II

El problema de la consistencia

El siglo XIX presenció una prodigiosa expansión e intensificación de la investigación matemática. Fueron resueltos muchos problemas fundamentales que durante largo tiempo habían resistido a los esfuerzos de los pensadores anteriores: se crearon nuevos sectores de estudio matemático y se establecieron nuevos cimientos en diversas ramas de la disciplina o se reformaron por completo los antiguos con la ayuda de técnicas analíticas más precisas. Sirva de ejemplo lo siguiente. Los griegos habían propuesto tres problemas de geometría elemental: con regla y compás, dividir en tres partes iguales un ángulo cualquiera, construir un cubo de doble volumen que el volumen de un cubo dado y construir un cuadrado de área igual a la de un círculo dado. Durante más de dos mil años se hicieron infructuosos esfuerzos por resolver estos problemas. Y, finalmente, en el siglo XIX, se demostró que tales construcciones son lógicamente imposibles. Se obtuvo, además, un valioso resultado secundario de esos trabajos. Puesto que las soluciones dependen esencialmente de determinar la clase de raíces que satisfacen a ciertas ecuaciones, el interés suscitado por los famosos ejercicios planteados en la antigüedad estimula la realización de profundas investigaciones acerca de la naturaleza de los números y sobre la estructura del continuo numérico. Los números negativos, complejos e irracionales fueron definidos con rigurosa precisión; se construyó una base lógica para el sistema de números reales y se fundó una nueva rama de las matemáticas: la teoría de los números transfinitos.

Pero el progreso más importante por sus repercusiones sobre la subsiguiente evolución de la ciencia matemática fue, quizá, la solución de otro problema que los griegos habían planteado sin darle una respuesta. Uno de los axiomas que Euclides utilizó para sistematizar la geometría se refiere a las paralelas. El axioma que adopto es lógicamente equivalente (aunque no idéntico) a la hipótesis de que por un punto exterior a una línea dada solamente puede trazarse una paralela a esa línea. Por varias razones, este axioma no pareció «evidente por sí mismo» a los antiguos. Trataron, por tanto, de deducirlo de otros axiomas euclidianos que consideraban claramente autoevidentes[1]. ¿Puede hallarse una demostración del axioma de las paralelas? Generaciones enteras de matemáticos forcejearon sin resultado con esta cuestión. Pero el reiterado fracaso en el intento de construir una prueba no significa que no pueda ser encontrada ninguna en absoluto, del mismo modo que el reiterado fracaso en el intento de hallar un remedio para el resfriado común no demuestra de forma indudable que la Humanidad haya de sufrir eternamente sus molestias. Fue solamente en el siglo XIX, principalmente por la obra de Gauss, Bolyai, Lobachevsky y Riemann, cuando se demostró la imposibilidad de deducir de los otros axiomas el axioma de las paralelas. Este resultado tuvo una importancia intelectual extraordinaria. En primer lugar, llamó clamorosamente la atención hacia el hecho de que puede demostrarse la imposibilidad de demostrar ciertas proposiciones dentro de un determinado sistema. Como veremos, el trabajo de Gödel es una demostración de la imposibilidad de demostrar ciertas proposiciones importantes de la aritmética. En segundo lugar, la resolución de la cuestión planteada por el axioma de las paralelas obligó a admitir que Euclides no había dicho la última palabra acerca de la geometría, ya que pueden construirse nuevos sistemas de geometría utilizando cierto número de axiomas distintos de los adoptados por Euclides e incompatibles con ellos. En particular, como es bien sabido, se obtienen resultados extraordinariamente interesantes y fructíferos cuando se sustituye el axioma de las paralelas de Euclides por la hipótesis de que, por un punto dado, puede trazarse más de una paralela a una línea determinada, o, alternativamente, por la hipótesis de que no puede trazarse ninguna paralela. La creencia tradicional de que los axiomas de la geometría (o, lo que es lo mismo, los axiomas de cualquier disciplina) pueden ser establecidos como tales por su aparente autoevidencia fue así destruida en su misma base. Además, fue haciéndose cada vez más claro que la tarea propia del matemático puro es deducir teoremas a partir de hipótesis postuladas, y que, en cuanto tal matemático, no le atañe la cuestión de decidir si los axiomas que acepta son realmente verdaderos. Y, finalmente, estas modificaciones de la geometría ortodoxa estimularon la revisión y perfección de las bases axiomáticas de otros muchos sistemas matemáticos. Se dio un fundamento axiomático a campos de investigación que hasta entonces habían sido cultivados de una forma más o menos intuitiva[2].

La conclusión dominante desprendida de estos estudios críticos de los fundamentos de las matemáticas es que la antigua concepción de las matemáticas como «ciencia de la cantidad» es equivocada, además de engañosa. Pues se hizo evidente que la matemática es, simplemente, la disciplina por excelencia que extrae las conclusiones lógicamente implicadas en cualquier conjunto dado de axiomas o postulados. Llegó, de hecho, a reconocerse que la validez de una deducción matemática no depende en absoluto de ningún significado especial que pueda estar asociado con los términos o expresiones contenidos en los postulados. Se admitió así que las matemáticas eran algo mucho más abstracto y formal de lo que tradicionalmente se había supuesto; más abstracto, porque las afirmaciones matemáticas pueden ser hechas en principio sobre cualquier objeto, sin estar esencialmente circunscritas a un determinado conjunto de objetos o de propiedades de objeto, y más formal, porque la validez de las demostraciones matemáticas se asienta en la estructura de las afirmaciones más que en la naturaleza especial de su contenido. Los postulados de cualquier rama de la matemática demostrativa nunca versan intrínsecamente sobre el espacio, la cantidad, manzanas, ángulos o presupuestos financieros; y ningún significado especial que pueda asociarse con los términos (o «predicados descriptivos») contenidos en los postulados desempeña papel esencial alguno en el proceso de deducir teoremas. Repetimos que la única cuestión a la que se enfrenta el matemático puro (en cuanto diferente del científico que hace uso de las matemáticas en la investigación de un determinado objeto de estudio) no es si los postulados de que parte o las conclusiones que de ellos deduce son verdaderos, sino si las conclusiones obtenidas son realmente las consecuencias lógicas necesarias de las hipótesis iniciales.

Consideremos un ejemplo. Entre los términos no definidos (o «primitivos») empleados por el destacado matemático alemán David Hilbert en su famosa axiomatización de la geometría (publicada en 1899) se hallan «punto», «línea», «estar situado en» y «entre». Podemos admitir que los significados habituales relacionados con estas expresiones desempeñan un papel en el proceso de descubrir y aprender teoremas. Puesto que los significados nos son familiares nos damos cuenta de que comprendemos sus diversas relaciones mutuas y ellos también motivan la formulación y selección de axiomas; además, sugieren y facilitan la formulación de las afirmaciones que esperamos demostrar como teoremas. Sin embargo, como paladinamente declara Hilbert, mientras estemos interesados en la fundamental labor matemática de explorar las relaciones estrictamente lógicas de dependencia entre afirmaciones debemos prescindir de las connotaciones familiares de los términos primitivos, y los únicos «significados» que se deben asociar con ellos son los que se hallan determinados por los axiomas en que están contenidos[3]. A esto es a lo que se refiere el famoso epigrama de Russell: la matemática pura es la ciencia en la que no sabemos de qué estamos hablando ni si lo que estamos diciendo es verdadero.

No es fácil, desde luego, adentrarse en un terreno de rigurosa abstracción, carente de toda clase de mojones señaladores. Pero ofrece compensaciones importantes en forma de una nueva libertad de movimientos y de renovadas perspectivas. La acentuada formalización de las matemáticas emancipó la mente de los hombres de las restricciones que la habitual interpretación de las expresiones establecía para la construcción de nuevos sistemas de postulados. Surgieron nuevas especies de álgebras y de geometrías que señalaron importantes desviaciones respecto de las matemáticas tradicionales. Al hacerse más generales los significados de ciertos términos se hizo más amplia su utilización y menos limitadas las deducciones que podían extraerse de ellos. La formalización condujo a una gran variedad de sistemas de considerable interés matemático y de un valor extraordinario. Preciso es admitir que algunos de estos sistemas no se prestaban a interpretaciones tan evidentemente intuitivas (esto es, conformes al sentido común) como las de la geometría euclídea o de la aritmética, pero este hecho no causo ninguna alarma. La intuición, en realidad, es una facultad elástica; nuestros hijos no encontraran, probablemente, dificultad alguna en aceptar como intuitivamente evidentes las paradojas de la relatividad, del mismo modo que nosotros no retrocedemos ante ideas que eran consideradas completamente no intuitivas hace un par de generaciones. Además, como todos sabemos, la intuición no es una guía segura: no puede ser utilizada adecuadamente como criterio de verdad ni de fecundidad en las exploraciones científicas.

La creciente abstracción de las matemáticas planteó, empero, un problema más serio. Suscitó la cuestión de si un determinado conjunto de postulados erigidos como bases de un sistema es internamente consistente, de tal modo que no puedan deducirse teoremas mutuamente contradictorios a partir de esos postulados. El problema no parece apremiante cuando se considera un conjunto de axiomas que versan sobre una especie concreta y conocida de objetos, ya que entonces no solo es significativo preguntar, sino que puede ser posible asegurarse de ello, si los axiomas son verdaderos referidos a tales objetos. Como quiera que se daba generalmente por supuesto que los axiomas euclidianos eran afirmaciones verdaderas respecto al espacio (o a los objetos en el espacio), ningún matemático anterior al siglo XIX se detuvo siquiera a considerar la cuestión de si podría deducirse algún día de tales axiomas un par de teoremas contradictorios. El fundamento de esta confianza en la consistencia de la geometría euclidiana es el recto principio de que no pueden ser simultáneamente verdaderas afirmaciones lógicamente incompatibles; por consiguiente, si es verdadero un conjunto de afirmaciones (que es lo que se daba por supuesto respecto de los axiomas euclidianos), esas afirmaciones son mutuamente consistentes.

Las geometrías no euclidianas pertenecían a una categoría diferente. Sus axiomas fueron considerados inicialmente como siendo claramente falsos respecto del espacio y, por este motivo, dudosamente verdaderos respecto de cualquier otra cosa; por ello fue considerado notablemente arduo, a la par que decisivo, el problema de establecer la consistencia interna de los sistemas no euclidianos. En la geometría riemanniana, por ejemplo, el postulado de las paralelas de Euclides es sustituido por la hipótesis de que por un punto dado exterior a una línea no puede trazarse ninguna paralela a ella. Planteémonos ahora la cuestión de si es consistente el conjunto riemanniano de postulados. Aparentemente, los postulados no son verdaderos referidos al espacio de la experiencia ordinaria. ¿Cómo puede entonces mostrarse su consistencia? ¿Cómo puede demostrarse que no conducirán a teoremas contradictorios? Evidentemente, la cuestión no queda resuelta por el hecho de que los teoremas ya deducidos no se contradicen entre sí, toda vez que subsiste la posibilidad de que el próximo teorema que se deduzca introduzca la discordia en el sistema. Pero hasta que se resuelva esa cuestión no puede haber certeza de que la geometría riemanniana constituya una verdadera alternativa al sistema euclidiano, esto es, que sea igualmente válida matemáticamente. La posibilidad misma de la existencia de geometrías no euclidianas paso así a depender de la resolución de este problema.

Se ideó un método general para su resolución. La idea básica consiste en encontrar un «modelo» (o «interpretación») para los postulados abstractos de un sistema, de tal modo que cada postulado se convierta en una afirmación verdadera respecto del modelo. En el caso de la geometría euclidiana, como hemos visto, el modelo era el espacio ordinario. Se utilizó el método para encontrar otros modelos cuyos elementos pudiesen servir de puntos de apoyo para determinar la consistencia de postulados abstractos. El procedimiento viene a ser el siguiente. Designemos con la palabra «clase» un conjunto o colección de elementos distintos, cada uno de los cuales recibe la denominación de miembro de la clase. Así, la clase de números primos menores de 10 es el conjunto cuyos miembros son 2, 3, 5 y 7. Consideremos la siguiente serie de postulados concernientes a dos clases, K y L, cuya naturaleza concreta se deja indeterminada excepto en lo que resulta «implícitamente» definido por los postulados:

  1. Dos miembros cualesquiera de K se hallan contenidos en un solo miembro de L.
  2. Ningún miembro de K se halla contenido en más de dos miembros de L.
  3. No todos los miembros de K se hallan contenidos en un único miembro de L.
  4. Dos miembros cualesquiera de L contienen a un solo miembro de K.
  5. Ningún miembro de L contiene a más de dos miembros de K.

De este pequeño conjunto podemos derivar, aplicando las reglas corrientes de deducción, cierto número de teoremas. Puede demostrarse, por ejemplo, que K contiene tres miembros solamente. Pero ¿se halla dotado este conjunto de consistencia, hasta el punto de que nunca puedan deducirse de él teoremas mutuamente contradictorios? Puede responderse prontamente a la cuestión con ayuda del modelo siguiente:

Sea K la clase de puntos que componen los vértices de un triángulo, y L la clase de líneas que forman sus lados. Entendamos la frase «un miembro de K se halla contenido en un miembro de L» en el sentido de que un punto que es un vértice está situado en una línea que es un lado. Cada uno de los cinco postulados abstractos se convierte entonces en una afirmación verdadera. Por ejemplo, el primer postulado afirma que dos puntos cualesquiera que sean vértices del triángulo radican solamente en una misma línea que sea un lado (fig. 1). De esta forma queda demostrada la consistencia del conjunto de postulados.

FIGURA 1. El modelo para un grupo de postulados acerca de dos clases K y L, es un triángulo cuyos vértices son miembros de K y cuyos lados son miembros de L. El modelo geométrico muestra que los postulados son consistentes.

La consistencia de la geometría plana riemanniana puede también demostrarse ostensiblemente mediante un modelo en que encarnen los postulados. Podemos interpretar la expresión «plano» de los axiomas riemannianos como (significativa de) una esfera euclidiana, la expresión «punto» como un punto de esta superficie, la expresión «línea recta» como el arco de un círculo máximo de esta superficie, es decir, de la esfera, y así sucesivamente. Cada postulado riemanniano se traduce entonces por un teorema de Euclides. Así, por ejemplo, según esta interpretación el postulado riemanniano de las paralelas presenta el siguiente enunciado: por un punto de la superficie de una esfera no puede trazarse ningún arco de círculo máximo paralelo a un arco dado de círculo máximo (fig. 2).

FIGURA 2. La geometría no-euclidiana de Bernhard Riemann puede ser representada con un modelo euclidiano. El plano riemanniano se convierte en la superficie de una esfera euclidiana, los puntos en el plano se convierten en círculos máximos. Así, una porción del plano riemanniano limitada por segmentos de líneas rectas queda representada por una porción de una esfera limitada por partes de círculos máximos (centro). Dos segmentos lineales en el plano riemanniano son dos segmentos de un círculo máximo en la esfera euclidiana (abajo), y estos se intersectan si se prolongan, contradiciendo de esta manera el postulado.

A primera vista puede parecer concluyente esta prueba de la consistencia de la geometría riemanniana. Pero si se examina más atentamente surge el desconcierto, pues se descubriría entonces que el problema no ha sido resuelto, sino simplemente desplazado a otro terreno. Se intenta demostrar la consistencia de la geometría riemanniana apelando a la consistencia de la geometría euclidiana. Lo que se desprende entonces es solamente que la geometría riemanniana es consistente si es consistente la geometría euclidiana. Resulta así que se invoca la autoridad de Euclides para demostrar la consistencia de un sistema que discute la validez exclusiva de Euclides. La insoslayable cuestión es: ¿son consistentes por sí mismos los axiomas del sistema euclidiano?

Una respuesta a esta cuestión, consagrada, como hemos visto, por una larga tradición, es que los axiomas euclidianos son verdaderos y, por tanto, consistentes. Esta respuesta no se consideraba ya aceptable. Volveremos luego sobre ella y explicaremos por qué no es satisfactoria. Otra contestación es que los axiomas están de acuerdo con nuestra actual, aunque limitada, experiencia del espacio y que se halla perfectamente justificado hacer una extrapolación de lo particular a lo universal. Pero, por muchas pruebas inductivas que puedan aducirse en apoyo de esta postura, nuestra mejor demostración sería lógicamente incompleta, pues aun cuando todos los hechos observados mantengan su concordancia con los axiomas, subsiste la posibilidad de que un hecho hasta ahora inobservado pueda contradecirlos y destruir así su pretensión de universalidad. Lo más que pueden mostrar las consideraciones inductivas es que los axiomas son plausibles, o probablemente verdaderos.

Hilbert hizo un ensayo en otra dirección. La idea básica del mismo se apoya en la geometría de coordenadas cartesianas. En su interpretación, los axiomas de Euclides se transformaban simplemente en verdades algebraicas. Así, por ejemplo, tomando los axiomas de la geometría plana, hace que la expresión «punto» signifique un par de números, la expresión «línea recta» la relación (lineal) entre números expresada por una ecuación de primer grado con dos incógnitas, la expresión «círculo» la relación entre números expresada por una ecuación de segundo grado de cierta forma, y así sucesivamente. La afirmación geométrica de que dos puntos distintos determinan solamente una línea recta se transforma entonces en la verdad algebraica de que dos pares distintos de números determinan solamente una relación lineal; el teorema geométrico de que una línea recta corta a un círculo en dos puntos como máximo, en el teorema algebraico de que un sistema de dos ecuaciones con dos incógnitas (una de las cuales es lineal y la otra de segundo grado de cierto tipo) determinan dos pares de números reales como máximo, y así sucesivamente. En resumen, la consistencia de los postulados euclidianos se demuestra haciendo ver que satisfacen a un modelo algebraico. Este método de demostrar la consistencia es válido y eficaz. Sin embargo, es también vulnerable a la objeción ya expuesta, pues también aquí se resuelve el problema planteado en un terreno desplazándolo a otro. La argumentación de Hilbert en favor de la consistencia de sus postulados geométricos demuestra que si el álgebra es consistente también lo es su sistema geométrico. La prueba se halla en una clara dependencia de la supuesta consistencia de otro sistema y no es una prueba «absoluta».

En los diversos intentos realizados para resolver el problema de la consistencia late siempre una permanente fuente de dificultad, la cual radica en el hecho de que los axiomas son interpretados por modelos compuestos de un número infinito de elementos. Esto hace imposible encerrar los modelos en un número finito de observaciones; de ahí que la verdad de los axiomas sea objeto de duda. En la argumentación inductiva en favor de la verdad de la geometría euclidiana un número finito de hechos observados acerca del espacio se hallan presumiblemente de acuerdo con los axiomas. Pero la conclusión que se trata de demostrar implica una extrapolación de una serie finita de datos a otra infinita. ¿Cómo podemos justificar este salto? Por otra parte, la dificultad queda minimizada, si no completamente eliminada, allá donde pueda idearse un modelo que contenga solamente un número limitado de elementos. El triángulo modelo utilizado para demostrar la consistencia de los cinco postulados abstractos referidos a las clases K y L es finito; y es relativamente sencillo determinar por medio de una inspección si todos los elementos del modelo satisfacen realmente los postulados y, por consiguiente, si son verdaderos (y, por tanto, consistentes). Por ejemplo: examinando sucesivamente todos los vértices del triángulo modelo puede verse si se cumple el enunciado de que dos cualesquiera de ellos radican únicamente en un solo lado, con lo que queda demostrado como verdadero el primer postulado. Puesto que todos los elementos del modelo, así como las relaciones relevantes existentes entre ellos, se prestan a una directa y exhaustiva inspección, y puesto que es prácticamente nula la probabilidad de que se produzcan errores al inspeccionarlos, la consistencia de los postulados no suscita en este caso duda alguna.

Desafortunadamente, la mayoría de los sistemas de postulados que constituyen los fundamentos de numerosas e importantes ramas de las matemáticas no pueden ser reflejados en modelos finitos. Considérese el postulado de la aritmética elemental que afirma que todo número entero tiene un inmediato sucesor, distinto de todo otro número anterior. Resulta evidente que el modelo necesario para comprobar el conjunto a que pertenece este postulado no puede ser finito, sino que debe contener una infinidad de elementos. De ello se desprende que la verdad (y, por tanto, la consistencia) del conjunto no puede demostrarse mediante una inspección exhaustiva de un número limitado de elementos. Hemos llegado, al parecer, a un callejón sin salida. Los modelos finitos bastan, en principio, para demostrar la consistencia de ciertos conjuntos de postulados, pero éstos tienen una muy escasa importancia matemática. Los modelos no finitos, necesarios para la interpretación de la mayoría de los sistemas de postulados matemáticamente importantes, solo pueden ser descritos en términos generales; y no podemos dar por sentado que las descripciones se hallen exentas de ocultas contradicciones.

Al llegar a este punto se siente uno tentado a sugerir que podemos estar seguros de la consistencia de las formulaciones en que se describen los modelos no finitos si las nociones básicas empleadas son transparentemente «claras» y «distintas». Pero la historia del pensamiento no ha solido admitir la doctrina de las ideas claras y distintas ni la teoría del conocimiento intuitivo implícita en la sugerencia. En ciertas zonas de la investigación matemática en que las hipótesis acerca de los conjuntos infinitos desempeñan un importante papel han surgido contradicciones radicales, pese a la intuitiva claridad de las nociones implicadas en las hipótesis y pese al carácter aparentemente consistente de las construcciones intelectuales realizadas. Contradicciones de estas (denominadas técnicamente «antinomias») han aparecido en la teoría de los números transfinitos, desarrollada por Georg Cantor en el siglo XIX; y la presencia de estas contradicciones ha hecho evidente que la aparente claridad de ni siquiera una noción tan elemental como la de clase (o conjunto) garantiza la consistencia de cualquier sistema concreto que se edifique sobre ella. Puesto que la teoría matemática de las clases, que versa sobre las propiedades y relaciones de los agregados o colecciones de elementos, es frecuentemente adoptada como fundamento para otras ramas de las matemáticas, y, en particular, para la aritmética elemental, es oportuno plantearse la cuestión de si no se hallaran afectadas las formulaciones de otras partes de las matemáticas de contradicciones similares a las encontradas en la teoría de las clases infinitas.

A este respecto, Bertrand Russell construyó una contradicción dentro del sistema mismo de la lógica elemental, que es precisamente análoga a la contradicción primeramente desarrollada en la teoría cantoriana de las clases infinitas. La antinomia de Russell puede ser enunciada del modo siguiente. Las clases parecen ser de dos tipos: las que no se contienen a sí mismas como miembros y las que sí se contienen. Una clase será llamada «normal» si, y solamente si, no se contiene a sí misma como miembro; en otro caso se la llamara «no normal». Un ejemplo de clase normal es la clase de los matemáticos, ya que, evidentemente, la clase misma no es un matemático y, por tanto, no es un miembro de sí misma. Un ejemplo de clase no normal es la clase de todas las cosas pensables, ya que la clase de todas las cosas pensables es, a su vez, pensable y, por consiguiente, un miembro de sí misma. Sea «N», por definición, la clase de todas las clases normales. Preguntamos si N mismo es una clase normal. Si N es normal, es un miembro de sí misma (pues, por definición, N contiene a todas las clases normales); pero, en ese caso, N es no normal, porque, por definición, una clase que se contiene a sí misma es no normal. Por otra parte, si N es no normal, es un miembro de sí misma (por la definición de no normal); pero, en ese caso, N es normal, porque, por definición, los miembros de N son las clases normales. En resumen, N es normal si, y solamente si, N es no normal. De lo que se desprende que la afirmación «N es normal» es verdadera y falsa a la vez. Esta fatal contradicción se produce como consecuencia de utilizar sin espíritu crítico una noción aparentemente diáfana de clase. Posteriormente fueron encontrándose otras paradojas, construidas todas por medio de familiares y aparentemente convincentes modos de razonamiento. Los matemáticos acabaron comprendiendo que, en la tarea de desarrollar sistemas consistentes, la familiaridad y la claridad intuitiva son soportes harto débiles en que apoyarse.

Hemos visto la importancia del problema de la consistencia y hemos trabado conocimiento con el método clásico de resolverlo con ayuda de modelos. Se ha mostrado que, en la mayoría de los casos, el problema requiere el uso de un modelo no finito, cuya descripción puede contener ella misma inconsistencias. Debemos concluir que, si bien el método del modelo constituye una valiosa herramienta matemática, no suministra una respuesta definitiva al problema que trataba de resolver.