Capítulo 5

El motor de la evolución

¿Qué, si no los colmillos del lobo, talló tan finas las rápidas y ligeras patas del antílope?

¿Qué, si no el miedo, dio alas a las aves, qué si no el hambre engarzó tales ojos en la cabeza del gran azor?

ROBINSON JEFFERS, «The Bloody Sire»

Uno de los prodigios de la evolución es el avispón gigante de Asia, una avispa depredadora especialmente común en Japón. Se hace difícil imaginar un insecto más aterrador. Este avispón, el más grande del mundo, es tan largo como un pulgar, y tiene sus cinco centímetros de cuerpo adornados con amenazadoras franjas negras y amarillas. Está armado con unas terroríficas mandíbulas que utiliza para agarrar y matar a los insectos que depreda, y un aguijón de más de medio centímetro que resulta fatal para varias docenas de asiáticos cada año. Y con una envergadura alar de más de siete centímetros, puede volar a más de cuarenta kilómetros por hora (mucho más rápido de lo que podemos correr), y recorrer hasta ciento cincuenta kilómetros en un solo día.

Este avispón no sólo es feroz: es voraz. Sus jóvenes larvas son unas gordas e insaciables máquinas de comer que de manera insistente golpean la cabeza contra la colmena para anunciar su hambre de carne. Para satisfacer sus incansables demandas de alimento, los avispones adultos saquean los nidos de las avispas y abejas sociales.

Una de las principales víctimas del avispón es la abeja melífera europea, que aquí es un insecto introducido. El ataque a una colmena de abejas acaba en una despiadada matanza que tiene pocos paralelos en la naturaleza. Comienza cuando un solitario avispón explorador encuentra una colmena. Con su abdomen, el explorador marca el sino del nido colocando una gota de feromona junto a la entrada de la colonia de abejas. Alertados por esta marca, los compañeros de nido del explorador descienden sobre el lugar, un grupo de veinte o treinta avispones contra un colonia de hasta treinta mil abejas.

Pero no se produce una verdadera contienda. Los avispones entran en la colmena y, blandiendo sus mandíbulas, decapitan las abejas una por una. Cada avispón hace rodar cabezas a razón de cuarenta por minuto: en pocas horas, la batalla ha finalizado, todas las abejas están muertas, y esparcidos por la colmena yacen los fragmentos de sus cuerpos. Los avispones se dedican entonces a aprovisionar su despensa. Durante la siguiente semana, saquean sistemáticamente el nido, comiendo la miel y transportando las inanes larvas de las abejas hasta su nido, donde las depositan en las voraces e insaciables bocas de sus propias larvas.

Ésta es la «naturaleza roja de colmillos y garras» que había descrito el poeta Tennyson.[25] Los avispones son unas terroríficas máquinas de matar, y ante ellas las abejas introducidas están indefensas. Pero hay abejas que pueden rechazar el ataque del avispón gigante: las abejas melíferas autóctonas de Japón. Su defensa es asombrosa, otro prodigio de comportamiento adaptativo. Cuando un avispón explorador llega a su colmena, las abejas situadas cerca de la entrada se apresuran a entrar en la colmena, donde arengan a las armas a sus compañeras de nido al tiempo que atraen al avispón hacia el interior. Entre tanto, cientos de abejas trabajadoras se congregan en el interior de la entrada. Una vez el avispón está dentro, es atacado en grupo por las abejas, que lo cubren en una apretada bola. Haciendo vibrar sus abdómenes, las abejas hacen que ascienda con rapidez la temperatura en el interior de la bola hasta alcanzar unos 47 grados centígrados. Las abejas pueden sobrevivir a esta temperatura, pero el avispón no. En cuestión de veinte minutos, el avispón explorador queda cocido hasta la muerte y, la mayoría de las veces, la colmena queda a salvo. No se me ocurre ningún otro caso (salvo por la Inquisición española) de unos animales que maten a sus enemigos quemándolos.[26]

Hay en esta tortuosa historia varias lecciones sobre la evolución. La más evidente es que el avispón está maravillosamente adaptado para matar, como si hubiera sido diseñado para las matanzas. Además, son muchos los caracteres que trabajan de manera coordinada para convertir a la avispa en una máquina de matar: la forma corporal (cuerpo de gran tamaño, aguijón, mandíbulas mortíferas, grandes alas), caracteres químicos (feromonas para marcar el lugar y un veneno mortal en el aguijón) y comportamiento (vuelo rápido, ataques coordinados contra las colmenas y el comportamiento larvario de gritar «¡tengo hambre!» que incita los ataques de los avispones). Y luego está la defensa de las abejas nativas, la congregación coordinada para cocer a su enemigo, que sin duda es una respuesta evolutiva a los repetidos ataques de los avispones. (Hay que recordar que este comportamiento está codificado genéticamente en un cerebro menor que la punta de un bolígrafo.)

Por otro lado, las abejas europeas recientemente introducidas están virtualmente indefensas ante los avispones. Esto es exactamente lo que cabría esperar, pues estas abejas evolucionaron en un lugar donde no había grandes avispones depredadores, y por consiguiente la selección natural no las llevó a montar una defensa. Podemos predecir, no obstante, que si los avispones son unos depredadores lo bastante fuertes, las abejas europeas acabarán siendo extirpadas (salvo que sean reintroducidas) o encontrarán su propia respuesta evolutiva a los avispones, que no necesariamente será la misma que hallaron las abejas autóctonas.

Algunas adaptaciones conllevan tácticas todavía más siniestras. Un ejemplo es un gusano nematodo que parasita a algunas especies de hormiga de América Central. Al ser infectada, la hormiga experimenta un cambio radical tanto en su apariencia como en su comportamiento. En primer lugar, su abdomen, normalmente negro, se torna de un rojo llamativo. La hormiga se hace entonces muy lenta y levanta su abdomen hacia el cielo como una provocativa bandera colorada. La fina unión entre el tórax y el abdomen se toma endeble. Además, una hormiga infectada no produce feromonas de alarma al ser atacada, de modo que no puede avisar a sus compañeras de nido.

Todos estos cambios están causados por los genes del gusano parásito como hábil estratagema para reproducirse. El gusano altera la apariencia y comportamiento de la hormiga para que se anuncie a las aves como si fuera una deliciosa baya, sellando su propia muerte. El abdomen rojo de la hormiga se alza para que todos los pájaros puedan verlo y confundirlo por una baya, que arrancan con facilidad gracias a que la hormiga apenas puede moverse y la unión entre el abdomen y el resto del cuerpo ha quedado debilitada. Así que las aves se hartan de comer estos abdómenes, que van llenos de huevos del gusano. Los pájaros pasan entonces los huevos a sus deyecciones, que las hormigas buscan para llevárselas al nido como alimento para sus larvas. Los huevos del gusano eclosionan dentro de la larva de hormiga y crecen. Cuando la larva de hormiga se convierte en una crisálida, los gusanos migran al abdomen de la hormiga, donde se aparean y producen más huevos. Así comienza el ciclo de nuevo.

Son las adaptaciones portentosas como éstas, la infinidad de maneras en que los parásitos controlan a sus vectores sólo para transmitir sus genes, lo que excita la mente de los evolucionistas.[27] La acción de la selección natural sobre un simple gusano ha hecho que logre gobernar la apariencia, el comportamiento y la estructura de su huésped, convirtiéndolo en una tentadora baya de mentira.[28]

La lista de adaptaciones como éstas es inacabable. Hay adaptaciones que hacen que un animal parezca una planta, camuflándose así entre el follaje para ocultarse a sus enemigos. Por ejemplo, algunos tetigónidos (saltamontes de antenas largas) se parecen tanto a unas hojas que incluso tienen los dibujos de los nervios y unos «puntos marchitos» que parecen agujeros en las hojas. El mimetismo es tan preciso que cuesta encontrar los insectos en una pequeña jaula llena de plantas, cuanto más en su propio entorno.

También se da lo contrario: plantas que parecen animales. Algunas especies de orquídea tienen flores que se parecen superficialmente a las abejas y las avispas, con sus falsas manchas oculares y pétalos en forma de alas. El parecido es lo bastante bueno como para engañar a muchos machos miopes, que se posan en la flor con toda la intención de aparearse. Mientras lo intentan, los sacos de polen de la orquídea se pegan a la cabeza del insecto. Cuando el frustrado insecto se marcha sin haber consumado su pasión, sin saberlo se lleva el polen a la siguiente orquídea, a la cual fecunda durante su siguiente e infructuosa «pseudocópula». La selección natural ha moldeado la orquídea hasta convertirla en un falso insecto porque los genes que mediante esta treta logran atraer polinizadores tienen mayores posibilidades de transmitirse hasta la siguiente generación. Algunas orquídeas llegan al extremo de seducir a sus polinizadores con sustancias químicas que huelen como las feromonas sexuales de las abejas.

La búsqueda de comida induce adaptaciones tan complejas como la búsqueda de pareja. El pito crestado, el pájaro carpintero más grande de América del Norte, se gana la vida barrenando los troncos de los árboles para sacar de la madera insectos como los escarabajos y las hormigas. Además de su soberbia capacidad para detectar a sus presas bajo la corteza (probablemente escuchando o sintiendo sus movimientos, no lo sabemos con certeza), el picamaderos tiene todo un conjunto de caracteres que lo ayudan a cazar y hacer agujeros. Quizá el más notable sea su lengua, larga hasta el ridículo.[29] La base de la lengua se une al hueso de la mandíbula, luego la lengua sube por una de las narinas, da una vuelta completa a la cabeza hasta la nuca y entra de nuevo en el pico por abajo. La mayor parte del tiempo la lengua está retraída, pero puede extenderse para penetrar profundamente en el interior de un tronco en busca de hormigas y escarabajos. Es puntiaguda y está recubierta de saliva pegajosa para facilitar la extracción de los sabrosos insectos de sus agujeros. Los pitos crestados también utilizan sus picos para excavar unas grandes cavidades donde nidifican y para tamborilear en los árboles para atraer parejas y defender su territorio.

Los pájaros carpinteros son una versión biológica de los martillos neumáticos. Esto plantea un problema: ¿cómo puede una criatura tan delicada taladrar una madera tan dura sin lastimarse? (Piénsese en la fuerza necesaria para clavar un clavo en una plancha de madera.) El cráneo del pito crestado recibe un castigo tremendo: cuando tamborilea para comunicarse, este pájaro carpintero puede golpear la madera hasta quince veces por segundo, y cada golpe genera una fuerza equivalente a que nosotros nos golpeáramos la cabeza contra un muro a veinticinco kilómetros por hora. Ésta es una velocidad que puede abollar un coche. Existe un auténtico peligro de que el pito dañe su cerebro, o incluso de que haga saltar los ojos fuera de sus cuencas bajo una fuerza tan extrema.

Para impedir los daños al cerebro, el cráneo del pito tiene una forma especial y huesos reforzados. El pico descansa sobre un amortiguador de cartílago, y los músculos que rodean el pico se contraen un instante antes de cada impacto para desviar la fuerza del golpe lejos del cerebro, dirigiéndola a la base reforzada del cráneo. A cada golpe, los párpados del ave se cierran para evitar que salten los ojos. Hay incluso un delicado abanico de plumas que cubren las narinas e impiden que el ave inhale serrín o astillas mientras golpea la madera. Además, el pájaro utiliza una serie de plumas rectrices (en la cola) especialmente duras para apuntalarse contra el tronco del árbol, y tiene pies con cuatro dedos en forma de X (dos hacia delante y dos hacia atrás) para agarrarse con seguridad al tronco.

Miremos donde miremos en la naturaleza, vemos animales que parecen estar bellamente diseñados para ajustarse a su entorno, tanto si ese entorno es el constituido por las circunstancias físicas de su vida, como la temperatura y la humedad, como de otros organismos (competidores, depredadores y presas) con los que cada organismo tiene que interaccionar. No debe sorprender que los primeros naturalistas creyeran que los animales eran el producto de un diseño celestial, que habían sido creados por Dios para realizar su función.

Darwin corrigió esta idea en El origen. En un solo capítulo, reemplazó varios siglos de certeza sobre el diseño divino con la idea de la selección natural, un proceso materialista y ciego que podía producir los mismos resultados. Es difícil exagerar el efecto que esta concepción tuvo no ya en la biología, sino en la concepción del mundo. Muchos todavía no se han recuperado del golpe, y la idea de la selección natural todavía incita una oposición feroz e irracional.

Pero la selección natural también planteaba cierto número de problemas a la biología. ¿Qué pruebas tenemos de que actúe en la naturaleza? ¿Puede realmente explicar las adaptaciones, incluidas las más complejas? Darwin utilizó sobre todo la analogía para defender sus ideas: el bien conocido éxito de los criadores a la hora de transformar animales y plantas en organismos adecuados como alimento, mascota u ornamento. En su época no disponía de pruebas directas de que la selección natural actuara en las poblaciones naturales. Y puesto que, tal como propuso, la selección era extraordinariamente lenta, alterando las poblaciones sólo en el curso de miles o millones de años, se hacía difícil observarla durante la vida de una persona.

Por suerte, gracias a los esfuerzos de biólogos de campo y de laboratorio, hoy disponemos de esas pruebas empíricas y en abundancia.

Hemos descubierto que la selección natural aparece por todos lados inspeccionando los individuos, eliminado a los inadecuados y promoviendo los genes de los más adecuados. Puede crear intrincadas adaptaciones, a veces en un tiempo sorprendentemente corto.

La selección natural es la parte del darwinismo que peor se entiende. Para ver cómo funciona, fijémonos primero en una adaptación sencilla: el color del pelaje de los ratones salvajes. Los ratones de color normal, los «ratones de campo» de América del Norte (Peromyscus polionotus), tienen el pelaje pardo y excavan sus madrigueras en suelos oscuros. Pero en las dunas de arena de la costa del golfo de México, en Florida, habita una raza de la misma especie de color claro, el llamado «ratón de playa», que tiene el pelaje casi blanco salvo por una débil banda pardusca que le recorre la espalda. Este color claro es una adaptación para camuflar al ratón de sus depredadores, como las rapaces diurnas y nocturnas y las garzas, que cazan entre las blancas dunas. ¿Cómo sabemos que se trata de una adaptación? Un experimento sencillo (aunque algo sangriento) realizado por Donald Kaufman, de la Universidad de Kansas, demostró que los ratones sobreviven mejor cuando el color de su pelaje se parece al del suelo donde viven. Kaufman levantó unos grandes cercados en el exterior, unos con suelo de color claro y otros con suelo de color oscuro. En cada uno de estos cercados colocó un número igual de ratones de pelaje oscuro y de pelaje claro. Luego soltó en cada cercado una lechuza muy hambrienta, y regresó al cabo de un tiempo para ver qué ratones habían sobrevivido. Como era de esperar, los ratones con el pelaje más contrastado con el suelo habían sido capturados en mayor número, con lo que quedaba demostrado que los ratones camuflados sobrevivían mejor. Este experimento también explica una correlación que se observa en la naturaleza: en los suelos más oscuros habitan ratones más oscuros.

Como el color blanco sólo se encuentra en los ratones de playa, cabe suponer que evolucionaron a partir de los ratones pardos de las tierras del continente hace tan sólo unos seis mil años, cuando las islas de barrera con sus blancas dunas quedaron separadas del continente. Aquí es donde interviene la selección. Los ratones de campo varían en el color del pelaje, y entre los que invadieron las dunas, los de pelaje más claro debían de tener una mayor probabilidad de sobrevivir que los de pelaje oscuro, que los depredadores debían localizar con facilidad. Sabemos además que existe una diferencia genética entre las formas claras y las oscuras; los ratones de playa son portadores de las formas «claras» de varios genes de la pigmentación que conjuntamente les dan el pelaje claro. Los ratones de campo más oscuros llevan la alternativa «oscura» de esos mismos genes. Con el tiempo, a causa de la depredación diferencial, las formas claras debieron dejar más copias de sus genes claros (pues tenían una mayor probabilidad de sobrevivir hasta reproducirse) y, como este proceso prosiguió generación tras generación, la población de ratones de playa debió ir evolucionando de la forma oscura a la forma clara.

¿Qué es lo que ha ocurrido aquí? Sencillamente, al actuar sobre el color del pelaje, la selección natural ha ido modificando la composición genética de una población, aumentando la proporción de aquellas variantes genéticas que incrementan la supervivencia y la reproducción (es decir, los genes del color claro). Y aunque acabo de decir que la selección natural actúa, la expresión no es del todo precisa. La selección no es un mecanismo que se imponga a una población desde fuera, sino un proceso, una descripción de cómo los genes que producen mejores adaptaciones se hacen más frecuentes con el tiempo. Cuando los biólogos dicen que la selección actúa «sobre» un carácter, sólo usan un atajo verbal para decir que un determinado carácter está experimentando un proceso. En el mismo sentido, las especies no intentan adaptarse a su entorno. Aquí no interviene ninguna voluntad, ningún esfuerzo consciente. La adaptación al medio es inevitable si una especie posee la variación genética adecuada.

Son tres los elementos implicados en la creación de una adaptación por medio de la selección natural. En primer lugar, la población inicial tiene que ser variable: los ratones de una población tienen que mostrar variaciones en el color del pelaje. De no ser así, el carácter no puede evolucionar. En el caso de los ratones, sabemos que esto se cumple porque los ratones del continente presentan variaciones en el color del pelaje.

En segundo lugar, alguna proporción de esa variación tiene que provenir de cambios en las formas de los genes, es decir, la variación ha de tener alguna base genética (lo que llamamos heredabilidad). Si no existieran diferencias genéticas entre los ratones claros y los oscuros, los claros todavía sobrevivirían mejor en las dunas, pero la diferencia en el color del pelaje no se transmitiría a la siguiente generación, y por consiguiente no se produciría ningún cambio evolutivo. Sabemos que en el caso de los ratones este requisito también se satisface. De hecho, sabemos exactamente qué dos genes tienen el mayor efecto sobre la diferencia de color del pelaje. Uno de ellos recibe el nombre de Agouti, el mismo gen cuyas mutaciones producen el color negro en los gatos domésticos. El otro se llama Mc1r, y una de sus formas mutantes en los humanos, que es especialmente frecuente en las poblaciones irlandesas, produce pecas y pelo rojo.[30]

¿De dónde procede esta variación genética? Procede de las mutaciones, cambios accidentales en la secuencia de ADN que por lo general se producen por errores de copia de esta molécula durante la división celular. La variación genética que generan las mutaciones es abundante; a modo de ejemplo, son formas mutantes de genes lo que explica en los humanos las variaciones en el color de los ojos, el grupo sanguíneo y buena parte de la variación (en muchas especies) de la altura, el peso, la bioquímica y muchos otros caracteres.

Gracias a un gran número de experimentos de laboratorio, los científicos han llegado a la conclusión de que las mutaciones se producen de manera aleatoria: al azar. El término «aleatorio» tiene aquí un significado específico que a menudo se malinterpreta, incluso por parte de biólogos. Lo que significa es que las mutaciones se producen con independencia de si resultarán útiles para el individuo. Las mutaciones no son más que errores durante la replicación del ADN. En su mayoría son perjudiciales o neutrales, pero unas pocas resultan útiles. Estas pocas mutaciones útiles constituyen la materia prima de la evolución. Pero no existe ningún mecanismo biológico conocido que sirva para aumentar la probabilidad de que una mutación satisfaga las actuales necesidades adaptativas del organismo. Aunque para un ratón que vive en las dunas sea mejor tener un pelaje claro, la probabilidad de que experimente esa útil mutación es la misma que tiene un ratón que viva sobre un suelo oscuro. Así que más que «aleatorias», quizá fuera mejor llamarlas «indiferentes»: la probabilidad de que surja una mutación es indiferente al beneficio o perjuicio que pueda causarle al individuo.

El tercer y último aspecto de la selección natural es que la variación genética tiene que afectar la probabilidad de que los individuos dejen descendencia. En el caso de los ratones, los experimentos de depredación de Kaufman demuestran que los ratones mejor camuflados podían dejar más copias de sus genes. El color blanco de los ratones de playa satisface, por tanto, todos los criterios para haber evolucionado como un carácter adaptativo.

La evolución por selección es, pues, una combinación de azar y necesidad. Hay primero un proceso «aleatorio» (o «indiferente»): la aparición de mutaciones que generen un abanico de variantes genéticas, tanto buenas como malas (en el ejemplo del ratón, variación en el color de pelaje); y luego un proceso «necesario», una «ley»: la selección natural, que tamiza aquella variación, preservando lo bueno y desechando lo malo (en las dunas, los genes de pelaje claro aumentan a expensas de los de color oscuro).

Esto trae a colación lo que seguramente es el aspecto peor entendido del darwinismo: la idea de que, en la evolución, «todo ocurre por azar» (o, también, que «todo ocurre por accidente»). Esta afirmación tan corriente es radicalmente errónea. Ningún evolucionista, y ciertamente tampoco Darwin, ha sostenido nunca que la selección se base únicamente en el azar. Bien al contrario. ¿Acaso un proceso puramente aleatorio podría producir, por sí solo, el martilleante pito crestado, la engañosa orquídea o los saltamontes y ratones camuflados? Desde luego que no. Si de repente la evolución se viera forzada a depender únicamente de las mutaciones al azar, las especies no tardarían en degenerar y extinguirse. El azar no puede explicar por sí solo la maravillosa adecuación entre los individuos y su medio.

Y no lo hace. Cierto es que la materia prima de la evolución, que son las variaciones entre individuos, surgen de mutaciones al azar. Estas mutaciones ocurren sea como sea, con independencia de si son buenas o malas para el individuo. Pero es el tamizado de esa variación por la selección lo que produce las adaptaciones, y la selección natural es un proceso manifiestamente no aleatorio. Es una poderosa fuerza de moldeado que acumulan los genes que aportan una probabilidad de ser transmitidos mayormente que otros y que, al hacerlo, hace que los individuos sean cada vez más capaces de enfrentarse a su medio. Es, por tanto, la combinación única de mutación y selección, de azar y necesidad, lo que nos dice cómo se adaptan los organismos. Richard Dawkins nos ofrece la definición más concisa de la selección natural: es «la supervivencia no aleatoria de variantes aleatorias».

La teoría de la selección natural tiene una gran tarea que acometer, la mayor de toda la biología: explicar cómo evolucionó cada adaptación, paso a paso, a partir de los rasgos que la precedieron. Esto incluye no sólo la forma corporal y el color, sino también los caracteres moleculares que subyacen a todos los otros. La selección debe explicar la evolución de complejos caracteres fisiológicos: la coagulación de la sangre, los sistemas metabólicos que transforman la comida en energía, el prodigioso sistema inmunitario que puede reconocer y destruir miles de proteínas extrañas. ¿Y qué de los detalles de la propia genética? ¿Por qué se separan los pares de cromosomas cuando se forman los óvulos y espermatozoides? En último término, ¿por qué nos reproducimos sexualmente en lugar de producir yemas y clones, como hacen algunas especies? La selección tiene que explicar los comportamientos, tanto los cooperativos como los antagónicos. ¿Por qué los leones cooperan para cazar en grupo y, en cambio, cuando unos machos intrusos desplazan a los machos residentes de un grupo social, los intrusos matan a todos los cachorros lactantes?

Además, la selección tiene que moldear estos caracteres de un modo especial. En primer lugar, tiene que crearlos, por lo general de forma gradual, paso a paso, a partir de sus precursores. Como ya hemos visto, cada nuevo carácter que evoluciona comienza como una modificación de un carácter existente. Las extremidades de los tetrápodos, por ejemplo, no son más que aletas modificadas. Y cada paso del proceso, cada elaboración de una adaptación, tiene que conferir un beneficio reproductivo a los individuos que lo posean. Si no es así, no hay evolución. ¿Qué ventajas confería cada uno de los pasos de la transición de una aleta nadadora a una pata caminadora? ¿O de un dinosaurio sin plumas a otro con plumas y alas? No hay forma de «ir hacia abajo» en la evolución de una adaptación, pues la selección no puede, por su propia naturaleza, crear un paso que no beneficie a quien lo posee. En el mundo de la adaptación, nunca vemos esa señal que es la cruz de los conductores: «una molestia temporal para una mejora permanente».

Si un carácter «adaptativo» es el resultado de la selección natural y no de un acto de creación, podemos hacer algunas predicciones. En primer lugar, deberíamos poder imaginar en principio una trayectoria plausible de los pasos por los que puede haber pasado la evolución de ese carácter, en la que cada paso aumente la eficacia biológica (es decir, el número promedio de descendientes) de quien lo posee. Es fácil hacerlo para algunos caracteres, como en el caso de la modificación gradual del esqueleto que convirtió a unos animales terrestres en ballenas. Para otros es más difícil, en especial para las vías bioquímicas que no dejan traza en el registro fósil. Quizá nunca tengamos la información suficiente para reconstruir la evolución de muchos caracteres, ni siquiera, en el caso de especies extintas, de llegar a entender de manera precisa cómo funcionaban esos caracteres. (¿Para qué servían realmente las placas óseas de la espalda de Stegosaurus?) Dice mucho, no obstante, que los biólogos no hayan encontrado una sola adaptación cuya evolución requiera de manera ineludible un paso intermedio que redujera la eficacia biológica de los individuos.

Hete aquí otro requisito. A lo largo de su evolución, una adaptación tiene que aumentar la producción reproductora de quien la posea. Y es que al final es la reproducción, no la supervivencia, lo que determina qué genes pasan a la siguiente generación y causan la evolución. Naturalmente, para transmitir un gen primero hay que sobrevivir hasta la edad en que se pueda dejar descendencia. Por otro lado, un gen que lleve a la muerte del individuo después del período reproductor no supone ninguna desventaja evolutiva. Quedará para siempre en el acervo genético. De ello se sigue que un gen se verá favorecido si ayuda a la reproducción durante la juventud aunque mate a los individuos viejos. La acumulación de estos genes por la selección natural es, de hecho, una de las explicaciones más seriamente contempladas de nuestro deterioro («senescencia») durante la vejez. Es posible que los mismos genes que nos ayudan a retozar de jóvenes nos produzcan arrugas o engrasamiento de la próstata de viejos.

Tal como funciona la selección natural, no debería producir adaptaciones que ayuden a un individuo a sobrevivir sin promover al mismo tiempo la reproducción. Un ejemplo sería un gen que ayudase a las mujeres a sobrevivir tras la menopausia. Tampoco cabe esperar encontrar adaptaciones en una especie que beneficien únicamente a los miembros de otra especie.

Podemos poner a prueba esta última predicción examinando caracteres de una especie que resulten de utilidad para los miembros de otra especie. Si esos caracteres surgieron por selección, podemos predecir que también serán útiles para la primera especie. Veamos el caso de las acacias, que tienen unas espinas hinchadas y huecas que sirven de abrigo para las colonias de unas hirientes y feroces hormigas. Los árboles también secretan néctar y producen en sus hojas unos cuerpos ricos en proteína que proporcionan alimento a las hormigas. Da toda la impresión de que el árbol esté dando abrigo y alimento a las hormigas a costa propia. ¿Se viola aquí nuestra predicción? Para nada. En realidad, dar cobijo a las hormigas le reporta al árbol enormes beneficios. En primer lugar, los insectos y mamíferos herbívoros que se paran a comer una tapita de hoja son repelidos por una furiosa horda de hormigas, como yo mismo descubrí, para mi desgracia, cuando por accidente rocé una acacia en Costa Rica. Las hormigas también se ocupan de cortar los plantones que puedan nacer alrededor de la base del árbol y que, si llegaran a desarrollarse, competirían con éste por los nutrientes y la luz. Es fácil ver que las acacias que lograban reclutar hormigas para defenderse de depredadores y competidores debían producir más semillas que las acacias que carecían de esta habilidad. En todos los casos, cuando una especie hace algo para ayudar a otra, también se ayuda a sí misma. Ésta es una predicción directa de la evolución que, en cambio, no se sigue de la idea de la creación especial o del diseño inteligente.

Además, las adaptaciones siempre aumentan la eficacia biológica del individuo, no necesariamente del grupo o de la especie. La idea de que la selección natural actúa «por el bien de la especie», aunque muy corriente, es errónea. En realidad, la selección puede producir características que, aunque ayuden al individuo, sean perjudiciales para el conjunto de la especie. Cuando un grupo de machos de león desplaza a los machos residentes de una manada, suele producirse una sangrienta matanza de los cachorros lactantes. Este comportamiento es malo para la especie porque reduce el número total de leones, aumentando así la probabilidad de extinción. Pero es bueno para los leones invasores, pues entonces pueden fecundar a las hembras (que al no amamantar a los cachorros entran de nuevo en celo) y reemplazan los cachorros que mataron con sus propios descendientes. Es fácil, aunque inquietante, ver cómo un gen que causa el infanticidio puede extenderse a expensas de unos genes más «buenos» que llevarían a los machos invasores a hacer de canguros de unos cachorros con los que no guardan ningún parentesco. Tal como predice la evolución, nunca vemos adaptaciones que beneficien a la especie a expensas del individuo, algo que podríamos esperar si los organismos hubieran sido diseñados por un creador benévolo.

La evolución sin selección

Hagamos aquí una pequeña digresión, porque es importante entender que la selección natural no es el único proceso de cambio evolutivo. La mayoría de los biólogos definen la evolución como un cambio en la proporción de alelos (formas distintas de un gen) en una población. Así, a medida que la frecuencia de formas de «color claro» del gen Agouti aumentan en una población de ratón, decimos que la población y el color de su pelaje evolucionan. Pero estos cambios pueden ocurrir también de otras maneras. Cada individuo posee dos copias de un gen, que pueden ser idénticas o diferentes. Cada vez que hay una reproducción sexual, un miembro de cada par de genes de uno de los progenitores pasa a uno de los descendientes, que recibe otra copia del otro progenitor. Cuál de los dos alelos de cada progenitor acaba en un descendiente es una lotería. Si uno tiene sangre del grupo AB (es decir, un alelo «A» y el otro «B»), y tiene un solo hijo, hay una probabilidad del 50 por 100 de que reciba el alelo «A» y 50 por 100 de que reciba el alelo «B». Si esta persona tiene una familia con un único hijo, con certeza uno de sus alelos se perderá. El resultado es que, en cada generación, los genes de los progenitores juegan a una lotería en la que el premio es su representación en la generación siguiente. Como el número de descendientes es finito, las frecuencias de los genes presentes en la descendencia no se corresponderán exactamente con las frecuencias que tienen en los progenitores. Este «muestreo» de genes es como tirar una moneda al aire. Aunque haya un 50 por 100 de probabilidades de que salga cara en una tirada, si sólo se hacen unas cuantas tiradas, hay una probabilidad considerable de que el resultado se desvíe de lo esperado (en cuatro tiradas, por ejemplo, hay una probabilidad del 12 por 100 de que salgan siempre caras o siempre cruces). Así que, sobre todo en las poblaciones pequeñas, la proporción de los distintos alelos puede cambiar con el tiempo única y exclusivamente por efecto del azar. En esta lotería pueden entrar a jugar nuevas mutaciones que también pueden aumentar o disminuir su frecuencia a causa de este muestreo aleatorio. Este «camino aleatorio» puede conducir al final a que algunos genes queden fijados en la población (es decir, que alcancen una frecuencia del 100 por 100) o, alternativamente, a que se pierdan del todo.

Estos cambios al azar en la frecuencia de los genes con el tiempo se denomina deriva genética, y es una forma legítima de evolución, pues comporta cambios en las frecuencias de los alelos con el tiempo, por mucho que esos cambios no sean consecuencia de la selección natural. Un ejemplo de evolución por deriva podría ser las inusuales frecuencias de los grupos sanguíneos (como en el caso del sistema ABO) en las comunidades religiosas Dunker y Amish del Antiguo Orden en América. Éstos son grupos religiosos pequeños y aislados cuyos miembros se casan entre sí, justamente las condiciones que favorecen una evolución rápida por deriva genética.

Los accidentes de muestreo también pueden producirse cuando una población es fundada por unos pocos inmigrantes, como ocurre cuando unos pocos individuos colonizan una isla o una nueva área. La ausencia casi completa de genes que producen el grupo sanguíneo B en las poblaciones de nativos americanos, por ejemplo, podría reflejar la pérdida de este gen en la pequeña población de humanos que colonizaron América del Norte desde Asia hace unos doce mil años.

Tanto la deriva genética como la selección natural pueden producir el cambio genético que identificamos como evolución. Pero existe una diferencia importante. La deriva es un proceso aleatorio mientras que la selección es la antítesis de la aleatoriedad. La deriva genética puede cambiar las frecuencias de los alelos con independencia de la utilidad que puedan tener para quienes los portan. La selección, en cambio, siempre se deshace de los alelos perjudiciales y aumenta las frecuencias de los beneficiosos.

En tanto que proceso puramente aleatorio, la deriva genética no puede conducir a la evolución de adaptaciones. Nunca podría producir un ala o un ojo. Para eso hace falta la selección natural. Lo que la deriva puede hacer es llevar a la evolución de caracteres que no sean ni útiles ni perjudiciales para el organismo. Con su habitual presciencia, el propio Darwin abordó esta idea en El origen:

A esta conservación de las diferencias y variaciones individualmente favorables y la destrucción de las que son perjudiciales la he llamado yo selección natural. En las variaciones ni útiles ni perjudiciales no influiría la selección natural, y quedarían abandonadas como un elemento fluctuante, como vemos quizá en ciertas especies polimorfas.

De hecho, la deriva genética no es sólo impotente a la hora de crear adaptaciones, sino que puede incluso sofocar a la selección natural. Especialmente en poblaciones pequeñas, el efecto del muestreo puede ser tan importante que aumente la frecuencia de genes perjudiciales aunque la selección natural actúe en el sentido contrario. Ésta es casi con toda seguridad la razón de que observemos una elevada incidencia de enfermedades congénitas en comunidades humanas aisladas, como en el caso de la enfermedad de Gaucher en los suecos del norte, la de Tay-Sachs en los cajunes de Luisiana y la retinitis pigmentaria en los habitantes de la isla de Tristán da Cunha.

Puesto que ciertas variaciones del ADN o de secuencias de proteínas puede ser, tal como decía Darwin, «ni útiles ni perjudiciales» (o «neutrales», como las llamamos hoy), estas variantes son especialmente propensas a evolucionar por deriva. Por ejemplo, algunas mutaciones de un gen no afectan a la secuencia de la proteína que produce y, por tanto, no alteran la eficacia biológica de su portador. Lo mismo puede decirse de las mutaciones de pseudogenes no funcionales, restos antiguos de genes que todavía andan dando vueltas por el genoma. Las mutaciones de estos genes no tienen ningún efecto sobre el organismo y, por tanto, pueden evolucionar únicamente por deriva genética.

Muchos aspectos de la evolución molecular, como ciertos cambios en la secuencia de ADN, podrían ser un reflejo de la deriva y no de la selección. Es asimismo posible que muchos caracteres visibles en el exterior de los organismos hayan evolucionado por deriva genética, sobre todo si no afectan a la reproducción. La distinta forma de las hojas en distintas especies de árbol (por ejemplo, entre los arces y los robles) se ha propuesto alguna vez como ejemplo de caracteres «neutrales» que evolucionaron por deriva genética. Pero es difícil demostrar que un carácter no tiene absolutamente ninguna ventaja selectiva. La más pequeña de las ventajas, minúscula hasta el punto de que los biólogos no puedan observarla o medirla en tiempo real, puede producir cambios evolutivos importantes a lo largo de miles o millones de años.

La importancia relativa que en la evolución tiene la deriva genética respecto a la selección sigue siendo un tema de debate candente entre los biólogos. Cada vez que vemos una adaptación obvia, como la joroba del camello, vemos con claridad una manifestación de la selección. Pero los caracteres cuya evolución no entendemos podrían ser el reflejo de nuestra ignorancia más que de la deriva genética. Con todo, sabemos que la deriva genética tiene que producirse, pues en toda población de tamaño finito se producen siempre efectos de muestreo durante la reproducción. Y la deriva probablemente haya desempeñado un papel de peso en la evolución de las poblaciones pequeñas, aunque no podamos aducir más que unos pocos ejemplos.

Cría de plantas y animales

La teoría de la selección natural predice qué tipos de adaptaciones cabe esperar encontrar y, lo que es más importante, no encontrar en la naturaleza. Estas predicciones se han satisfecho. Pero muchas personas quieren más: quieren ver la selección natural en acción, ser testigos del cambio evolutivo durante su vida. No es difícil aceptar la idea de que la selección natural podría causar, pongamos por caso, la evolución de las ballenas a partir de los animales terrestres a lo largo de millones de años, pero de algún modo la idea de la selección gana fuerza cuando vemos con nuestros propios ojos cómo actúa.

Esta exigencia de ver la selección y la evolución en tiempo real es, aunque comprensible, curiosa. Después de todo, no nos cuesta nada aceptar que el Gran Cañón es el resultado de millones de años de erosión lenta e imperceptible por el río Colorado, por mucho que no podamos ver durante nuestra propia vida cómo se hace más hondo el cañón. Pero para algunas personas esta capacidad para extrapolar el tiempo para las fuerzas geológicas no se aplica a la evolución. ¿De qué modo podemos determinar entonces si la selección ha sido una causa importante de la evolución? Obviamente, no podemos reproducir la evolución de las ballenas para ver las ventajas evolutivas de cada pequeño paso en su camino de la tierra al mar. Pero si pudiéramos ver cómo la selección causa pequeños cambios en unas pocas generaciones, quizá nos resultara más fácil aceptar que, a lo largo de millones de años, formas de selección parecidas podrían causar los grandes cambios adaptativos que quedan documentados por los fósiles.

Las pruebas de la selección proceden de muchas áreas. La más obvia es la selección artificial, la cría y mejora de variedades de animales y plantas, que el propio Darwin vio como un buen paralelo de la selección natural. Sabemos que los criadores han logrado auténticas maravillas transformando plantas y animales salvajes en formas completamente distintas que son buenas para comer o para satisfacer nuestras necesidades estéticas. Y sabemos que todo ello se ha conseguido seleccionando la variación presente en sus antepasados salvajes. También sabemos que la cría ha conseguido grandes cambios en períodos de tiempos notablemente cortos, pues la cría de animales y plantas sólo se viene haciendo desde hace unos pocos miles de años.

Tomemos el caso del perro doméstico (Canis lupus familiaris), una única especie que se presenta en todo tipo de formas, tamaños, colores y temperamentos. Todos y cada uno de ellos, pura raza o simple chucho, descienden de una única especie ancestral, con toda probabilidad el lobo común de Eurasia, que los humanos comenzaron a seleccionar hace unos diez mil años. El Club Canino de Estados Unidos reconoce 150 razas distintas, de las que todos hemos vistos muchas: el pequeño y nervioso chihuahua, criado quizá por los toltecas de México para comerlo; el robusto San Bernardo, de grueso pelaje y capaz de llevar barriles de coñac a los viajeros atrapados por la nieve; el galgo, criado para correr con sus largas patas y forma aerodinámica; el alargado y paticorto dachshund (el perro salchicha), ideal para sacar a los tejones de sus madrigueras; los perros cobradores, criados para recoger la piezas de caza del agua; y el lulú de Pomerania, de pelo sedoso, criado como amable perro faldero. Los criadores literalmente han esculpido estos perros a su gusto, cambiando el color y grosor de su pelaje, la longitud y forma de las orejas, el tamaño y conformación de su esqueleto, las peculiaridades de su carácter y temperamento, y casi todo lo imaginable.

¡Qué gran diversidad veríamos si pusiéramos a todos estos perros uno al lado del otro! Si por alguna razón las razas reconocidas existieran únicamente como fósiles, los paleontólogos no dudarían en considerarlos no una, sino muchas especies, ciertamente más de las treinta y seis especies de perros salvajes que viven en la naturaleza en la actualidad.[31] De hecho, la variación entre los perros domésticos supera en mucho la de las especies de perros salvajes. Fijémonos tan sólo en un carácter: el peso. Los perros domésticos varían entre el kilo de un chihuahua y los 80 kilos del mastín inglés, mientras que el peso de las especies de perros salvajes varía más o menos entre 1 y 30 kilos. Y desde luego no existe ninguna especie de perro salvaje con la forma de un perro salchicha o el rostro de un pug.

El éxito de los criadores de perros valida dos de los tres requisitos de la evolución por medio de la selección. El primero es que había en el linaje ancestral de los perros una gran variación en el color, tamaño, forma y comportamiento que permitió la creación de todas las razas. El segundo, que parte de esa variación estaba producida por mutaciones genéticas que podían heredarse, pues en caso contrario los criadores no hubieran conseguido nada. Lo más sorprendente de la cría de perros es la enorme rapidez con la que se obtuvieron resultados. Todas esas razas se seleccionaron en menos de diez mil años, sólo un 0,1 por 100 del tiempo que tardaron las especies de perros salvajes en diversificarse a partir de su antepasado común en la naturaleza. Si la selección artificial puede producir tal diversidad canina en tan poco tiempo, debería resultar más fácil aceptar que la menor diversidad de los perros salvajes haya surgido de la actuación de la selección natural durante un tiempo mil veces mayor.

En realidad, sólo existe una diferencia entre la selección artificial y la natural. En la selección artificial es el criador en lugar de la naturaleza quien decide qué variantes son «buenas» o «malas». En otras palabras, el criterio del éxito reproductor es el deseo humano y no la adaptación a un medio natural. Algunas veces estos dos criterios coinciden. Véase, por ejemplo, el galgo, que fue seleccionado para la velocidad, y acabó con una forma parecida a la del guepardo. Éste es un ejemplo de evolución convergente: las presiones selectivas parecidas producen resultados parecidos.

El perro sirve de paradigma del éxito de otros programas de cría. Como Darwin observó: «Los criadores hablan habitualmente de la organización de un animal como de algo plástico que pueden modelar casi como quieren». Las vacas, las ovejas, los cerdos, las flores, las verduras, etc., todos provienen de la selección hecha por el hombre entre las variaciones presentes en antepasados salvajes, o las variantes que aparecieron por mutaciones durante la domesticación. Por medio de la selección, el esbelto pavo salvaje se convirtió en nuestro dócil, sustancioso y virtualmente insípido monstruo del Día de Acción de Gracias, con pechugas tan grandes que los machos de los pavos domésticos ya no pueden montar a las hembras, que tienen que ser inseminadas artificialmente. El propio Darwin se dedicó a la cría de palomas, y describe la enorme variedad de comportamiento y aspecto de las distintas razas, todas ellas seleccionadas a partir de la ancestral paloma bravía. Nos costaría reconocer al antepasado de nuestro maíz, que era una humilde hierba. El tomate ancestral apenas pesaba unos pocos gramos, pero en la actualidad se ha llevado hasta un monstruo de 90 gramos (también insípido) con un dilatado período de caducidad. La col salvaje ha dado origen a cinco verduras distintas: el brécol, el repollo, el colirrábano, las coles de Bruselas y la coliflor, cada una seleccionada para modificar una parte distinta de la planta (el brécol, por ejemplo, no es más que una cabeza floral grande con las flores apretadas). Y la domesticación de todas las plantas de cultivo se ha producido durante los últimos doce mil años.

No debe sorprender, entonces, que Darwin no comenzara El origen con una discusión sobre la selección natural o la evolución en la naturaleza, sino con un capítulo titulado «Variación en estado doméstico» que trata sobre la cría de animales y plantas. Sabía que si la gente podía aceptar la selección artificial (y tenían que hacerlo, porque su éxito era evidente), no les resultaría tan difícil dar el salto a la selección natural. Como él mismo argumentó:

En domesticidad, puede decirse que toda la organización se hace plástica en alguna medida… ¿puede, entonces, tenerse por improbable, a la vista de las variaciones útiles al hombre que sin duda se han producido, que otras variaciones útiles de alguna manera para cada ser en la grande y compleja batalla de la vida, tengan que presentarse a veces en el transcurso de miles de generaciones?

Puesto que la domesticación de las especies salvajes se produjo en un período de tiempo relativamente corto desde que dio comienzo la civilización humana, Darwin sabía que no había que dar un gran salto para aceptar que la selección natural podía crear una diversidad mucho mayor durante un tiempo mucho más dilatado.

La evolución en el tubo de ensayo

Todavía podemos dar un paso más. En lugar de dejar que unos criadores escojan las variantes que prefieran, podemos dejar que esto se produzca de manera «natural» en el laboratorio, exponiendo una población cautiva a un desafío ambiental nuevo para ella. Esto es fácil de hacer con microbios como las bacterias, que pueden dividirse en tan sólo veinte minutos, lo cual nos permite observar en tiempo real cambios evolutivos que se producen en miles de generaciones. Y lo que se observa es un cambio evolutivo auténtico, que cumple con los tres requisitos de la evolución por medio de la selección: variación, heredabilidad, y supervivencia y reproducción diferencial de las variantes. Aunque el desafío ambiental lo creemos nosotros, este tipo de experimentos son más naturales que la selección artificial porque no escogemos los individuos que habrán de reproducirse.

Comencemos con una adaptación simple. Los microbios pueden adaptarse prácticamente a todo lo que los científicos les echen en el laboratorio: temperaturas altas o bajas, antibióticos, toxinas, inanición, nuevos nutrientes, o sus enemigos naturales, los virus. Probablemente, el estudio más largo de este tipo es el realizado por Richard Lenski, de la Universidad Estatal de Michigan. En 1988 Lenski puso unas cepas genéticamente idénticas de una bacteria común del intestino, E. coli, en unas condiciones tales que su fuente de alimento, el azúcar glucosa, se dejaba agotar cada día y se reponía al siguiente. Este experimento constituía, pues, un ensayo de la capacidad del microbio para adaptarse a un entorno con ciclos de carestía y abundancia. A lo largo de los dieciocho años siguientes (cuarenta mil generaciones bacterianas), las bacterias siguieron acumulando nuevas mutaciones que las adaptaban a este nuevo entorno. En estas condiciones de disponibilidad variable de alimento, crecen ahora un 70 por 100 más rápido que la cepa original no seleccionada. Las bacterias siguen evolucionando, y Lenski y sus colegas han identificado al menos nueve genes cuya mutación ha dado como resultado una adaptación.

Pero las adaptaciones de «laboratorio» pueden ser más complejas, hasta el punto de comportar la evolución de nuevos sistemas bioquímicos. Quizá el reto mayor sería eliminar un gen que un microbio necesita para sobrevivir en un determinado ambiente para ver cómo responde. ¿Se puede esquivar este problema por medio de la evolución? La respuesta suele ser que sí. En un vistoso experimento, Barry Hall y sus colegas de la Universidad de Rochester iniciaron un estudio borrando un gen de E. coli. Este gen produce una enzima que permite a las bacterias romper el azúcar lactosa en subunidades que puede utilizar como alimento. Las bacterias sin este gen se colocaron entonces en un medio que contenía lactosa como única fuente de alimento. Al principio, como era de esperar, carecían del gen y no podían crecer. Pero tras un corto período de tiempo, la función del gen faltante fue adoptada por otra enzima que antes no podía romper la lactosa, pero ahora tenía una débil capacidad para hacerlo gracias a una mutación. Con el tiempo se produjo una nueva mutación que aumentó la cantidad de la nueva enzima, de modo que podía utilizar más lactosa. Por último, una tercera mutación en un gen distinto permitió a las bacterias captar lactosa del medio con mayor facilidad. En conjunto, este experimento muestra la evolución de una vía bioquímica compleja que permitió a unas bacterias crecer con una sustancia que al principio no podían utilizar como alimento. Aparte de demostrar la evolución, este experimento contiene dos valiosas lecciones. La primera, que la selección natural puede promover la evolución de sistemas bioquímicos complejos e interconectados en los que todas las partes son codependientes, en contra de las afirmaciones en sentido contrario de los creacionistas. La segunda, que como hemos visto repetidas veces, la evolución no crea nuevos caracteres de la nada, sino que produce adaptaciones «nuevas» mediante la modificación de caracteres preexistentes.

Podemos ver incluso el origen de especies bacterianas nuevas y ecológicamente diversas dentro del mismo matraz de laboratorio. Paul Rainey y sus colegas de la Universidad de Oxford colocaron una cepa de la bacteria Pseudomonas fluorescens en un pequeño recipiente que contenía un caldo de nutrientes, y se limitaron a observar. (Por sorprendente que parezca, un recipiente de este tipo contiene ambientes diversos. Por ejemplo, la concentración de oxígeno es mayor cerca de la superficie e inferior en el fondo.) Al cabo de diez días, apenas unos pocos cientos de generaciones, la bacteria ancestral, a la que llamaban «smooth» («lisa») y flotaba por todo el medio, había evolucionado dando lugar a dos nuevas formas que ocupaban partes distintas del matraz. Una, llamada «wrinkly spreader» («que se extiende formando arrugas»), formaba un tapiz sobre el caldo. La otra, llamada «fuzzy spreader» («que se extiende de forma difusa»), tapizaba el fondo. El tipo liso ancestral se mantuvo en el interior del medio líquido. Cada una de las dos nuevas formas era genéticamente distinta de su antecesora, de la que habían evolucionado por mutación y selección natural hasta reproducirse mejor en sus ambientes respectivos. Lo que ocurre en este caso en el laboratorio ya no es sólo evolución, sino también especiación: la forma ancestral había producido dos formas descendientes ecológicamente distintas con las que coexistía, y en las bacterias las formas con estas características se consideran especies distintas. Tras un período de tiempo corto, la selección natural sobre Pseudomonas había producido una «radiación adaptativa» a pequeña escala, el equivalente de cómo las plantas o los animales forman especies cuando se enfrentan a nuevos ambientes en una isla oceánica.

Resistencia a fármacos y venenos

Cuando se introdujeron los antibióticos durante la década de 1940, todos creían que resolverían para siempre el problema de las enfermedades infecciosas causadas por bacterias. Estos fármacos funcionaban tan bien que casi todos los afectados de tuberculosis, faringitis estreptocócica o neumonía podían curarse con un par de inyecciones o un frasco de pastillas. Pero nos habíamos olvidado de la selección natural. Con sus enormes tamaños poblacionales y cortos tiempos de generación, precisamente las características que hacen a las bacterias ideales para los estudios de evolución en el laboratorio, hay una elevada probabilidad de que aparezca una mutación que confiera resistencia a un antibiótico. Las bacterias resistentes al fármaco serán justamente las que sobrevivirán y dejarán descendientes genéticamente idénticos que también serán resistentes al antibiótico. Con el tiempo, el fármaco pierde efectividad y volvemos a tener un problema médico. Esto ha producido crisis graves para algunas enfermedades. Existen hoy cepas de la bacteria de la tuberculosis que han evolucionado hasta el punto de ser resistentes a todos los antibióticos que los médicos han venido utilizando contra ellas. Tras un largo período de curas y optimismo médico, la tuberculosis se está convirtiendo de nuevo en una enfermedad mortal.

Esto es selección natural pura y dura. Todos sabemos de la resistencia a los fármacos, pero no siempre nos damos cuenta de que este es uno de los mejores ejemplos que tenemos de la selección en acción. (Si este fenómeno hubiera existido en tiempos de Darwin, seguro que le hubiera reservado un lugar central en El origen.) Una creencia bastante extendida es que la resistencia a los fármacos se produce porque, de algún modo, los pacientes cambian de manera que el fármaco pierde efectividad. No es así: la resistencia proviene de la evolución del microbio, no de la habituación de los pacientes.

Otro de los mejores ejemplos de selección es la resistencia a la penicilina. Cuando se introdujo a principios de la década de 1940, la penicilina era un fármaco milagroso, especialmente efectivo contra las infecciones causadas por la bacteria Staphilococcus aureus. En 1941, el antibiótico podía acabar con cualquiera de las cepas de estafilococo del mundo. Hoy, setenta años más tarde, más del 95 por 100 de las cepas de estafilococo son resistentes a la penicilina. Lo que ha pasado es que aparecieron en algunas bacterias mutaciones que les otorgaban resistencia al antibiótico, y como es natural, estas mutaciones se extendieron por todo el mundo. En respuesta a ello, la industria farmacéutica desarrolló un nuevo antibiótico, la meticilina, pero también está perdiendo utilidad por culpa de nuevas mutaciones. En ambos casos, los científicos han identificado los cambios precisos en el ADN bacteriano que confieren resistencia a los antibióticos.

Los virus, que son la forma de vida de menor tamaño capaz de evolucionar, también han adquirido por medio de la evolución resistencia a los fármacos antivirales, en particular a la AZT (azidotimidina), diseñada para impedir que el virus HIV se replique en un cuerpo infectado. La evolución se produce incluso en el cuerpo de un solo paciente, pues el virus muta a una velocidad de vértigo, y tarde o temprano obtiene una resistencia que hace que la AZT sea ineficaz. En la actualidad el sida se mantiene a raya con un cóctel diario de tres fármacos, y si la historia sirve de guía, también éste dejará de funcionar con el tiempo.

La evolución de la resistencia a las drogas crea una carrera armamentista entre los humanos y los microorganismos que no ganan sólo las bacterias, sino también la industria farmacéutica, que constantemente tiene que diseñar nuevos fármacos para reemplazar a los que van perdiendo eficacia. Por suerte, hay algunos casos espectaculares de microorganismos que no han logrado adquirir resistencia mediante la evolución. (Debemos recordar que la teoría de la evolución no predice que todo vaya a evolucionar; si las mutaciones necesarias no pueden aparecer o no aparecen, no se produce evolución.) Una forma de Streptococcus, por ejemplo, produce la faringitis estreptocócica, común en niños. Estas bacterias no han logrado evolucionar hasta adquirir siquiera la más leve resistencia a la penicilina, que sigue siendo el tratamiento preferido. Y, a diferencia del virus de la gripe, los virus de la polio y del sarampión no han conseguido adquirir por evolución resistencia a las vacunas, que se vienen utilizando desde hace más de cincuenta años.

Otras especies han conseguido adaptarse también por medio de la selección a cambios provocados por el hombre en su medio. Algunos insectos se han vuelto resistentes al DDT y a otros plaguicidas, algunas plantas se han adaptado a los herbicidas, y algunos hongos, gusanos y algas han adquirido por medio de la evolución resistencia a los metales pesados que contaminan su entorno. Parece que casi siempre hay algunos individuos con suerte con mutaciones que les permiten sobrevivir y reproducirse, haciendo que una población sensible evolucione con rapidez hacia una población resistente. Podemos realizar una inferencia razonable: cuando una población encuentre una presión que no provenga del hombre, como un cambio de la salinidad, la temperatura o la precipitación, la selección natural con frecuencia producirá una respuesta adaptativa.

La selección en la naturaleza

Las respuestas que hemos visto a las presiones y sustancias químicas impuestas por el hombre constituyen ejemplos de selección natural con pleno derecho. Aunque los agentes selectivos hayan sido concebidos por los humanos, la respuesta es del todo natural y, como hemos visto, puede ser bastante compleja. Pero quizá resultara todavía más convincente que pudiéramos observar el proceso entero en marcha en la naturaleza, sin intervención humana. Es decir, queremos saber cuál es el reto al que se enfrenta una población y queremos ver cómo evoluciona ante nuestros ojos.

No podemos esperar que estas circunstancias sean comunes. De entrada, la selección natural en la naturaleza suele ser increíblemente lenta. La evolución de las plumas, por ejemplo, probablemente haya llevado cientos de miles de años. Aunque estuvieran evolucionando en la actualidad, sería simplemente imposible ver cómo ocurre esto en tiempo real, y más aún medir el tipo de selección, fuera el que fuera, que estuviera haciendo las plumas más largas. Si queremos ver la selección natural en marcha, tendrá que ser selección fuerte, que causa cambios rápidos, y lo mejor será que nos centremos en animales o plantas con tiempos de generación cortos de manera que podamos ver los cambios evolutivos a lo largo de varias generaciones. Y mejor que sea algo más grande que una bacteria: la gente quiere ver la selección en los organismos llamados «superiores», en animales o plantas.

Además, no deberíamos esperar ver más que cambios pequeños en uno o unos pocos caracteres de una especie, lo que se conoce como cambios microevolutivos. Dado el ritmo gradual de la evolución, no cabe esperar que veamos cómo un «tipo» de planta o animal se convierte en otro, lo que conocemos como macroevolución, durante el transcurso de una vida humana. Aunque la macroevolución sigue produciéndose en la actualidad, sencillamente no estamos por aquí el tiempo suficiente para verla. Recordemos que la cuestión no es si se produce cambio macroevolutivo, pues ya sabemos que es así gracias al registro fósil, sino si ese cambio fue el resultado de la selección natural y si ésta puede construir caracteres y organismos complejos.

Otro de los factores que hacen que sea difícil ver la selección natural en tiempo real es que un tipo muy común de selección natural no hace que las especies cambien. Todas las especies están bastante bien adaptadas, lo que significa que la selección ya las ha adecuado a su entorno. Los episodios de cambio que se producen cuando una especie se enfrenta a un nuevo reto ambiental probablemente sean raras en comparación con los períodos durante los cuales no hay nada nuevo a lo que adaptarse. Pero eso no significa que no se esté produciendo selección. Si una especie de ave, por ejemplo, ha evolucionado hasta tener el tamaño corporal óptimo para su medio, y ese medio no cambia, la selección sólo actuará en el sentido de eliminar las aves que sean más grandes o más pequeñas que el óptimo. Pero este tipo de evolución, que recibe el nombre de selección estabilizadora, no cambiará el tamaño medio del cuerpo: si se mira la población de una generación a la siguiente, apenas habrá cambiado en nada (aunque se habrán eliminado tanto genes que den un cuerpo mayor como genes que produzcan uno menor). Podemos ver esto, por ejemplo, en el peso en el momento del nacimiento en los bebés humanos. Las estadísticas de los hospitales muestran de manera sistemática cómo los bebés que al nacer tienen un peso medio, alrededor de 3,4 kilos en Estados Unidos y Europa, sobreviven mejor que los más pequeños (nacidos prematuramente o de madres malnutridas) o mayores (que tienen dificultades para nacer).

Así pues, si queremos ver la selección en acción deberemos fijarnos en especies que tengan tiempos de generación cortos y que estén adaptándose a un nuevo ambiente. Esto es más probable que ocurra cuando una especie invade un nuevo hábitat o experimenta un cambio ambiental severo. Y, en efecto, ahí es donde encontramos los ejemplos.

El más célebre de todos, que no elaboraré aquí en detalle porque ya ha sido descrito a fondo (por ejemplo, en el soberbio libro de Jonathan Weiner, The Beak of the Finch: A Story of Evolution in Our Time), es la adaptación de un ave a un cambio de clima anómalo. El pinzón de Darwin (Geospiza fortis) de las islas Galápagos ha sido estudiado durante varias décadas por Peter y Rosemary Grant, de la Universidad de Princeton, y sus colaboradores. En 1977, una fuerte sequía en las Galápagos redujo de manera drástica la disponibilidad de semillas en la isla Daphne Mayor. Este pinzón, que normalmente prefiere comer semillas pequeñas y blandas, se vio forzado a recurrir a semillas más grandes y más duras. Varios experimentos han mostrado que sólo las aves más grandes, con un pico más grande y robusto, pueden romper con facilidad las semillas duras. El resultado fue que sólo los individuos de pico grande pudieron alimentarse adecuadamente, mientras que los de pico pequeño murieron de inanición o quedaron demasiado débiles para reproducirse. Los supervivientes de pico grande dejaron más descendientes, y a la siguiente generación la selección natural había incrementado el tamaño medio del pico en un 10 por 100 (el tamaño corporal también aumentó). Esta tasa de evolución es vertiginosa, mucho más rápida que nada que hayamos visto en el registro fósil. En comparación, el tamaño del cerebro humano aumentó en el linaje humano alrededor de un 0,001 por 100 por generación. Todo lo que requiere la evolución por medio de la selección natural había quedado documentado a satisfacción por los Grant en estudios previos: los individuos de la población original variaban en la profundidad del pico, una gran proporción de esa variación era genética y los individuos con picos distintos dejaron un número de descendientes distinto en la dirección predicha.

Dada la importancia del alimento para la supervivencia, la capacidad para recolectar, comer y digerirla con eficiencia es una fuerza de selección fuerte. Muchos insectos tienen un hospedador específico: se alimentan y ponen sus huevos en sólo una o unas pocas especies de plantas. En tales casos, el insecto necesita adaptaciones que le permitan utilizar la planta, entre ellas un aparato bucal que le dé acceso a los nutrientes de la planta, un metabolismo que detoxifique cualquier tóxico que contenga la planta y un ciclo reproductor que produzca las larvas cuando tengan comida a disposición (durante el período vegetativo de la planta). Puesto que hay muchos pares de insectos estrechamente emparentados que utilizan como hospedador a plantas diferentes, deben de haberse producido muchos cambios de una planta a otra a lo largo de la evolución. Estos cambios, que equivalen a colonizar un hábitat distinto, deben haber ido acompañados de una selección fuerte.

De hecho, hemos visto cómo ocurre algo semejante a lo largo de las últimas décadas en la chinche del jabonero (Jadera haematoloma) del Nuevo Mundo. Jadera vive en dos plantas autóctonas de distintas partes de Estados Unidos: el jabonero, un arbusto del sur y centro de Estados Unidos, y una liana perenne del género Cardiospermum en el sur de Florida. Con su pico largo como una aguja, la chinche penetra en el interior de los frutos de estas plantas y consume las semillas que guarda en su interior, licuando su contenido antes de absorberlo. Pero durante los últimos cincuenta años, esta chinche ha colonizado otras tres plantas introducidas en su área de distribución. Los frutos de estas plantas son muy distintos en tamaño respecto a los de su hospedador autóctono: los de dos de estas especies son mucho más grandes y los de la otra más pequeños.

Scott Carroll y sus colegas predijeron que este cambio de hospedador provocaría la selección natural de cambios en el tamaño del pico. Las chinches que colonizaban las especies de frutos más grandes evolucionarían hacia picos más largos que les permitieran penetrar los frutos y alcanzar las semillas, mientras que las que colonizaban los frutos más pequeños evolucionarían en la dirección opuesta. Esto es justamente lo que ocurrió: la longitud del pico cambió en hasta un 25 por 100 en unas pocas décadas. Esto quizá no parezca mucho, pero lo es en comparación con las tasas habituales, sobre todo en el plazo de un centenar de generaciones.[32] Para ponerlo en perspectiva, si esta tasa de evolución del pico se mantuviera durante tan sólo diez mil generaciones (cinco mil años), los picos aumentarían de tamaño en un factor de aproximadamente cinco mil millones, alcanzando una longitud de 2.900 kilómetros, suficiente para penetrar en un fruto del tamaño de ¡la luna! Presentar esta cifra tan ridícula y nada realista no tiene otro propósito, desde luego, que poner de manifiesto la potencia acumulada que pueden llegar a tener unas tasas de cambio en apariencia tan minúsculas.

He aquí otra predicción: en un régimen de sequía prolongado, la selección natural conducirá a la evolución de plantas que florezcan más temprano que sus antepasados. La razón es que durante una sequía, los suelos se secan rápidamente después de las lluvias. Una planta que no saque la flor y produzca semillas con rapidez en una sequía no deja descendencia. En condiciones normales del clima, en cambio, resulta beneficioso retardar la floración para crecer más y poder producir más semillas.

Esta predicción fue contrastada durante un experimento natural en el nabo silvestre (Brassica rapa), introducido en California hace unos trescientos años. A partir del año 2000, el sur de California sufrió una fuerte sequía que duró cinco años. Arthur Weis y sus colegas de la Universidad de California midieron el tiempo de floración de los nabos al principio y al final de este período. Tal como esperaban, la selección natural había modificado el tiempo de floración precisamente en el modo predicho: tras la sequía, las plantas comenzaron a florecer una semana antes que sus antepasados.

Hay muchos otros ejemplos, pero todos demuestran lo mismo: podemos presenciar con nuestros propios ojos cómo la selección natural conduce a una mejor adaptación. Natural Selection in the Wild, un libro escrito por el biólogo John Endler, documenta más de 150 casos de evolución, y en aproximadamente una tercera parte de estos tenemos una buena idea de cómo actuó la selección natural. Vemos moscas de la fruta que se adaptan a temperaturas extremas, abejas que se adaptan a sus competidores y unos peces, los gupis (Poecilia reticulata), que pierden colorido para no llamar la atención de sus depredadores. ¿Cuántos ejemplos más necesitamos?

¿Puede la selección producir complejidad?

Pero aunque nos pongamos de acuerdo en que la selección natural actúa en la naturaleza, ¿hasta dónde puede llegar realmente? Vale que la selección puede cambiar los picos de las aves o el período de floración de las plantas, pero ¿puede producir complejidad? ¿Qué podemos decir de los caracteres intrincados como los miembros de los tetrápodos; o de las adaptaciones bioquímicas exquisitas como la coagulación de la sangre, que requiere una secuencia precisa de pasos en la que intervienen muchas proteínas; o incluso del aparato más complicado que haya evolucionado nunca, el cerebro humano?

Aquí jugamos con una suerte de desventaja porque, como sabemos, los caracteres complejos tardan mucho tiempo en evolucionar, así que la mayoría lo hicieron en el pasado distante y desde luego no estábamos allí para ver cómo ocurría. Entonces, ¿cómo podemos estar seguros de que la selección natural intervino? ¿Cómo sabemos que los creacionistas se equivocan cuando dicen que la selección puede hacer pequeños cambios en los organismos pero es impotente frente a los grandes cambios?

Pero primero debemos preguntamos: ¿cuál es la teoría alternativa? No sabemos de ningún otro proceso que pueda construir una adaptación compleja. La alternativa que con más frecuencia se propone nos lleva directamente al dominio de lo sobrenatural. Esto, como es obvio, es creacionismo, que en su reencarnación más reciente se conoce como «diseño inteligente». Los defensores del DI sugieren que un diseñador sobrenatural ha intervenido en diversos momentos durante la historia de la vida, bien sea trayendo instantáneamente a la existencia las adaptaciones complejas que la selección natural presuntamente no puede hacer, bien sea produciendo «mutaciones milagrosas» que no pueden ocurrir al azar. (Algunos defensores del DI van aún más lejos: son los creacionistas extremos de la «tierra joven», que creen que nuestro planeta sólo tiene unos seis mil años y que la vida no tiene ninguna historia evolutiva.)

En su mayor parte, el DI no es ciencia, pues sobre todo consiste en un conjunto de afirmaciones no contrastables. ¿Cómo podemos determinar, por ejemplo, si las mutaciones fueron meros accidentes de la replicación del ADN o nacieron de la voluntad de un creador? Pero podemos preguntamos si existen adaptaciones que no pueden haber sido construidas por la selección y que, por consiguiente, nos obligan a pensar en otro mecanismo. Los defensores del DI han propuesto varias adaptaciones de este tipo, como el flagelo bacteriano (un pequeño aparato en forma de cabello con un complejo motor molecular, que algunas bacterias utilizan para desplazarse) y el mecanismo de la coagulación de la sangre. Éstos son sin duda caracteres complejos: el flagelo, por ejemplo, está compuesto por docenas de proteínas distintas, todas las cuales tienen que trabajar de manera concertada para que esta «hélice» en forma de pelo se mueva.

Los defensores del DI argumentan que este tipo de caracteres, que consisten en muchas piezas distintas que tienen que cooperar para que el carácter funcione, desafían la explicación darwinista. Por tanto, por defecto, deben haber sido diseñadas por un agente sobrenatural. Éste es el tipo de argumentación que suele conocerse como «Dios en las lagunas», pues es una argumentación que nace de la ignorancia. Lo que realmente dice es que si no entendemos todo sobre cómo construyó la selección natural un carácter, esta falta de conocimiento constituye en sí misma una prueba de la creación sobrenatural.

Es fácil ver por qué este argumento no se sostiene. Nunca seremos capaces de reconstruir el proceso por el cual la selección natural construyó todos y cada uno de los caracteres; la evolución ocurrió antes de que estuviéramos en escena, así que algunas cosas nunca llegarán a ser conocidas. Pero la biología evolutiva es como toda ciencia: tiene misterios, y muchos acaban por resolverse, uno tras otro. Sabemos, por ejemplo, de dónde vienen las aves: no salieron de la nada (como solían decir los creacionistas), sino que evolucionaron de manera gradual a partir de los dinosaurios. Cada vez que se resuelve un misterio, el DI se ve forzado a retirarse. Como el DI no propone ningún enunciado científico contrastable, sino que se limita a ofrecer críticas mal pertrechadas del darwinismo, su credibilidad se va apagando poco a poco con cada avance de nuestro conocimiento. Además, la propia explicación que ofrece el DI de los caracteres complejos (el capricho de un diseñador sobrenatural) puede explicar cualquier observación imaginable de la naturaleza. Hasta quizá haya tenido el creador el capricho de hacer que la vida parezca haber evolucionado (al parecer muchos creacionistas así lo creen, aunque pocos lo admiten). Pero si uno no puede concebir una sola observación que pueda refutar una teoría, esa teoría sencillamente no es científica.

Pero ¿cómo podemos refutar la afirmación del DI de que algunos caracteres desafían cualquier origen por selección natural? En tales casos la responsabilidad no recae en los biólogos evolutivos, que no tienen que describir punto por punto una hipótesis documentada del proceso exacto de evolución de un carácter complejo. Eso nos obligaría a conocer todo lo que ocurrió cuando no estábamos, lo cual es imposible para la mayoría de los caracteres y para prácticamente todas las vías bioquímicas. Como los bioquímicos Ford Doolittle y Olga Zhaxbayeva sostuvieron al responder a la afirmación del DI de que los flagelos no podían haber evolucionado, «los evolucionistas no necesitan acometer el reto imposible de descubrir el más mínimo detalle de la evolución flagelar. Basta con mostrar que ese desarrollo, realizado con procesos y constituyentes no muy distintos de los que ya conocemos y sobre los que estamos de acuerdo, es factible». Por «factible» lo que quieren decir es que debe haber precursores evolutivos para cada nuevo carácter, y que la evolución de ese carácter no viola el requisito darwinista de que cada paso en la construcción de una adaptación debe beneficiar a quien lo posee.

En realidad, no conocemos ninguna adaptación cuyo origen no pueda haber implicado a la selección natural. ¿Cómo podemos estar tan seguros? Para los rasgos anatómicos, podemos sencillamente seguir su evolución (cuando sea posible) en el registro fósil, y ver en qué orden tuvieron lugar los distintos cambios. Podemos entonces determinar si las secuencias de cambios por lo menos se ajustan a un proceso adaptativo paso a paso. Y en cada caso, podemos encontrar al menos una explicación darwinista factible. Hemos visto esto en la evolución de los animales terrestres desde unos peces, de las ballenas desde animales terrestres y de las aves desde unos reptiles. No tenía por qué haber sido de ese modo. El movimiento de las narinas a la parte superior de la cabeza en las ballenas ancestrales, por ejemplo, podía haber precedido a la evolución de las aletas. Eso podría haber sido un acto providencial de un creador, pero no habría podido evolucionar por selección natural. Sin embargo, siempre vemos un orden evolutivo que tiene sentido a la luz del darwinismo.

La evolución de las vías y caracteres bioquímicos complejos no es tan fácil de entender, porque no dejan traza en el registro fósil. Su evolución tiene que reconstruirse de forma más especulativa, intentando ver cómo podían componerse esas vías a partir de precursores bioquímicos más sencillos. Nos gustaría, además, conocer los pasos de ese proceso para ver si cada novedad podía aportar una mejora en la eficacia biológica.

Aunque los defensores del DI afirman que detrás de esas vías bioquímicas hay una mano sobrenatural, empezamos a obtener resultados de la obstinada investigación científica en forma de hipótesis plausibles (y contrastables) de cómo pudieron evolucionar. Tomemos el caso de la vía de la coagulación de la sangre en los vertebrados. Este proceso depende de una secuencia de eventos que comienza cuando una proteína se une a otra en la vecindad de una herida abierta. Esto dispara una complicada reacción en cadena de dieciséis pasos, cada uno de los cuales precisa de la interacción entre un par distinto de proteínas, que culmina en la formación del coágulo. En conjunto son más de veinte proteínas las que intervienen. ¿Cómo puede haber evolucionado algo así?

No lo sabemos con seguridad pero tenemos indicios de que el sistema podría haberse erigido de forma adaptativa a partir de precursores más simples. Muchas de las proteínas de la coagulación de la sangre están hechas por genes relacionados que aparecieron por duplicación, una forma de mutación en la que un gen ancestral, y más tarde sus descendientes, queda duplicado al completo en una hebra de ADN a causa de un error durante la división celular. Una vez aparecidos, los genes duplicados pueden evolucionar por caminos distintos, hasta que al cabo de un tiempo pueden realizar funciones distintas, como ahora hacen en la coagulación de la sangre. Además, sabemos que otras proteínas y enzimas de la vía desempeñaban funciones distintas en otros grupos que evolucionaron antes que los vertebrados. Por ejemplo, una proteína clave en la vía de la coagulación es el fibrinógeno, que se halla disuelto en el plasma sanguíneo. En el último paso de la coagulación de la sangre, esta proteína es dividida por una enzima, y las proteínas más cortas, las fibrinas, se pegan unas a otras y se hacen insolubles, formando el coágulo. Como el fibrinógeno está en todos los vertebrados como proteína de la coagulación de la sangre, cabe suponer que evolucionó a partir de una proteína que cumplía una función distinta en unos invertebrados ancestrales que aparecieron antes pero carecían de una vía de coagulación de la sangre. Aunque un diseñador inteligente podría inventar una proteína adecuada, la evolución no funciona así. Tiene que haber existido una proteína ancestral a partir de la cual evolucionó el fibrinógeno.

Rusell Doolittle, de la Universidad de California, predijo que encontraríamos esa proteína, y, en efecto, en 1990 él y su colega Xun Xu la descubrieron en el cohombro de mar, un invertebrado que se utiliza a veces en la gastronomía china. Los cohombros de mar (holoturias) son una rama que se separó del linaje de los vertebrados hace al menos 500 millones de años, y sin embargo poseen una proteína que, estando claramente relacionada con las proteínas de la coagulación en los vertebrados, no se utiliza para la coagulación de la sangre. Esto significa que el antepasado común de las holoturias y los vertebrados poseía un gen que los vertebrados más tarde requisaron para una nueva función, precisamente como predice la evolución. Desde entonces, tanto Doolittle como el biólogo celular Ken Miller han elaborado una secuencia plausible y adaptativa de la evolución de toda la cascada de la coagulación de la sangre desde partes de proteínas precursoras. Todos estos precursores se encuentran en invertebrados, donde tienen otras funciones no relacionadas con la coagulación, y en los vertebrados la evolución las llevó a adoptar una función dentro del sistema de coagulación. En cuanto a la evolución del flagelo bacteriano, aunque todavía no se entiende completamente, se sabe ya que implica muchas proteínas tomadas de otras vías bioquímicas.[33]

Los problemas difíciles a menudo ceden ante la ciencia, y aunque todavía no sepamos cómo evolucionaron todos los sistemas bioquímicos complejos, cada día aprendemos algo nuevo. Al fin y al cabo, la evolución química es un campo de investigación que todavía está en pañales. Si algo nos enseña la historia de la ciencia, es que lo que conquista nuestra ignorancia es la investigación, y no rendirse para atribuir nuestra ignorancia a la obra milagrosa de un creador. Cuando el lector oiga que alguien afirma lo contrario, conviene que recuerde estas palabras de Darwin: «La ignorancia engendra confianza más a menudo que el conocimiento: son quienes saben poco, y no quienes saben mucho, los que afirman con seguridad que tal o cual problema no será nunca resuelto por la ciencia».

Así que, en principio, no parece que haya ningún problema real con que la evolución haya construido sistemas bioquímicos complejos. Pero ¿y el tiempo? ¿Ha habido realmente tiempo suficiente para que la selección natural creara adaptaciones complejas además de la diversidad de formas de vida? Sabemos que ha habido tiempo suficiente para que los organismos evolucionaran, pues nos lo dice el registro fósil, pero ¿fue la selección natural lo bastante fuerte como para impulsar esos cambios?

Una manera de abordar el problema consiste en comparar las tasas de evolución derivadas del registro fósil con las que vemos en los experimentos de laboratorio, o con datos históricos de los cambios evolutivos ocurridos después de que una especie colonizara un nuevo hábitat en tiempos históricos. Si la evolución en el registro fósil fuera mucho más rápida que en los experimentos de laboratorio o los sucesos de colonización, que en ambos casos están impulsados por una selección muy fuerte, tendríamos que volver a pensar si la selección puede realmente explicar los cambios en los fósiles. Pero los resultados nos dicen justo lo contrario. Philip Gingerich, de la Universidad de Michigan, mostró que las tasas de cambio de la forma y tamaño de los animales en experimentos de laboratorio y estudios de colonización eran mucho más rápidos que las tasas de cambio de los fósiles: de unas quinientas veces más rápidas (selección durante las colonizaciones) a casi un millón de veces más rápidas (experimentos de selección en laboratorio). Incluso las tasas de evolución del registro fósil son todavía más lentas que las tasas más lentas que observamos en los experimentos de laboratorio. Además, las tasas medias de evolución que se observan en los estudios de colonización son lo bastante grandes como para hacer que un ratón alcance el tamaño de un elefante en tan sólo ¡diez mil años!

La lección es, por tanto, que la selección es perfectamente adecuada para explicar los cambios que vemos en el registro fósil. Una razón por la que la gente plantea esta pregunta es que no pueden (o no quieren) darse cuenta de la magnitud de los lapsos de tiempo con los que ha trabajado la evolución. Después de todo, hemos evolucionado para ocuparnos de lo que ocurre a la escala de nuestras vidas, o sea unos treinta años durante la mayor parte de nuestra evolución. Un lapso de 10 millones de años queda fuera de nuestra intuición.

Por último, ¿es la selección natural suficiente para explicar un órgano realmente complejo como el ojo? El ojo de «cámara» de los vertebrados (y moluscos como el calamar y el pulpo) fue en otro tiempo un favorito de los creacionistas. Tras observar la compleja disposición del iris, el cristalino, la retina, la córnea, etc., todos los cuales tienen que trabajar conjuntamente para producir una imagen, los oponentes de la selección natural afirmaron que el ojo no podía formarse por medio de pasos graduales. ¿Cómo iba a servir de algo «medio ojo»?

Darwin abordó y refutó con brillantez este argumento en El origen. Hizo un repaso de las especies existentes para ver si podía encontrar ojos funcionales pero menos complejos que no sólo fueran útiles, sino que pudieran ordenarse en una secuencia hipotética que mostrara la posible evolución del ojo de cámara. Si pudiera hacerse esto (y puede hacerse), el argumento de que la selección natural nunca podría producir un ojo se desmorona, pues los ojos de las especies existentes son obviamente útiles. Cada mejora del ojo podía conferir beneficios evidentes, pues haría que el individuo fuera más capaz de encontrar alimento, evitar a sus depredadores y moverse por su entorno.

Una secuencia posible de estos cambios comienza con simples manchas oculares compuestas por pigmentos sensibles a la luz, como las que encontramos en los platelmintos. Luego la piel produce un pliegue, formando un foso en forma de copa que protege la mancha ocular y la ayuda a localizar la fuente de luz. Las lapas tienen ojos como éstos. En el nautilo la abertura del foso se cierra más, produciendo una imagen mejorada, y en los poliquetos Nereis, queda tapado por una cubierta transparente que protege la abertura. En los abulones, parte del fluido del ojo se ha coagulado formando un cristalino, una lente que ayuda a enfocar, y en muchas especies, incluidos los mamíferos, se modificaron algunos de los músculos cercanos para mover el cristalino y enfocar la imagen. La evolución de la retina, un nervio óptico y todo el resto se sigue de la selección natural. Cada paso de esta hipotética «serie» de transición aumentó la adaptación de quien la poseía, porque permitía al ojo recoger más luz o formar mejores imágenes, dos cosas que ayudan a la supervivencia y la reproducción. Además, cada paso de este proceso es factible porque se encuentra en los ojos de una especie viva distinta. Al final de la secuencia tenemos el ojo de cámara, cuya evolución adaptativa parece de una complejidad imposible. Pero la complejidad del ojo último puede descomponerse en una serie de pasos más pequeños, todos adaptativos.

Pero podemos ir más lejos que alinear en una serie adaptativa los ojos de especies existentes. Podemos elaborar un modelo de la evolución del ojo para ver si, a partir de un precursor simple, la selección puede convertir ese precursor simple en un ojo más complejo en un lapso de tiempo razonable. Dan-Eric Nilsson y Susanne Pelger, de la Universidad de Lund, en Suecia, han elaborado justamente este tipo de modelo matemático, que comienza con una mancha de células sensibles a la luz y, detrás de ella, una capa pigmentaria (una retina). Dejaron entonces que los tejidos que rodeaban esta estructura se deformasen al azar, limitando la cantidad de deformación a sólo el 1 por 100 del tamaño o el grosor en cada paso. Para reproducir la selección natural, el modelo aceptaba únicamente las «mutaciones» que mejoraban la agudeza visual, y rechazaba las que la disminuían.

En un período de tiempo sorprendentemente corto, el modelo produjo un ojo complejo después de pasar por estadios parecidos a los observados en la serie real de ojos de animales descrita más arriba. El ojo formó primero un pliegue en forma de copa, la copa quedó cubierta por una superficie transparente y el interior de la copa se tomó gelatinoso para formar no ya una lente, sino una lente con las dimensiones que producían la mejor de las imágenes posible.

Así pues, a partir de una mancha ocular como la de un platelminto, el modelo había producido algo parecido al ojo complejo de los vertebrados, y todo ello por medio de una serie de pequeños pasos adaptativos, 1.829 pasos para ser exactos. Pero Nilsson y Pelger también calcularon cuánto tiempo requeriría este proceso. Para ello partieron de algunas suposiciones sobre cuánta variación genética para la forma del ojo existía en la población que comenzaba a experimentar selección natural, y sobre lo fuerte que debía ser la selección a favor de un paso que mejorara la utilidad del ojo. De manera deliberada escogieron para estos términos valores bajos, suponiendo una cantidad razonable pero no grande de variación genética y que la selección natural era débil. Aun así, el ojo evolucionó muy rápido: todo el proceso desde la rudimentaria mancha ocular hasta el ojo de cámara transcurrió en menos de 400.000 años. Puesto que los primeros animales con ojos datan de hace 550 millones de años, hubo, de acuerdo con este modelo, tiempo suficiente para que los ojos complejos evolucionasen más de mil quinientas veces. En la realidad, los ojos han evolucionado de manera independiente en al menos cuarenta grupos de animales. Como Nilsson y Pelger observan con ironía en su artículo, «está claro que el ojo nunca representó una verdadera amenaza para la teoría de la evolución de Darwin».

Así pues, ¿dónde nos encontramos? Sabemos que un proceso muy parecido a la selección natural, es decir la cría de animales y plantas, ha partido de la variación genética presente en las especies salvajes y ha creado enormes transformaciones «evolutivas». Sabemos que estas transformaciones pueden ser mucho mayores y más rápidas que el cambio evolutivo que se produjo en el pasado. Hemos visto que la selección actúa en el laboratorio, en microorganismos que causan enfermedades, y en la naturaleza. No conocemos ninguna adaptación que no pueda haber sido moldeada por la selección natural, y en muchos casos podemos hacer una inferencia plausible de cómo actuó la selección. Por último, disponemos de modelos matemáticos que muestran que la selección natural puede producir caracteres complejos de forma fácil y rápida. La conclusión es obvia: podemos suponer provisionalmente que la selección natural es la causa de toda la evolución adaptativa, aunque no de todos los caracteres evolutivos, porque la deriva genética también ha desempeñado un papel.

Es cierto que los criadores no han convertido un gato en un perro, y que los estudios de laboratorio no han convertido una bacteria en una ameba (aunque, como hemos visto, en el laboratorio hayan aparecido nuevas especies bacterianas). Pero es necio pensar que éstas son objeciones serias a la selección natural. Las grandes transformaciones llevan tiempo, mucho tiempo. Para ver realmente el poder de la selección, tenemos que extrapolar los pequeños cambios que crea la selección durante nuestras vidas a los millones de años durante los que realmente ha trabajado en la naturaleza. Tampoco podemos ver cómo el Gran Cañón se hace más hondo, pero si miramos a ese gran abismo, con el río Colorado esculpiendo su fondo de manera insensible, aprendemos la lección más importante del darwinismo: las fuerzas débiles, aplicadas durante largos períodos de tiempo, producen cambios grandes y dramáticos.