente constante. Pero por supuesto no sabemos que sea así. Al fin y al cabo, durante 7 millones de años de evolución, nuestros antepasados vivieron en distintos climas, interaccionaron con diversas especies (incluidos otros homíninos), interaccionaron con varios tipos de sociedad y se extendieron por todo el planeta. La sola idea de que existió un «ambiente ancestral» al que podemos apelar para explicar las conductas de los humanos actuales es una presunción intelectual, una suposición que hacemos porque, al final, es lo único que podemos hacer. <<